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PREFACE

Problem statement

In recent decades, scalar wavelets have established themselves as an indispensable tool in signal
processing, in applications such as numerical analysis, operator theory, denoising and compression of
N-D signals, object extraction from astronomical images, machine learning, data sorting, database
searching, time series analysis, computational medicine, and others. They have been around since the
late 1980s. There are different types of them: wavelet packets, ridgelets, curvelets, slantlets, frames and
other constructions. Since the early 1990’s, one known generalization of scalar wavelets have been
multiwavelets. The great interest in them is caused by the fact that they contain more than one function
while possessing at the same time the most important characteristics from the theory of filter banks -
short support, symmetry, and vanishing moments of high degree.

An important subfield is orthogonal multiwavelet filters, the construction of which requires
satisfying a number of restrictive conditions. They have advantageous properties, but are very difficult

to design. Generally, new design methods and algorithms are necessary.

Motivation

There is a significant difficulty and a major challenge in finding orthogonal multiscaling
functions by spectral decomposition of a singular matrix filter product. Moreover, due to the presence of
single or multiple zeros in the determinant of the product filter, the spectral decomposition may be
highly erroneous or even impossible.

The main research question is the extension of wavelet and multiwavelet theory. This research
contributes four methods for constructing scalar or vector scaling functions from different polynomials
and splines:

% Basis change method ;

7
°

Brute force method;

7
°

Inner product method;
% Bauer’s method for spectral factorization.

The first three methods are based on polynomial basis functions or different splines. These can be
exponential functions, Legendre polynomials in [-1,1] or [0,1], cubic or quintic Hermitian polynomials
in [0,1] and [0,2], Chebyshev polynomials of the first and second kind, Haar and Walsh functions,
etc.

The fourth proposed method constructs scaling and multiscaling functions satisfying desired
properties - orthogonality, vanishing moment, compact support, and smoothness. Two numerical
algoritms for the Bauer’s method for spectral factorization of scalar and matrix product filters are

construted.

Main tasks of the scientific research:
1. To conduct a study, overview and critical analysis of existing methods for constructing scaling

and multiscaling functions;



2. To outline research opportunities in constructing new methods of implementing filter banks;
3. To propose new methods for constructing scaling and multiscaling functions from
polynomials and splines;

4. To define and construct spectral factorization methods;

5. To elaborate on the algorithms for a fast and accurate Bauer’s method;

6. To implement an Alpert multiwavelet filter bank based on the lifting scheme and perform

experimental studies of the methods for constructing wavelet and multiwavelet filter banks.

Content structure

The dissertation consists of 5 chapters, preface, conclusion, and references.

The Preface outlines the topic, object and subject of the dissertation work, as well as the leading
hypotheses. The problem statement and the motivation for conducting the dissertation research are
briefly described. The purpose and methodology of the research work, as well as the methods according
to which it is to be achieved, are given.

Chapter 1 is devoted to existing methods for constructing wavelet and multiwavelet filter banks.
It includes the theory of basis functions from polynomials and splines, spectral decomposition, and
construction of scalar and vector filter banks.

Chapter 2 presents three construction methods for scaling and multiscaling functions from
polynomials and splines.

Chapter 3 is devoted to existing methods for spectral factorization. The necessary condition for
smoothness of the matrix product filter is described. The Daubechies 4 scaling function is designed
according to the root method for spectral factorization. Bauer’s theoretical method for spectral
factorization is also described and an Alpert product filter is obtained.

Chapter 4 is devoted to the development of fast algorithms implementing Bauer’s method and
their numerical solution using three numerical methods. Algorithms 1 and 2 for a fast and accurate
Bauer method for scalar and vector spectral decomposition are developed and Alpert orthogonal
multifilter banks are constructed.

Chapter 5 is devoted to the following novel aspects:

1) Comparative analysis of the four methods for constructing scaling and multiscaling
functions, Bauer methods for spectral decomposition for Haar and Daubechies scaling
functions, as well as Alpert multiscaling function;

2) Empirical research on the fast and exact Bauer’s method for scalar and matrix spectral
factorization — Haar and Daubechies 4 scaling functions;

3) Seven examples of Algorithm 1, 2 implemeting the exact Bauer’s method;

4) Built—in functions for the seven examples of Algorithm 1, 2;

5) The lifting scheme for the Alpert multiwavelet filter bank is implemented. It is applied with
different quantizations: V3 for 256 x256 and 512 x512 image denoising with gray levels and
AWGN with (o = 10, 20);

6) Image compression of astronomy images from scanned photograph plates are compared.



CHAPTER 1
REVIEW OF CONSTRUCTION METHODS OF WAVELET AND MULTIWAVELET
FILTER BANSKS

1.1 Introduction

Wavelets are, essesntially, short or fast-decaying waves where by translation and dilation one
can obtain a set of functions possessing the important properties of orthogonality, zero moments,
compact support, and smoothness. They are particularly useful in the analysis of non-stationary signals,
which requires that the frequency characteristics of a given filter depend on time. They are obtained
with the construction of filter banks where spatial and frequency features are simultaneously
determined for a given signal, which is impossible with Fourier transformation.

In wavelet theory, there are spline wavelets obtained from different spline functions. They are a
linear combination of B-splines inheriting their basis functions and a compact support but the resulting
functions are non-orthogonal. Because of their simple structure, they are one of the most important and
interesting wavelet family. They are used in the construction of wavelet finite elements that satisfy the
condition of continuity of a shape function. In this way, multi-level (multi-scale) representation is
achieved in many engineering problems. This achieves the desired accuracy and provides adaptive
hierarchical solutions.

An important drawback of wavelets is the impossibility of simultaneously possessing all
important properties - orthogonality, zero moments, compact support, and smoothness [131], [132]. To
overcome this drawback, the multiscaling and multiwavelet functions have been used. This changes the
structure of a filter bank where instead of one scaling and wavelet function, two or more functions called
multiscaling and multiwavelet functions are used simultaneously.

The advantage of the multifilter theory is the possession of the above properties, which ensures
fast signal recovery (at the expense of orthogonality), good efficiency (at the expense of smoothness),
and a high degree of approximation (at the expense of a large number of zero moments). The symmetry
of the function allows a symmetrical extension of the boundaries of signals. Orthogonality results in
independent subimages. The higher degree of vanishing moments leads to the ability to represent
polynomials of a higher degree with a smaller number of coefficients.

