
35

BULGARIAN ACADEMY OF SCIENCES
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS • 2024 • Vol. 82, pp. 35-47

p-ISSN: 2738-7356; e-ISSN: 2738-7364
https://doi.org/10.7546/PECR.82.24.03

Overview of Low-Code Technologies and Foundations
for Architectural Best Practices

Borislav K. Shumarov1, Ivan G. Garvanov1

1 University of Library Studies and Information Technologies, Sofia, Bulgaria
Emails: borislav.shumarov@gmail.com, i.garvanov@unibit.bg

Abstract: Low-code development platforms are transforming the software
development landscape by enabling rapid application delivery through visual
interfaces and declarative programming. However, the adoption of these platforms
introduces new challenges in maintaining code quality and establishing
development standards. This paper presents a comprehensive study of low-code
technologies, focusing on foundational guidelines for best practices and
architectural design. Through market analysis and a review of an empirical study
of OutSystems practitioners, we review critical gaps in current development
standards and foundation for solutions. Our previous survey revealed, that 78% of
low-code developers support the implementation of standardized code style
guidelines, similar to traditional programming environments. We establish a basis
for theoretical framework based on a 3-Layer Canvas architecture, together with
concrete guidelines for maintaining scalable and maintainable architecture for
low-code applications. The study includes specific recommendations for
preventing architectural antipatterns, managing dependencies, and implementing
effective code organization strategies. Our results contribute to both the
theoretical understanding of low-code development and provide practical
guidance for organizations adopting these technologies. The research highlights
that while low-code platforms simplify development processes, they require
adaptation of established software engineering principles to ensure long-term
application sustainability.

Keywords: Low-code development platforms, Software architecture, Best
practices, OutSystems, Code style guidelines, Enterprise applications, Software
quality

36

1. Introduction
The software development landscape is experiencing a paradigm shift with the
emergence of low-code development platforms (LCDPs). As organizations face
increasing pressure to digitize operations and deliver applications rapidly,
traditional software development approaches often struggle to meet these
demands due to resource constraints, technical complexity, and lengthy
development cycles. Low-code technologies have emerged as a potential solution,
promising to democratize application development through visual interfaces and
declarative programming approaches while maintaining the robustness required
for enterprise applications.

Despite being present for some time already, low-code software
development is still a relatively unknown field in software development.
Furthermore, despite the growing adoption of low-code platforms, there remains
a significant gap in our understanding of what software engineering principles and
best practices should be adapted and applied in low-code environments [1]. While
these platforms aim to simplify development, they introduce new challenges in
maintaining code quality, ensuring architectural integrity, and establishing
standardized development practices [2]. In contrast to the well-known software
applications [3, 4], low-code development platforms have no clear and
comprehensive guidelines specifically tailored to low-code development
potentially undermining the long-term maintainability and scalability of
applications built on these platforms.

This paper addresses these challenges through three main objectives. First,
we provide a comprehensive overview of what constitutes a modern low-code
development platform and the current low-code technology landscape, examining
market trends and identifying key players shaping the industry. Second, we
examine empirical research investigating the needs and challenges faced by low-
code practitioners, particularly within the OutSystems ecosystem, regarding
development standards and best practices. Third, we establish theoretical
foundations for architectural design in low-code environments, on the basis of a
review of theoretical guidelines and validation principles.

The study particularly focuses on the OutSystems platform as a
representative case study, while drawing broader implications for low-code
development in general. Through this multi-faceted approach, we aim to bridge
the gap between traditional software engineering practices and the emerging
requirements of low-code development.

The findings presented in this paper contribute to both the theoretical
understanding of low-code development and provide practical guidance for
practitioners. By outlining foundational guidelines for best practices in low-code
development, we aim to support organizations in leveraging these technologies

37

effectively while maintaining software quality and architectural integrity, while
also paving the way for future deeper and more concrete research in the area.