1.2. Brief theory of spline and Legendre polynomials
1.2.1 Spline functions

From a mathematical point of view, a 'spline' is a partially linear function built from polynomial
functions whose smoothness depends its derivatives. More generally, a spline is the set of all functions
that are parts of a polynomial necessary to construct a function in the interval [a, b] with certain
smoothness conditions. Splines whose polynomials are of low degree are called piecewise linear and are
used as interpolating functions.
1.2.1.1 Linear B — spline (“Hat” function)

The ‘Hat” function is piecewise linear function, known as linera B — spline:

L(t)=at+b. (1.1)
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where a u b are coeffiecients. It can be used as a linear interpolant and/or finite element. Its

multiscaling fucntion consists from three coefficients h,,h, h,:

@At) =hyp(2t) +he2t - +h,p(2t -2) . (1.2)

1.2.1.2 Cubic Hermitain spline

Hermitian spline functions belong to a class of splines that are defective®), i.e. piecewise
polynomial function with constant defect on the te@a@he most commonly used is the cubic spline
consisting of a polynomial of degree < 3 with two continuous derivatives for each subinterval. Cubic
Hermitan spline is use for interpolation of data with continuous first and (possibly discontinuous)
second derivatives of the nodes. Cubic Hermitan spline are constructed for two endpoints of a
polynomial of the third degree H(t) =at® +bt* +ct+d and its the derivatives (or tangents) at these
points.

1.2.2 Legendre polynomials

Legendre polynomials are t-order polynomials, i.e. 1,t,---,t' and in [-1,1] forms nonorthogonal baisis:

@at)=,|r +%Pr (t). (1.3)
where:
Rt) =1
P =t,

1 ,for m=123--- (1.4)
P,(0) =7 @ -1

(M+ DR, (D) = (2m+ 1R, (1) R, (1)
In the multiwavelet theory Legendre polynomials are in a interval [0,1]. The first multiscaling function

is of Alpert [6] which is construted from the two functions P, (t) u P,(t):

—_ ¢o — -1] — Po(t) — 1
¢(t)—|:¢lj|—[co+clz ]_|:F1(t)j|_|:\/§(z—]):|’ (1-5)

where C, and C, are matrix coefficients.

1.3. General theory of filter banks
1.3.1 Scalar filter banks
1.3.1.1 General theory

Wavelet theory is based on a domain of basis functions interconnected by scaling and
translation. At the heart of this domain is a wavelet basis function used to generate all other basis
functions. It has certain characteristics in the L2 space and is called the mother wavelet, wavelet
function, or just wavelet, and is denoted by yp(t). There is a second function in the basis, allowing it to be
built from a finite number of functions. This function is the parent wavelet, a scaling function, and is

denoted by ¢(t). The integer translations of the two functions form a Riez basis.

(A) The difference between the degree of a spline and its smoothness is called the spline defect.
For example, a piecewise linear continuous function (its graph is a polygonal line) is a spline of degree
one of defect 1.
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The two functions are obtained using a filter bank, which usually has a tree-like hierarchy of two
different types - for analysis and recovery (synthesis) of functions. The filter bank is a combination of
shift-dependent filters with coefficient M — downsampling, denoted with (M), and decimation
(upsampling), denoted with (t1M). The structure of an r-channel filter bank is shown in fig. 1.4. This way
of analyzing a function (signal) is called multi-resolution analysis (MRA). If the analysis and recovery
regions consist of the same scaling and wavelet functions, the filterbank is called orthogonal, and when

they consist of different functions, the filter bank is called biorthogonal.
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®dur.1.4. M-channels scalar filter bank

The two — channels filter bank with input signal x(n) is described by the equation:

f((z):%[Ho(z)Fo 2)+H, @F, (2] X (z)r—;[H0 € zF, (2rH, t &F (@X (-z (L.6)
=T(2)X(2) +S(2) X (-2)

which is equivalent of the matrix product:

~ H Ho(=
X(2) =[Fy(2) Fl(z)]%{HOg; Hog—g}{;((—zi)}'

The matrix product H,(z)F,(z) is called a product filter. It is the foundation for finding of scaling and

multiscaling functions by spectral factorization.
1.3.1.2 Scaling and wavelet functions by a parameter
The construction of orthogonal scaling and wavelet functions can be done by the poyphase

matrix with a parameter [86],[129],[139 ] which is called a lattice structure:

|2 cosgp sing\l O cosy sing
Hp(z)_{g(—sinq cosqj(o z‘lﬂ(—sin(g cosqj (1.7)

where ¢ [1[0,277] and ¢ [0, 77] .

In other research [86] a parameter structure is used:



e d¥ ] [cosp ]
¢ df | |cosp e
ck dX |= | OR(#) {:):ﬂ Csomﬂsa K=2 (1.8)
cosa @ cosy
_CE—l dll\l<—l_ L Cosy, |

where | is an identity matrix. In this way filter banks can be implemented directly.

Additionally, a universal parameterization is given [87]:

R { cosa Si””} = 3@)3(B). (19)

-sing cosy

cosa sina | . . L . .
where J(a) = { } is a Jacobi matrix with 8 —a = ¢mod27 . Then Jacobi matrix has three

sing —-cosa

oA HE(2)

diagonal matrices:

@ (1.10)
:I—\/EO sln2 1 Zcosio Oqo 1 ”
7 sinE —cosE

1 —-cos=|0 1
2

1.3.1.3 Properties of scaling and wavelet functions

The subchapter describes more important properties of scaling and wavelet functions -
Heisenberg's uncertainty principle, symmetry, flatness, and vanishing moments.
1.3.1.4 Multiresolution Analysis (MRA) [139]

A key concept in wavelet theory is the nested structure called multiresolution analysis (MRA) or
multiscale approximation ( MSA), consisting of successively coarser or finer spaces V;;:
...CV,CV,CV,C..., € Lx(R) (Lebesgue space)
«— rougher space finer space —

MRA possesses following properties:

1. Scaling — For each j,
afunction f(t)0OV, iff f(2)0V,,;
2. Inclusion - For each j
Vj O Vj+1 )
3. Completeness - The union of all subspaces V,’s in subspace L is dense:

closures| JV, t =L*(R);
0z

4. Uniqueness — The subspaces V,; have no intersection:

{]Q vj} ={0}. #

8



Consequently, the j-level MRA applied on a function f(t) is obtaned using scaling and wavelet

coefficients according to:

N-=

f (t) =NZjh(n)¢(t -n) +ZJ:Z g, (MyER't-n). (1.11)

j:]_ n=

i

1.3.2 Vector filter banks (Multifilters)
1.3.2.1 General theory

The vector filter banks (or multifilter) are a generalization of scalar wavelet filter bank theory.
Essentially, they are MIMO systems consisting of r —scaling functions ® = [¢o, ¢i, ... , ¢-]T and r —
wavelet functions W = [wo, @ 4, ... , P 7. This means that multiwavelet filter bank is consists of four
analysis and synthesis multifilters which possess simultaneously the properties of orthogonality,
symmetry, compact support, and vanishing moments.

A important difference between the scalar and vector filter banks is the number of subbands
obtained in the decomposition. For example, an image decomposed at one level by a two-channel scalar
filter bank forms four subbands (subimages) shown in fig. 1.11(a), while a two-channel vector filter bank

forms sixteen subbands (subimages) shown in fig. 1.11(b).