2. Low-code technologies. Software development guidelines and
low-code systems
In recent years, the landscape of software development has undergone a
significant transformation with the emergence of low-code technologies. These
platforms promise to revolutionize how applications are built, offering rapid
development capabilities, and reducing the traditional dependency on extensive
coding expertise. This section explores the foundational aspects of low-code
technologies, examines their growing prominence in the software industry, and
dives into the topic of low-code software development standards and guidelines
and best practices.

The first section about the broader notion of Low-Code Software
Development describes the paradigm shift from conventional coding
methodologies. At its core, low-code aims it enables developers to create
applications through visual interfaces and declarative programming rather than
extensive hand-coding. This approach aims to democratize app development by
empowering business users and citizen developers to participate actively in the
creation process. Key features include intuitive drag-and-drop tools for GUI
design, pre-built templates for common functionalities, and seamless integration
capabilities with external systems.

There are numerous challenges, that low-code software development aims
to solve. As clients' demands for quicker service and higher quality software are
pushing the market forward, the need of new and better approaches to answering
these demands is evident. This can be seen in Figure 1, showing the results of a
survey by Forrester Research, conducted among 41 companies [5].

Most LCDPs today offer standard offline help, responsive UI, mobile
capabilities, authentication, UI, repository control and role-based-access to data
[6]. Based on the work of [7, 8], five of the most significant characteristics of an
excellent LCDP can be outlined as follows:

• Simple GUI configurability;
• Convenient integration options to other tools and platforms;
• Mobile integration;
• Scalability across the organization;
• Support of the complete software lifecycle.

38

Fig. 1. Challenges for building custom applications using traditional coding with

programming languages, frameworks, and middleware

The enterprise low-code development and one of the leading players in the
area: the low-code provider OutSystems, as well as the adoption of low-code
platforms across industries. It is primarily driven by their ability to accelerate
time-to-market and foster innovation. Market leaders such as Mendix,
OutSystems, Salesforce, and Microsoft have pioneered advancements in low-code
technologies, each offering unique strengths and strategic approaches. Industry
reports from renowned research firms highlight the exponential growth and
transformative impact of low-code platforms, positioning them as catalysts for
digital transformation initiatives globally.
Forrester and Gartner are two market research organizations, which have been
tracking the low-code market in recent years. Fig. 2 depicts the top vendors of
LCDPs, in the realm of professional application development and delivery
(AD&D), according to Forrester [9].

They are positioned on the graph, according to two criteria: how strong they
perceive the current offering is and how they assess the future strategy of the
respective company. Forrester and Gartner [10, 11] seem to reach an almost
perfect consensus about who the leaders in the industry are:

• Mendix,
• OutSystems,
• Salesforce, and
• Microsoft.

39

Fig. 2. Low-code development platform providers for AD&D professionals Q1 2019

After investigating the current market, functionalities and trends in the modern
low-code software development, the next section further delves into the realm of
software standards within low-code systems. It aims to outline a comprehensive
study that evaluates the effectiveness of existing practices and methodologies in
the low-code development environment. The study [12] is needed to better
understand the needs of the low-code and OutSystems professionals, regarding
best practices, guidelines and coding design patterns and their particular
specificity.

For this reason, the study has been undertaken primarily among software
development cadres and more specifically: the particular relatively small niche of
OutSystems developers and professionals. The methodology involves the
qualitative and quantitative research techniques aimed at capturing insights from

40

the practitioners and industry experts. Surveys conducted among a diverse group
of stakeholders provide empirical data on the challenges and opportunities
associated with low-code development. By examining participant feedback and
industry benchmarks, the study aims to identify gaps in current practices and
propose frameworks that enhance productivity and code quality.

Exploratory data analysis has been performed to the data from the
questionaire. It provides descriptive statistics that summarize the central tendency,
dispersion, and shape of a dataset's distribution. Overall, respondents express a
moderately strong inclination toward the benefits of adhering to a code style
guide, as evidenced by the mean score of 4.44 out of 5. This suggests a general
consensus among the participants regarding the positive influence of code style
guidelines on the overall quality of a codebase.

Furthermore, the respondents demonstrate a similar level of agreement
when it comes to the belief that following a code style guide aids in understanding
code written by others, particularly during refactoring or code reading situations.
The mean score of 4.48 indicates a high degree of confidence in the ability of style
guidelines to enhance code comprehensibility and maintainability.

Regarding the manner of maintaining a style guide, the responses reveal an
interesting disparity. While a majority of respondents (75%) believe that
maintaining the style guide in written form would be beneficial, a smaller
proportion (25%) express concerns about its potential negative impact on the
speed of software development. This discrepancy suggests that maintaining the
style guide in written form could have varying implications across different teams
or contexts.

Examining the experiences of the respondents, we find that a significant
number have encountered challenges related to the code style guide.
Approximately 58% of participants reported spending a substantial amount of
time refactoring or enforcing rules to conform to the style guide. This indicates
that some members of the team have had to invest additional effort to align with
the guidelines, potentially impacting productivity and development timelines.
Moreover, around 41% of respondents admitted to experiencing difficulties in
understanding the style guide. This highlights the importance of providing clear
and concise documentation, as well as offering comprehensive training or support
to ensure effective adoption and comprehension of the guidelines.

Additionally, a considerable portion of the respondents (42%) expressed
the need to seek clarification or guidance on the code style guide, suggesting that
clear communication and support systems are crucial for facilitating the
implementation of the guidelines within the team.

Interestingly, a substantial number of participants (53%) also provided
suggestions for improvements to the code style guide. This feedback highlights
the iterative nature of style guides and the value of incorporating input from team
members to enhance its effectiveness and relevance. It also shows, that the small

41

Code Style Guide, provided by the low-code platform provider (OutSystems) is
limited and could be built upon.

Particulary interesting are the answers to question “I think that having a
code style guide, similar to these for traditional tech stacks (Java, Python,
JavaScript, C#, C++, etc.) is appropriate for Outsystems and other low-code
technologies.” (Fig. 3). 78% of respondents agree with the statements,
highlighting the need of a standardized code style guideline for OutSystems and
similar technologies, despite being low-code.

Fig. 3. I think that having a code style guide, similar to these for traditional tech stacks
(Java, Python, JavaScript, C#, C++, etc.) is appropriate for Outsystems and other low-

code technologies

As to which areas are the most sought after to be built upon, results gathered for
question “I have suggestions for additional rules to the Outsystems basic best
practices in the area of (multiple choice):” highlight the following areas (Fig. 4):

• Naming
• Back-End Design Patterns
• Front-Ent Design Patterns
• Architecture
• Formatting

These results are especially valuable for the low-code and OutSystems
community and suggest a gap in the current body of knowledge and practices in
the specified areas.

42

Fig. 4. I have suggestions for additional rules to the Outsystems basic best practices in

the area of (multiple choice).

3. Theoretical foundations for conventions and good practices
Building on the insights gathered from the survey on code style guidelines, this
section explores the essential theoretical principles and best practices necessary
for establishing a standardized framework in low-code development. The
overarching aim is to streamline design and development processes through
adherence to established conventions and guidelines from the broader software
engineering industry while integrating specific practices tailored to low-code
development, particularly within OutSystems.

This chapter commences with a detailed exploration of typical architecture
best practices for a system built with the LCDP OutSystems. First, the
architectural pattern of the so-called 3-Layer Canvas is being reviewed. Next, the
significance of validating the architecture’s structure is highlighted to ensure
robustness and adherence to design principles throughout various development
stages.

The 3-Layer Canvas [13] is a structured approach in OutSystems
architecture, organizing applications into three distinct layers. It is depicted on
Fig. 5.

43

Fig. 5. 3-layer Canvas

It consists of End-user layer; Core layer and Foundation layer.