HoH, | HoH | HoGo | HoG,
HH HG
H.Ho | H:H: | HiGo | H:G:
GoHo | GoH s | GoGo | GG,
GH G
GJ,HO GLH.‘.‘. GJ.GO G.‘.‘.Gl
(a) (b)

®@ur. 1.11 A one level decomposition of a image; (a) scalar two channel filter bank
(4 subbands); (b) two channel multifilter bank (16 subbands)

The input — output equation of the two channel vector filter bank is:

>2(z)=%[Go(z)Ho(zHGl(z)Hl(z)] X(2)

(1.12)
+ 216y (@M (-2)+ G, (@M, (-2IX (-2
or by the modulation matrix
X(2)| E{Go(z) G,(2) }{Ho(z) Ho(—z)}{ X(z)}
X(@)| 2[Gy(-2) G, (-2)|H,(2) H,(-2)| X(-2)
X(2) , (1.13)
=G"(z)H (z){x(_z)}

where, X(2) is input vector signal,
H, (2) - analysis multifilters, r =0,1
G, (2) - synthesis multifilters, r =0,1

X (2) - output vector signal.



H ™ (z) - orthogonal analysis modulation matrix,

G™(z) - orthogonal synthesis modulation matrix.
The perfect reconstruction conditions of multiwavelet filter banks using the modulation matrices are:
H™@)H™(2)=H™@)H™(2)=dl
G™ (z)G™(z) =G"™ (Z)ém (z)=cl (114
where C is a constant, I — an identity matrix, and (~ ) denotes the Hermitian matrix. Therefore, the
conditions to obtain orthogonal multifilter banks are:
H,(2)H,(2) + H,(-2)H,(-2) =cl
H,(2)H,(2) +H,(-2)H,(-2) =cl
Ho (2)H,(2) +H,(-2)H,(-2) =0
H,(2)H, (2 +H,(-2)H,(-2) =0

(1.15)

which means that only the lowpass multifilter H,, (z) is needed.

1.3.2.2 Properties of the multiscaling function
In this sub-chapter we consider some important properties:
A. polynomial reproduction of discrete polynomials;
B. Pre—and post—filtering;
C. Balancing;
D. The sypport of a multifilter;
E. Symmetry/antisymmetry of multiscaling and multiwavelet functions;

1.4. Theory of spectral factorization

The spectral factorization has a unique minimum-phase solution H(e!“) if para-Hermitian
polynomial matrix P(e'“)is positive definite on the unit circle | z|=1, absolute integrable with a

finite energy and satisfying the Paley-Wiener conditions [152]:

» For scalar spectral factorization
1 fm P(e*)daw> —oo or 1 Ifm Pe*)dw< oo :
2 2 s,
» For matrix spectral factorization
2 [indetP(e”)da> o or = [IndetP(e")dw< .
2 22,

Therefore, the spectral factorization is the process of determining the minimum phase
function belonging to a given power spectrum P(e'”) which is the product of two factors, H(z),
and H*(z), either of which are to be determined, i.e. P(e!*) = H(2)H"(2).

The fundamental theorem of the spectral factorization is Fejér — Riesz theorem for positive
definite functions. The terminology comes from prediction theory, where the nonnegative function

V(2) plays the role of a spectral density for a multidimensional stationary stochastic process. Fejér [71]

10



first shows the importance of the class of trigonometric polynomials that admit only positive real
values; as a theorem it is proved by Riesz [114]. The Fejér — Riesz theorem for a trigonometric

univariate polynomial is:
N
V()= D v, 2" (1.16)
K=N

When the function v(Zz) is real for all z € T, then the coefficients for all k satisfy the following equality

V=v_.Ifv(z)20 for all zET (unit circle), the factorization of the function v(2) is:

v(2) = p(2) p(2) (1.17)

N
where p(z) = z P, Z* is called a scalar spectral factor and p”(2) is a Hermitian polynomial.
k=0

The scalar spectral factor p(z) is unique to a unitary matrix multiplier U(z) [59], [60], i.e.,
Prew(2) = P(DU (2) . (1.18)
The Wilson — Burg method [142] for spectral factorization constructs a minimum-phase signal
from its spectrum. This is an iterative method with good numerical convergence [58]. Its main
application is in study of analytic and bounded functions whose zeros do not lie on the unit circle.
The matrix spectral factorization plays a crucial role in different applications that arize in
MIMO systems and control theory [82],[141], [148]. The Bauer’s method is well-known for spectral

factorization [14], and the implementation of Youla and Kazanjian [102], [103], [109], [149] has been

successfully applied [30], [54], [78], [81].
1.5 Theory of spline basis functions
The author has constructed - Linear B—splines; reduced support Hermitian spline for an interval [0,1]; a
cubic Hermitian spline ; and a Quintic Hermitian spline.
1.6. Results and conclusions

Based on the identified problems, the author makes a contributionto the theory of wavelets and
multiwavelets. For this purpose, a new universal unitary matrix structure was developed, applied in the
construction of a new parametric structure model for directly constructing scaling and wavelet
functions.

From the overview it follows that scalar and/or vector filter banks can be constructed from
Bernstein polynomials, Legendre polynomials, cubic and quintic Hermitian polynomials, as well as

linear and quadratic B -splines.

11



CHAPTER 2
CONSTRUCTION METHODS OF SCALING AND MULTISCALING FUNCTIONS FROM
POLYNOMIALS AND SPLINES

2.1 Basis change method
The basis change method for construction of scaling and multiscaling functions consists of
constructing a coefficients matrix of the basis functions for a defined interval. This is a product

of a scaling function @(t) or a multiscaling ®(¢) function with a nonsingular matrix A, i.e.
AT'A = AA™ =1 . In the multiscaling function case it leads to a new function:

®@t) = AD(t) =v/2> ACP(2-k). (2.1)

Changing the basis in (2.1) can be represented as:

d(t) =2 (AC, AM)AD(2-k)

(2.2)
=V2> H,®(2-k)
k
where supp ®(t) = supp 5(t) , and the new matrix of coefficients is determined by:
H,=ACA™. (2.3)

The basis change method is used for the design of multiscaling functions from - Legendre
polynomials and B—spline, cubic and quintic Hermitian splines.
2.2 Brute force method

The brute force method is a direct method for the design of scaling and multiscaling functions
consisting of equalization of the basis function with a scaling function ¢@(t) or a multiscaling ®(#)
function over a defined interval. To apply this method we need:

(a) to divide the basic functions of :

left (L): & () and right (R): P (1) .

(b) divide the support of the basis functions of subintervals.

The matrix coefficients from the multiscaling function is found for each subinterval. Example,

for the multiscaling function
®(t) =v2(C,P(2)+CP (2 - 1)+ C,d (2 - 2)

each matrix coefficient is found from the matrix equations

d(t) = \/ECOCD(Zt) , whent € [0,1/2], (2.4)
P(t) =+/2C,P(2t) ++/2C, P (2t -1), when t € [1/2, 3/2] (2.5)
P(t) =+/2C, (2t - 2), when t € [1/2, 1]. (2.6)

12



2.3 Inner product method

The inner product method uses tensor products and an integral depending on the interval
of the basis functions. A disadvantage of the method is its computational complexity.
2.3.1 “Hat” scaling function

The support of the multiscaling “Hat” function is [0,2]

At = N2(hp(2)+ he@ - 1+hp(@- 2),
The scalar coefficients is determined in the dependent the neighbouring coefficients:

» h, dependent fromh,;
» h, dependent from hyu h,;

> h, dependent from h,.