• End-user layer: This top layer focuses on user interactions through user
interfaces and processes, utilizing core and foundational services. It
includes role-based UIs to support specific use cases, business logic
tailored to these use cases, auxiliary entities and structures for UI status,
workflow definitions, and permissions for access control. Modules in this
layer should remain independent and not provide services to other
modules, ensuring total lifecycle independence.

• Core layer: This middle layer manages core business services, including
services around business concepts, rules, entities, transactions, and
widgets. These services should be system-agnostic and built on
foundation services to abstract integration details. It isolates all reusable
services or components, such as business processes available for use by
users or other processes, core entities, business web blocks, change
operations, audit trails, and integration logic. Permissions are defined to
control service-specific access.

• Foundation layer: The foundational layer includes all reusable non-
functional requirements like services for external system connections, UI
pattern libraries, and themes. It covers normalized APIs, exception
handling, single sign-on and session logic, structures for inputs and
outputs, non-core entities, UI widgets, themes, layouts, exception flows,
and common roles for domain-specific users.

An extended view of the 3-layer Canvas is depicted on Fig. 6.

44

Fig. 6. 3-layer Canvas: extended overview

To ensure the integrity and efficiency of an architectural framework and to prevent
the emergence of monolithic or convoluted structures, it is imperative to adhere
to a set of prescribed guidelines and recommendations [14, 15].

• Prohibition of upward references across the three layers (see Fig. 7).
Given the hierarchical nature of the architecture, foundational services
must remain independent of core business concepts and reusable services
should not depend on end-user interfaces. Upward references create
clusters of interdependent modules, leading to circular dependencies. This
not only enlarges the runtime footprint unnecessarily but also exposes
modules to changes in other modules, compromising their lifecycle
independence.

Fig. 7. Prohibition of upward references across the three layers

• Avoidance of side references among end user modules/layers (Fig. 8).

End-user modules/layers must be strictly isolated and should not provide
reusable services. This isolation ensures that end-user modules maintain
their independence in lifecycle management, preventing any unintended
dependencies and potential disruptions.

45

Fig. 8. Avoidance of side references among end user modules

• Prevention of circular references between core and foundational modules

(see Fig. 9). The circular dependencies among modules are undesirable as
they complicate code management and indicate improper abstraction of
concepts. To avoid such cycles, modules that are strongly interconnected
should either be consolidated or have their dependencies restructured to
align with proper conceptual relationships. The following rules refer to
strong references across modules or applications. This means, that
circular references are still conceptually undesirable, but are not an issue
by service actions or reference/redirect to screens.

Fig. 9. Prevention of circular references between core and foundational modules

4. Discussion and Conclusion
This research provides a comprehensive examination of low-code development
platforms and establishes foundational guidelines for best practices in this rapidly
evolving field. Through analysis of market trends, industry surveys, and empirical

46

research, several key findings emerge that contribute to the body of knowledge in
software engineering and low-code development.

The study reveals a significant market shift towards low-code technologies,
driven primarily by the need to address traditional software development
challenges such as lengthy development cycles and resource constraints. Market
leaders like Mendix, OutSystems, Salesforce, and Microsoft have emerged as
pioneers in this space, as confirmed by both Forrester and Gartner analyses.

Our survey of OutSystems professionals yielded crucial insights into the
practical needs and challenges of low-code development. The strong support for
standardized code style guidelines (78% approval) indicates that despite the "low-
code" designation, practitioners still value and require structured development
approaches. The survey identified key areas requiring additional standardization,
including naming conventions, back-end and front-end design patterns,
architecture, and formatting.

Continuing with the architectural foundations for low-code development:
the 3-Layer Canvas architecture provides a robust foundation for organizing low-
code applications. The clear delineation of end-user, core, and foundation layers,
coupled with strict guidelines for data flow and dependency constraints, together
offer a practical approach to maintaining scalable and maintainable low-code
applications.