This leids to construction and solving of the linear systems:

qgr O
[a b c=+2[h, h, hllr q r| (2.7)
0Orq

where three scalar coefficients are:

ool 2 90 s g

2.3.2 Multiscaling function of cubic Hermitian spline

o - N
[ SN
A O

The support of the multiscaling function for cubic Hermitian spline is [0,2]
D(t) =+/2C, D(2t) +~/2C, D(2t —1) ++/2C, D(2t - 2)

where C;,C,, and C, are matrix coefficients. By dividing cubic Hermitian basis functions of ‘left’ and

‘rigth’:
_ 3> -2t
- left (L) for the interval tJ[01]: &, () = s . | (2.8)
" —t
_ _ 32-1)*-2(2-1)°
- rigth (R) for the interval t[J[12]: ®,(t) = . (2.9)
2-1)°-(2-t)*
is derived the matrix equation:
. Q R 0]
[c,, c. C,] :T[A B CJR" Q R| . (2.10)
2 0 RT Q
whose solutions are the matrix coefficients:
1 3 1 3
— — 1 0 — —_
112 4 1 112 4
C,=— ,C, =— l|,u C,=— ) (2.11)
T2 1 1 1\5[‘35} :TR|1 1
8 8 8 8



2.3.3 Alpert multiscaling function
The support of the Alpert multiscaling function is [0,1]:

®(t) = V2C,p(2t) +2C P (2t -1) .
where C, and C,; are matrix coefficients, and whose basis functions lie in different intervals. From the

inner products:

((®(1), @ (21))) = V2C, (P (21), D (21)))

(2.12)
(@), @ (2 -1))) =v/2C, (@ (2t - 1), D (2t - 1))
the two matrix coefficients can be determined
1 % 0 1 % 0
C.=— dC =— . .
0 \/E \/5 1 an 1 \/E _@ 1 (2.13)
4 4 4 4

2.4 Results and conclusions

Chapter 2 discusses research opportunities in constructing new methods for constructing banks
of polynomials and splines. Thus, three methods for constructing scaling and/or multiscaling functions
have been developed. They have been applied to Legendre polynomials, cubic and quintic Hermitian

polynomials, and linear and quadratic B-splines.
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CHAPTER 3
METHOD OF SPECTRAL FACTORIZATION

3.1 Design of the product filter
The most important part when using the method of spectral factorization for find desirable
scaling or multiscaling function that satisfies the mandatory smoothness condition of scalar or matrix

filter product

1+z7°
2

detP(2) :( j Q(2) (3.1)

where Q(2) is a linear phase polynomial. The matrix product filter

P(2) =P,z  + P,z " +- -+ R +--+R_ 27 +RZ"

satified the half-band filter condition:
P(z2) +P(-2) =21, (3.2)

which means that
R=1,uPR,=0kz0. (3.3)
The simplest matrix product filter is the two channel product filter P(z) 1C"™[z,z"] of an first
order,i.e. K =1[89]:
P(2)=R'z"+R +Rz, (3.4)
To achive smoother scaling or multiscaling functions we need higher-order scaling or matrix
product filters. This is equivalent to the multiplyer (L1+ z)™ in the mandatory smoothness condition and

singular matrix polynomial.
3.2 Quadratic equation method
The method use solving of quadratic equations [89]. Example, for scalar spectral

factorization of product filter p(z)

P(2)= Pz ™+ +p,zZ+p izt +p,
t Pzt p222 Tt pkzk

(3.5)
=h()h"(2) >0
=(hy +hz* +h, 2%+ +h ") (h, + hz+h,2* +--- + h Z")
where h(z) is scalar spectral factor and h"(Z) is scalar Hermitian spectral factor.
3.3 Roots method (Wiener-Hopf factorization)
Roots method [31], [129] use find of polynomial roots:
p(2) =h(z)h(z™)
(3.6)

m 1 k-m )
= Py ” (z- Zi)(z__)l_l (z-2z;)
1= Zi j:
where p, # 0 and Hermitian root z” is root when 2 is also root.
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3.4 Cepstral method
The cepstral method is based of FFT [28], [33], [83], [94], [110] as can be use to construction of

nonsymmetrical orthogonal scaling function. The main idea is logarithm of the scalar filter product:
(o] _ I [ee] _ I [ee]
logp(2)=>1,2" =(§°+Zlnz “)+(§°+Zln2")- (3.7)
—o0 1 1

The factorization consists from the sum of two polynomials as well as iterative finding the coefficients of

spectral factor:

1
h, = exp%lo),
(3.8)

n n

I

3.5 Bauer’s method
The Bauer’s method is based on the Fejer-Riesz theorem for matrix case [29], [60], [80], [120],

[122] which means that spectral factorization of scalar p(z) product filter with coefficients p_, = p,,

or (matrix) P, =R’ with product filter P(Z) is obtained by Choleski decomposition of the block-band

matrix:
P P.. P_ P
Ton = Kok e T = FF"
P—k P—k+1 R<—1 R<
. . . . . :_ . . . . T (3.9)
i -1 () (-1 (D)
_ Clin) Cfn ) Cén ) Ckn Cln Con
- -1 -1 (n) (n-1) (n-1)
C,E”) Cl(” ) Cé“ ) Ck“ Cln CO“

Consequently, the Bauer’s method for spectral factorization is equivalent to the Choleski

decomposition of (N+1)x(n+1) block—band Toeplitz matrix [23], [24]:
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The scalar (matrix) spectral factor from the last row is definited:

H™(2)=C{ +CM 7 +...+C" %,

cs™

c

- (3.10)

Cfn) Cén) |

(3.11)

The main disadvantage is its sublinear convergence for singular polynomials (matrix product filters).

3.6 Results and conclusions

Chapter 3 includes an overview of scalar spectral decomposition methods, a development for the

matrix case of the smoothness condition for a scalar product filter. The product filter of Alpert

multiwavelet filter is developed.
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CHAPTER 4
ALGORITHMS FOR BAYER’S METHODS

4.1 General theory of the fast Bauer’s method

The advantages of the fast Bauer’s method are avoiding the Choleski decomposition of a
Toeplitz matrix of an enormous size and the obtaining of a spectral factor with exact values using well-
known software tools such as Matlab [92], [93] or Maple [90]. For the purpose, it is necessary to
reduce the degree of the product filter to a first order and solve a NME. Consequently, the k—order

product filter by rearranging the matrix coefficients P,
P2=P,z"+P,, 2"+ +P +---+P_,Z"+PZ", and P, =P. (4.1
is a construction a new product filter of order one, i.e. k = 1.
P(2)=P,z'+P,+Pz. (4.2)
where If’o, and |3_1 = Isf are the new matrix coefficients.

4.2 Algorithms for the fast Bayer’s method
The fast Bauer’s method is based on representing the Cholesky factorization of a Toeplitz matrix

iteratively row-by-row, which leads to the nonlinear matrix equation (NME) [89], [90]:
X =p, - R [x"]"R (4:3)
where from the solution X © = P,, we find that
X© =cOICoT. (4.4)
Since when n — oo, X™ _ X, then
X=R-B'X'R (4.5)
On the basis of the previous theory are constructed Algorithm 1 (Fig. 4.1) and 2 (Fig.4.2) for
finding of scalar( matrix) spectral factors with exact values by Bauer’s method for spectral factorization.
4.3 Numerical methods for fast Bauer method
The chapter considers the three methods solving the NME—FPI method, Newton method and
GDARE.
4.4 Fast Bauer method (scalar case)
This section considers the fast Bauer method for scalar spectral factorization.
4.5 Fast Bauer method (vector case)
In this section using the fast Bauer method for matrix spectral factorization we obtain Alpert
multiscaling and multiwavelet functions.
4.6 Results and conclusions
Chapter 4 is devoted to developing Algorithms 1 and 2 for the fast Bauer method and solving
them numerically according to three numerical methods. This is imposed by the main drawback of the

classical Bauer method for spectral decomposition — the need to form Cholesky decomposition of a

block Toeplitz matrix.
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Inputs: P, P, ..., B, (matrix coefficients of P (2) )

Outputs: C,,C,,...,C, ( matrix coefficients of H(z))
Begin:
If k>1
Construct block matrices P, F, to reduce the order to one,
k=1;
end

Step 1: Find the matrix X by solving ( X = P, - F’lT X _1Pl) numerically;
Step 2: Find the matrix éo as the Cholesky factor of X ( X = C,Cd);
Step 3: Find the matrix C, from C, = RC;";
If k>1
Extract C,,C,,---C, from C, u C;
end

Inputs: P,, P, ..., B ( matrix coefficients of P (2))

Outputs: C,,C,,...,C, (matrix coefficients of H(Zz))
Begin:
If k>1
Construct block matrices P, B so that k =1;

End
Using a suitable computer algebra system

Step 1: Set up a symmetric matrix X with symbol entries X; ;
Step 2: Set up and solve the nonlinear systems of equations:
f(X)=X-P,+P'X P, =0;
Step 3: Find the matrix éo as the Cholesky factor of X (X = C,Co);
Step 4: Find the matrix C, from C, = P'C;";
If k>1
Extract C,,C,,---C, from C, u C;

Fig. 4.2 Algorithm 2: Exact Bauer’s method

The method is further complicated when finding a desired multiscaling function from a singular
filter product, since despite the huge dimensions of the Toeplitz matrix (>10°) the convergence is even
sublinear. The main advantage of BMB is the compilation and solution of NME with - FPI and Newton’s
methods. A major advantage and application of the developed Algorithm 2 is finding desired orthogonal
multiscaling functions with exact coefficients. This is verified by constructing orthogonal Alpert

multifilter banks.
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CHAPTER 5
APPLICATIONS OF METHODS FOR CONSTRUCTIONS OF WAVELET AND
MULTIWAVELET FILTER BANKS

5.1 Applications of Bauer’s methods for spectral factorization
5.1.1 Haar scaling function
The Haar product filter is singular k = 1 order para — Hermitian polynomial on the unit circle

(z =-1) with two double zeros,

P(2)= Pz + Py + PiZ (5.1)
1
where the coefficients are p,=1p_ :E. After applying the exact Bauer’s method for spectral
factorization the spectral factor is:
1 1 .
(2)=—=+—=12". (5.2)
ARG

An important charachteristic and essential disadvantage of Bauer’s method is the convergence of

the diagonal value in block — band Toeplitz matrix:

ot (5.3)

1+1_(1+ij
n 2n

(a) =107 thesize of H,, needs to be:

with an absolute error €., = which means that to achieve the desired precision:

n=10" - ¢, = 1/1+L —(1+Lj =13x107°.
10000 20000
(6) =107*° the size of H ., needs to be:
7 1 1 15
n=10" — &, =L/1+— —|1+ — | =125x107.
10 2x10

Then, Bauer’s method (classical version) is considered for spectral factorization of the Haar product
filter with size n= 5-65x103 of block — band Toeplitz matrix. The numerical errors of the spectral

factor and the product filter are shown in fig.5.1 and are obtained by:
&, =llh@)-h" @)L (5.4)
£, =llp@)-h" @h™ @)L

where h™ =" +h("z ™,

5.1.2 Daubechies scaling function

The Daubechies 4 product filter
p(2) = p3(z’3 +2°)+ pz(z_2 +2%)+ pl(z_l+ 2)+p,

is a singular k = 3 order para — Hermitian polynomial on the unit circle with quadruple zeros z =-1):
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p(2) = h(2)h(z™?) =%(—z‘3 +977 +16+ 92— 77

(5.5)
1+ 22 - 4z+]) >0
16
According to the exact Bauer’s method the well-known spectral factor is:
h(2) = [(1+3) + @+B) 2" + 3-VB) 27 + A-V3)27). (5.6)

42

After applying Bauer’s method for a Toeplitz matrix of size n = 58750 the numerical error of the product
filter is &, = 1.793x107°, while of the spectral factor is ex = 1.534%10°5 even for n = 65000.
5.1.3 Alpert multiscaling function

The Alpert matrix product filter is a singular k = 1 order para — Hermitian polynomial on the

L+2)°

unit circle (z = —1) with quadruple zeros, i.e. detP(z) = -
Z

After applying of Bauer’s method for a

size of Toeplitz matrix n>104 the error of matrix spectral factor is &, = 0.53x10° for a Toeplitz matrix

of size n > 104.
5.1.4 Fast Bauer method
5.1.4.1 Scalar spectral factorization
A) Haar scaling function
The Haar product filter given in (5.1) has is with coefficients equal to p, =1, p, = p,, =Y2.
Then, the solution of the nonlinear scalar (matrix) equation (NME)
X=Pg ~ pzx_l
1 _ (5.7)
=1-=x"
4

is X =% . By using the Cholesky decomposition of the solution we find that
x=h,h, =h¢
h = phy' = p,hy’

which leads to the normalized Haar coefficients:

hO:\/;:

S

L (5.8)

W

The fast Bauer method is fast, simplie, and elegant. Moreover, the spectral factor can be found with

h, = p1ho_1 =

exact values.
A) Daubechies 4 scaling function
Now, let us investigate the fast Bauer method for scalar spectral decomposition of higher order

product filter. Such an example is the Daubechies 4 scaling function.
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Obvious, the function is supported in the inteval [0,3]. Thererfore, in order to apply the fast Bauer
method it is necessary to reduce the support of product filter to [0,1]. This means that the scalar product

filter coefficients will be restructured into two matrix product coefficients, i.e.:

p(2) = r)lz_l + Pt Pz (5.9)
P B B Ps P Py
KbAeTO Py =| P Py P |H P =] 0 p; P,
p2 pl pO O 0 p3

The result is that finding scalar spectral factor with exact values becomes impossible. This is a
result of the singularity of the matrix product filter with its quadruple zeros.
5.1.4.2 Fast Bauer method for spectral factorization
(A) Using Algorithm 2
The seven examples with different singularity (Table 5.4) of the scalar and matrix product filters
are considered by applying the fast and the exact Bauer methods. The obtained spectral factors

are with exact values. In addition, a new supercompact multiwavelet filter is found with

smothness Sg, =128 which is better than CL Sy, = 106.