These findings suggest that while low-code platforms simplify
development processes, they do not eliminate the need for sound software
engineering principles. Rather, they require adaptation and refinement of
established best practices to suit the unique characteristics of low-code
development environments. Future research should focus on developing more
detailed guidelines for the identified areas of concern and investigating how
traditional software engineering principles can be effectively translated into the
low-code context.

The conclusions drawn from this study have significant implications for
both practitioners and platform providers in the low-code development space.
They highlight the importance of establishing and maintaining comprehensive
development standards, even in environments designed to minimize traditional
coding, and provide a foundation for future work in this rapidly growing field.

Acknowledgement

This work is supported by the Bulgarian National Science Fund, Project title
“Innovative Methods and Algorithms for Detection and Recognition of Moving
Objects by Integration of Heterogeneous Data”, KP-06-N 72/4/05.12.2023.

47

References
1. Alamin, M.A.A., Uddin, G., Malakar, S., Afroz, S., Haider, T., Iqbal, A.:

Developer discussion topics on the adoption and barriers of low code software
development platforms. Empirical Software Engineering 28, 4 (2023),
https://doi.org/10.1007/s10664-022-10244-0.

2. Pinho, D., Aguiar, A., Amaral, V.: What about the usability in low-code
platforms? A systematic literature review. Journal of Computer Languages, 74,
101185, (2023), https://doi.org/10.1016/j.cola.2022.101185.

3. Borissova, D., Mustakerov, I.: A framework for designing of optimization
software tools by commercial API implementation. Int. Journal of Advanced
Engineering, Management and Science, 2(10), 1790–1795 (2016).

4. Borissova D., Mustakerov, I., Bantutov, E.: Web-based architecture of a system
for design assessment of night vision devices. International Journal of
Information Science and Engineering, 7(7), 62–67 (2013).

5. Rymer, J.: The Forrester WaveTM: Low-Code Development Platforms for
AD&D Pros, Q4 2017. (2017).

6. Richardson, C., Rymer, J.R.: New Development Platforms Emerge for
Customer-Facing Applications. (2014).

7. Nepal, M.: Launchpads to Build Powerful Apps Easily. (2018).
8. Rymer, J.: Vendor Landscape: A fork in the road for low-code development

platforms. (2017).
9. Rymer, J., Koplowitz, R.: The Forrester WaveTM: Low-code development

platforms for AD&D professionals, Q1 2019. (2019).
10. Rymer, J., Seguin, B.: The state of low-code platform adoption, 2018. (2019).
11. Vincent, P., Iijima, K., Driver, M., Wong, J., Natis, Y.: Magic quadrant for

enterprise low-code application platforms. (2019).
12. Shumarov, B.: Code style guidelines by low-code technologies and Outsystems.

In: Knowledge Society and 21st Century Humanism The 20 th International
Scientific Conference Sofia, 1st November 2023, 534–542 (2023).

13. OutSystems: The architecture canvas – OutSystems best practices,
https://success.outsystems.com/documentation/best_practices/architecture/desi
gning_the_architecture_of_your_outsystems_applications/the_architecture_ca
nvas/, (2024).

14. Menezes, F.: Application architecture: Best practices for future-proofing your
apps built with low-code, https://www.outsystems.com/blog/posts/application-
architecture/, last accessed 2024/06/21.

15. OutSystems: Validating your application architecture – OutSystems best
practices,
https://success.outsystems.com/documentation/best_practices/architecture/desi
gning_the_architecture_of_your_outsystems_applications/validating_your_ap
plication_architecture/, last accessed 2024/06/22.

https://doi.org/10.1007/s10664-022-10244-0
https://doi.org/10.1016/j.cola.2022.101185

	1. Introduction
	2. Low-code technologies. Software development guidelines and low-code systems
	3. Theoretical foundations for conventions and good practices
	4. Discussion and Conclusion
	Acknowledgement
	References