The accuracy of the resulting matrix coefficients is calculated respectively:

- for coefficients of the scaling or the multiscaling function:
£n =11C, —Cg” |l (5.10)
- for coefficients of the scalar or the vector product filter:

& =B, -CPICT =M [C T || (5.11)

Table 5.4 The characteristics of scalar case (example 2) and matrix cases (examples 1, 3—7)

Example Singularity Zeros of the unit circle

1 No None

2 Yes Two double
3 Yes Two double
4 Yes Quadruple
5 Yes Quadruple
6 Yes Quadruple
7 Yes Decuple

Example 1: (Nonsinglar para — Hermitian polynomial) [95].

This is nonsingular prara — Hermitian matrix polynomial of order -2:

0 0/, |0 O], |10/ 1|0 O 0 2
P(2) = z%+ z'+ + z+ z’
2 oo SFlo oo Srlo o

_(2z-1H(2-2
B 4

which the determinant detP(z) have zeros of % and 2. Since the order is

greater than one a new 4x4 matrix polynomial withmatrix coefficients FA{) u |:31 is obtained. The
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8 2 -2 0
1 2 145 8 -34 . .
solution of NME X = 7-2 8 9 0 leads to the matrix spectral factor with exact

0 -34 0 153

ot Sl et b

Example 2: (Haar scaling function).

coefficients:

The scalar filter product

P(2)=z'+2+z=(1+2)(1+z7) :_(1+ 2)°

has double zeros (z = -1). The solution of NME is X =1 which leads to nonnormalized Haar

scaling function
H(z)=1+z".
Example 3: (Singular matrix polynomial) [61].

The singular matrix polynomial

6 22|, |2 7 6 22
P(2) = z+ + z
22 84 11 38| [22 84

(z+1)*(z-1)°

for which detP(z) = - , has two double zeros (z = +1), leads to the solution

1
= { 26} , from which we construct the matrix spectral factor with exact values:

5
H(Z){l 0}{2 1}2'
5 1| |7 3

Example 4: (Integer Multiwavelet) [32].

This is para — Hermitian matrix polynomial
- 10
p(z=1] 4 V2| ., G 4 V2
442 0 0 1] 4/-J2 o0

for which detP(z) = (18—) has quadruple zeros (z = -1). The solution of NME
2

_1] 2 2
=25

} leads to the multiscaling function:

H(z =L {\/E o}{ﬁ o}z_l
2(|-1 1] |1 1] )

After multipliying of the spectral factor with C = diag (\/_2 1) the well-known integer
23



multiscaling function is obtained [89]:

_ 1 O 1 0
H(2=CH(z)=|_1 1|+/1 17"
2 2 2 2
as its complementary function is the multiwavelet function
- 0 1 0 1
G(2=l1 1|+ _1 1|z
2 2 2 2

Example 5: (A new supercompact multiwavelets).

The orthogonal CL multiscaling function [90]

o 2+V7| [3 1 2-47
H. = 4 1414 4|14 4 2
CL 02_\/7 lg 2+ﬁ0
4 4 4 4

leads to the CL product matrix filter:

1 a4 1447 4 [1 0] 1] 4 -@+V7)
PCL(Z)_S{—(1+\/7) -ﬁ}z J{o J+8L/7+1 -7 }Z

4-7)(L+2)*

for which detP-, (2) =
CL( ) 3222

and which has quadruple zeros on the unit circle. The

solution of the NME X =C,C] is the symmertrical nonsingular matrix:

_}{ 4 ﬁ+1}
87 +1 4 '
) %Lﬁ‘:l 8—02ﬁ }%[ﬁtl 8—02x/7 T

Since, the square leads to two solutions
V8-27 =\/t-V7)?
=JWT7 -7 -1 =a-VNa-7)

then the two new orthogonal multiscaling functions are:

01D (7 -D: H‘*%ﬂﬁtl ﬁo—l}{—\/;—l ﬁO-JZ‘lJ-

V2] 4 0 4 0 o
(M2) @-+/7): H(z)—?({ﬁ+l _(1_\/7)}{_\/7_1 —(\/7—1)}2 j

Their multiwavelet functions are found by QR decomposition:

() G(Z):gq—(l?ﬁ) —(1fﬁ)}{1—oﬁ —(;1/7)}2_1)
(M=) G(Z):%H—a?ﬁ) 1+LiF7H1—Oﬁ 1+_HZJ

The pairs multiscaling and multiwavelet functions are shown in fig. 5.4.
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Fig. 5.4 The two new orthogonal supercompact multiscaling functions ®(t) =[@,@]" (red)

and multiwavelet functions ¥(t) =[¢,,&,]" (blue; (a) (M1) (b) (M2)

Example 6: (Alpert multiscaling fucntion).
The singular para — Hermitian product matrix polynomial
10 -
py=t 2 Bla,[t 0l 12 3
4| -3 -1 0 1] 4/J3 -1
Z?(1+2)°*

with detP(z) = has quadruple zeros(z = —1).

From X =P, —P,X™P, and Cholesky decomposition of the solution X =H,H; is determined:

1ﬁ 1 O 1@
2

. . 1 2 1 1
- first coefficient X =— =— — ;
frst coelf AN AR N
2 2
J3]
N2 1
- second coefficient H, = P'H " -1 2 3 1 ' 2| -1 J3
SR ENC I V] PR R R —7§
2

Example 7: (Legendre multiscaling function of order 5) .

0
1|
2

The singular para — Hermition matrix polynomial with 5x5 matrix coefficients P,,P,, the

supercompact multifilter P(z) =P, + Bz, where P, =1 and

[ 128 643 0 -16/7 0
-64/3 -64 16J15 16/21 -8J3

256
-64J7 16J21 8J/35 -40 -39/7
0 83 24/5 39/7 53

zeros on the unit circle. The solution leads to the multiscaling function:

25

1 : _(z+D)*°
R=-——| 0 -16/15 -112 -8/15 24/5 | with detP(2)= 5525

and
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[ 16 0 0 0o o] [ 16 0 0 0O 0

-8/3 8 0 0 0| |8/3 8 0 0 0
H(z):g 0 -4/15 4 0 0|+ 0 4/15 4 0o o|z*

2J7 2421 -2J35 2 o] |-2J7 221 2y35 2 0O

0 23 665 37 1] | 0 -2/3 &/5 -3/7 1]

The numerical errors for the product filter in examples 1—7 &, and for the spectral factor &,,,

as a result of a fixed-point iteration and Newton’s method obtained with Anzopumem 1 fast
Bauer method are shown in fig.5.5 and fig. 5.6. The results show big differences in the
convergence for the two methods.

B) Using built-in functions

The results from the bult — in functions ‘dare’ and ‘idare’ for solve of GDARE are:

Maple - The results of the numerical errors for solving of GDARE with ‘dare’ in Maple (Table 5.6)
show a high precission of the spectral factorization. Further, obtaining of a high-precission
spectral factor (~10') can be achieved only for nonsingular polynomial (Example 1). In cases of
para — Hermitian matrix polynomials that possess multiple zeros on the unit circle the achieved
precission is very low (~104) (Examples 4—7). Moreover, in cases of para — Hermitian matrix
polynomials that possess double zeros or with different signs (z=+1, Example 3) on the unit
circle, the obtained solution is incorrect. Therefore, using the built-in function is not
recommended.

Matlab - Although achieving better accuracy (Tab1. 5.7) in comparison with Maple, for singular para
— Hermitian matrix polynomials with multiple zeros, or with double zeros, or with different
signs on the unit circle, only the R2018a version provided solutions. Only the precision of the
solution of the NME and the spectral factor for example 7 (with decuple zeros) is lower than

Maple.

Table 5.6 Errors &, , &,, and &, for examples 1—7, using the ‘dare’ in Maple 17

Example Ey &y &p
1 2.35e-11  7.01e-11  3.29e-9
pO = 27 pl =1
1.22e-8 6.10e-9 o
2
Po=1,pi=1/2

6.10e-9  4.50e-9  5.55e-17

Incorrect solution X

5.95e-4  5.95e-4  6.59e-10

1.69e-4 2.90e-4 6.59e-10

2.20e-4 5.95e-4 2.64e-10

N OO G AW

2.61e-3 4.41e-2 7.82e-3
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——Example 1
—o—Example 2 ;

Example 3 |
—o—Example 4 ;
—o—Example 5

Example 6 :
——Example 7 :

10% 10" 10% 10° 10* 10° 10° 107 10% 10°
n

(a)

100,

107
1072
1073
1074
107°
10°®
1077
108
107
10-10
10-11
10-12
10-13
10-14
10-15
10—16

10% 10

——Example 1
—o—Example 2

Example 3
—o—Example 4
—o—Example 5 }

Example 6
——Example 7
" 10% 10% 10* 10° 10° 10" 10® 10°
n
(b)

®ur. 5.5. Log—log plots of the numerical errors obtained by fixed point iteration (FPI) applied

to the fast Bauer method (FBM) for scalar and matrix spectral factorization of the product filter.

(a) the residuals &, (b) the errors &, of the spectral factor.

Example 1 °
—o—Example 2 |

Example 3 :
—o—Example 4 ¢
—o—Example 5}
Example 6 :
Example 7 *

(a)
®@ur. 5.6. Log—log plots of numerical errors obtained by Newton method applied to the fast

10°
10"
1072

10-3 L
1074 ¢
107°F

10®
1077
1078
107

10-10 L

107"
10712
10713
107
1071°
10716

35

——Example 1 ]
—o—Example 2 ;
Example 3 |
—o—Example 4 ]
—o—Example 5 ;
Example 6 ]
Example 7 ]
5 10 15 20 25 30
n
(b)

Bauer method (FBM) for scalar and matrix spectral factorization of the product filter;

(a) the residuals & (b) the errors &, of the spectral factor.
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Tao6auna 5.7
Nummerical errors &, , &,, & of examples 1—7 by using

build- in functions (‘dare’ u ‘idare’ ) for 14 Matlab versions

Matlab verion Example Ey &y &p
) _ 5.90e-16
1 178e-15  5.55€-17 6.11e-16 (R2011a)
Do=2,p1=1
No solutions, Report = -1*
S e
Po=1,p1=1/2
R2011a (DARE) 4.95€-09  3.50€-09 0
R2012a (DARE) 3 1.49e-06  8.31e-07 5.68e-14
4 No solutions. Report = -1*
5 No solutions. Report = -1*
6 No solutions. Report = -1*
7 0.00105 0.0137 1.09e-10
1 1.78e-15  5.55e-17 4.44¢€ -16
Dbo=2,p1=1
No Solutions. Report = -1*
2
Po=1,p1=1/2
4.95e-09  3.50e-09 0
R2o015a (DARE)
1.49e-06  8.31e-0 .60e-1
R2016a (DARE) 3 49 31e07 5-b9¢-14
4
5 No Solutions. Report = -1*
6
0.00111 0.0147 )
7 (R2016a) (R2016a) 1.53¢-11 (R2016a)
1 7.11e-15  4.16e-17 1.78e-15
DPo=2,p1=1
No solutions, Report = -1*
2
DPo=1,p1=1/2
7.00e-09  4.95e-09 5.55€e-17
R2018a (DARE) 3 1.56e-06  7.98e-07 9.95e-14
4 5.45e-05 5.45e-05 8.88e-16
5 3.58e-05 6.16e-05 6.66e-14
6 4.32e-05 6.12e-05 4.44€-16
7 0.00108  0.01418 1.978e-11
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Taouna 5.7 (continued)

Matlab verion Example &, &y &p
1 3.55e-15  1.11e-16 3.55e-15
DPo=2,p1=1
No solutions. Report = -1*
R2019a (IDARE) 2 TTTTTTTTTmT B '1' N '_'1/'2 """""
R2019b (IDARE) Po=5Lp1=
R2020a (IDARE) 5.55e-09  3.92e-09 o}
R2020b (IDARE) . e
R2021a (IDARE) 3 No solutions. Report = 3
R2021b (IDARE) 4 No solutions. Report = 3**
R2022a (IDARE)
R2022b (IDARE) 5 4.45€-05 7.64e-05 2.20e-13
6 4.33e-05 6.12e-05 8.88e-16
9.50e-11 (R2022a,b)
7 0.00101  0.0131 1.466-10
1 5.33e-15  8.88e-16 3.55e-15
DPo=2,p1=1
No solutions. Report = 3**
9  mmmmmmmmmmmmmmdm e e
Po=1,pi=1/2
No solutions. Report = 3**
R2o021a
8.54e-0 6.44e-0 1.56e-1
Update 4 (IDARE) 3 b4€-07  0.44€-07 50€-13
4 No solutions. Report = 3**
5 No solutions. Report = 3**
6 4.73e-05  6.69e-05 8.88e-16
7 9.87e-04 0.01277253 2.97e-10
Legend:

*Report -1 — meant “the associated symplectic pencil has eigenvalues on or very near the
unit circle”;

**Report 3 — means “The symplectic spectrum has eigenvalues on the unit circle”;

5.1.5 Comparative Analsysis of Bauer’s methods

The main advantage of Bauer's method is the ability to find a spectral factor, and the main
disadvantage is the need for the Cholesky decomposition of an nxn T6pletz matrix of large dimensions
(more than n=65x103). A major advantage of the fast Bauer method in first-order product filter
decomposition is the avoidance of the Toeplitz matrix decomposition, which makes the method fast,
simple, and elegant. The other important advantage is the exact values of the spectral factor and the
product filter. This allows for simplified hardware schemes to implement filter or multi-filter banks. A
major drawback of Bauer's fast method is that, due to the strong influence of unit axis roots in scalar
spectral decomposition, it is not guaranteed to find a spectral factor with exact values (Daubeschies 4

scaling function).
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5.2 Applications of orthogonal multifilter banks
5.2.1 The lifting scheme of Alpert multiwavelet filter bank with diadic approximation of
V3 and applied to 2D curaaau

The influence of 2— and 3-bits quantization of V3 = a/b in the lifing scheme is considered for
balanced and non balanced Alpert multiwavelet filtter bank. PSNRs for 3-bits in balanced and
nonbalanced multifilter lead to high-quality images, while 2—bits quantization lead to big errors. Hence,
for nonbalanced filter bank and 2-bits quantization for all decomposition levels J > 1 the obtained
images have a mesh structure as well as for balanced filter bank for J > 4 artifacts appear. Therefore, 3—
bits quantization is necessary to achieve high-quality image for two types balancing.

5.2.2 Comparative analysis of three orthogonal multifilters for denoising of gray-levels
image

Signal denoising is one of the most common applications. It is the shrinking, suppressing, or
removal, if possible of the noise.

In this research is consider an input signal s with AWGN, e ~ N(0, 02) and obtain the denoisng
signal §. The technique for denoising the signal s (gray level images) is the multiwavelet transform that
possesses the important property that the input signal energy is concentrated in several wavelet
coefficients, the noise energy in subbands with Gaussian distribution. The ‘hard’ and ‘soft’ threshold
values are selected. The highest PSNR for ‘hard’ threshold is obtain for denoising with Alpert multifilter,
while for ‘soft’ threshold— GHM.

5.2.3 Comparative analysis of orthogonal scalar and vector filters for image compression
of astronomical image from scanned photograph plates

The Haar — like, Daubechies - like multiwavelet filter banks [86], [87] with its scalar versions and
GHM multifilter are compared for compression of astronomical images from scanned photograph
plates. The results shows better quality of compression for such a type images with Haar — and
Daubechies like multiwavelets. Extremely effective for lossless compression for images with highly non-
smooth areas of uniform intensity is the Haar — like multiwavelet filter bank to 5 decomposition level. A
disadvantage of scalar Daubechies filter bank is the existence of structure dependence in the astronomy
image from scanned photograph plates.
5.3 Results and conclusions

Chapter 5 shows fast Bauer method compared with the classical method, and the finding of
scalar or matrix spectral factor without Cholesky decomposition of nxn Toeplitz matrix and with exact
coefficients.

To avoid unwanted defects in image processing of gray-level images it is quite enough the 3-bit
quantization of the coefficient V'3 with balanced or nonbalanced Alpert multiwavelet filter bank.

The balanced Alpert multiwavelet filter bank, despite its shorter length and smaller coding gain,
achieves a higher PSNR compared to GHM and CL multifilters for image denoising of some test gray
levels images. Moreover, for gray image 'Lizard' the balanced and nonblanced Alpert filter achive better
PSNR.

Compression of astronomy images from scanned photograph plates is achieved by using of

multifilter version of scalar filters - Haar — like or Daubechies - like multiwavelet filter banks.
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CONCLUSION

The dissertation investigates problems related to new methods for developing scaling or
multiscaling functions satisfying orthogonal or non-orthogonal conditions.

Four explicit and simple methods have been developed and investigated to prove the hypothesis
that multiwavelength filter banks can be constructed from different basis functions (polynomials,
splines) and that Bauer's method of spectral decomposition can be used to derive desired
multiwavelength filter banks.

The contributions are in the field of wavelet theory. It is possible to consider and apply other
polynomials and spline functions not considered in the dissertation.

A big attention needs to be paid to the development of Bauer’s method for the matrix spectral
decomposition of low degree singular matrix polynomials that avoids the Cholesky decomposition of
large Toeplitz matrices. From a mathematical point of view - it solves multidimensional singular matrix
polynomials, and from an engineering point of view - it solves the problem of finding orthogonal
multiscaling functions with desired smoothness.

Two algorithms of Bauer's spectral decomposition method for singular matrix polynomials are
developed for the first time. Its numerical errors using the fixed point and the Newton numerical
methods were studied, as well as solutions of NME for 14 versions of Matlab (‘dare’ and ‘idare’) and
Maple 17 (‘dare’).

Moreover, the obtained matrix spectral factors are with exact values. One example is the Alpert
matrix product filter which is constructed for the first time.

Scalar and multiwavelet filter banks of Haar and Daubechies, Haar — like and Daubechies - like,
CL, Alpert, and GHM for denoising and compression of gray-level images are considered.

The process of design is based on basic matrix algebra so that it can be easily and conveniently

used by both students and researchers.

FUTURE DEVELOPMENT

Modern signal processing is undergoing rapid development in the analog and discrete domains.
In particular, the wavelet theory is part of basic research in many fields. Therefore, a new direction is
the development and generalization of the theory of spectral matrix decomposition for the multivariable
case. This can lead to improved denoising, compression, or mixed signal processing in the big-data area.

Another new direction is the implementation of the lifting scheme, and software or hardware
implementations of the orthogonal multiwavelet filter banks.

In this scientific study, the scientific results are applied in the processing of gray-level test
images. The investigation and proof of the advantages of the obtained new multi-filter banks in color

photos or video processing is another task for future research.
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AUTHOR CONTRIBUTIONS

Scientific results

1.

Three elegant, simple and fast methods for deriving the matrix recursion coefficients of scalar

and vector functions are constructed: basis change, brute force and inner product .

2. For first time a two-channels Alpert matrix product filter is constructed.

3. Two new orthogonal supercompact multiscaling functions are obtained by using fast Bauer

method for matrix spectral factorization and their complementary orthogonal supercompact

multiwavelet functions are obtined.

Scientific - applied results

1.

3.

By using the three methods and Bauer’s method of spectral factorization scaling or multiscaling
functions from B—spline, qudtaric B—spline, cubic and quintic Hermitian spline and Legendre
polynomials are designed.
Two new algorithms for fast and exact Bauer methods are constructed.

(a) Algorithm 1 — fast Bauer’s method;

(6) Algorithm 2 — exact Bauer’s method;
The author has constructed two numerical methods (based on the fixed-point iterations
technique and based on the Newton method) for solving of singular NMEs. Comparitive analysis
of build—in functions ‘dare’ u ‘idare’ in Maple and Matlab for solving of singular NMEs by
Generalized Discrete Time Algebraic Riccati Equation (GDARE) of Seven examples are detail
considered in detail.
A novel lifting scheme for the Alpert multiwavelet filter bank with two types quantization of
coefficient V3 is constructed. It is applied in filter banks to gray-level images without additional

processing.

. The multiplierless modules for analysis and syntesis of a perfectly restorative bio-orthogonal 5/3

filter bank on Xilinx's Virtex and Spartan series are implemented.
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