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PREFACE 

 

Problem statement  

In recent decades, scalar wavelets have established themselves as an indispensable tool in signal 

processing, in applications such as numerical analysis, operator theory, denoising and compression of 

N-D signals, object extraction from astronomical images, machine learning, data sorting, database 

searching, time series analysis, computational medicine, and others. They have been around since the 

late 1980s. There are different types of them: wavelet packets, ridgelets, curvelets, slantlets, frames and 

other constructions. Since the early 1990’s, one known generalization of scalar wavelets have been 

multiwavelets. The great interest in them is caused by the fact that they contain more than one function 

while possessing at the same time the most important characteristics from the theory of filter banks - 

short support, symmetry, and vanishing moments of high degree.  

An important subfield is orthogonal multiwavelet filters, the construction of which requires 

satisfying a number of restrictive conditions. They have advantageous properties, but are very difficult 

to design. Generally, new design methods and algorithms are necessary.  

 

Motivation  

There is a significant difficulty and a major challenge in finding orthogonal multiscaling 

functions by spectral decomposition of a singular matrix filter product. Moreover, due to the presence of 

single or multiple zeros in the determinant of the product filter, the spectral decomposition may be 

highly erroneous or even impossible. 

The main research question is the extension of  wavelet and multiwavelet theory. This research 

contributes four methods for constructing scalar or vector scaling functions from different polynomials 

and splines: 

� Basis change method ; 

� Brute force method; 

� Inner product method;   

� Bauer’s method for spectral factorization.  

The first three methods are based on polynomial basis functions or different splines. These can be 

exponential functions, Legendre polynomials in [-1,1] or [0,1], cubic or quintic Hermitian polynomials  

in  [0,1] and [0,2], Chebyshev polynomials of the first and second kind, Haar and Walsh functions, 

etc.   

The fourth proposed method constructs scaling and multiscaling functions satisfying desired 

properties - orthogonality, vanishing moment, compact support, and smoothness. Two numerical 

algoritms for the Bauer’s method for spectral factorization of scalar and matrix product filters are 

construted.  

 

Main tasks of  the scientific research: 

1. To conduct a study, overview and critical analysis of existing methods for constructing scaling 

and multiscaling functions; 
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2. To outline research opportunities in constructing new methods of implementing filter banks; 

3. To propose new methods for constructing scaling and multiscaling functions from 

polynomials and splines; 

4. To define and construct spectral factorization methods; 

5. To elaborate on the algorithms for a fast and accurate Bauer’s method;  

6. To implement an Alpert multiwavelet filter bank based on the lifting scheme and perform 

experimental studies of the methods for constructing wavelet and multiwavelet filter banks.  

 

Content structure 

The dissertation consists of 5 chapters, preface, conclusion, and references. 

The Preface outlines the topic, object and subject of the dissertation work, as well as the leading 

hypotheses. The problem statement and the motivation for conducting the dissertation research are 

briefly described. The purpose and methodology of the research work, as well as the methods according 

to which it is to be achieved, are given.  

Chapter 1 is devoted to existing methods for constructing wavelet and multiwavelet filter banks. 

It includes the theory of basis functions from polynomials and splines, spectral decomposition, and 

construction of scalar and vector filter banks. 

Chapter 2 presents three construction methods for scaling and multiscaling functions from 

polynomials and splines.   

Chapter 3 is devoted to existing methods for spectral factorization. The necessary condition for 

smoothness of the matrix product filter is described. The Daubechies 4 scaling function is designed 

according to the root method for spectral factorization. Bauer’s theoretical method for spectral 

factorization is also described and an Alpert product filter is obtained. 

Chapter 4 is devoted to the development of fast algorithms implementing Bauer’s method and 

their numerical solution using three numerical methods. Algorithms 1 and 2 for a fast and accurate 

Bauer method for scalar and vector spectral decomposition are developed and Alpert orthogonal 

multifilter banks are constructed. 

Chapter 5 is devoted to the following novel aspects: 

1) Comparative analysis of the four methods for constructing scaling and multiscaling 

functions, Bauer methods for spectral decomposition for Haar and Daubechies scaling 

functions, as well as Alpert multiscaling function; 

2) Empirical research on the fast and exact Bauer’s method for scalar and matrix spectral 

factorization – Haar and Daubechies 4 scaling functions; 

3) Seven examples of Algorithm 1, 2  implemeting the exact Bauer’s method;  

4) Built–in functions for the seven examples of Algorithm 1, 2;   

5) The lifting scheme for the Alpert multiwavelet filter bank is implemented. It is applied with 

different quantizations:  √3 for 256 ×256 and 512 ×512 image denoising with gray levels and 

AWGN with (σ = 10, 20); 

6) Image compression of astronomy images from scanned photograph plates are compared.  
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CHAPTER 1  

REVIEW OF CONSTRUCTION METHODS OF WAVELET AND MULTIWAVELET 

FILTER BANSKS  
 

1.1 Introduction  

Wavelets are, essesntially, short or fast-decaying waves where by  translation and dilation one 

can obtain a set of functions possessing the important properties of orthogonality, zero moments, 

compact support, and smoothness. They are particularly useful in the analysis of non-stationary signals, 

which requires that the frequency characteristics of a given filter depend on time. They are obtained 

with the construction of filter banks where spatial and frequency features are simultaneously 

determined for a given signal, which is impossible with Fourier transformation. 

In wavelet theory, there are spline wavelets obtained from different spline functions. They are a 

linear combination of B-splines inheriting their basis functions and a compact support but the resulting 

functions are non-orthogonal. Because of their simple structure, they are one of the most important and 

interesting wavelet family. They are used in the construction of wavelet finite elements that satisfy the 

condition of continuity of a shape function. In this way, multi-level (multi-scale) representation is 

achieved in many engineering problems. This achieves the desired accuracy and provides adaptive 

hierarchical solutions. 

An important drawback of wavelets is the impossibility of simultaneously possessing all 

important properties - orthogonality, zero moments, compact support, and smoothness [131], [132]. To 

overcome this drawback, the multiscaling and multiwavelet functions have been used. This changes the 

structure of a filter bank where instead of one scaling and wavelet function, two or more functions called 

multiscaling and multiwavelet functions are used simultaneously.  

The advantage of the multifilter theory is the possession of the above properties, which ensures 

fast signal recovery (at the expense of orthogonality), good efficiency (at the expense of smoothness), 

and a high degree of approximation (at the expense of a large number of zero moments). The symmetry 

of the function allows a symmetrical extension of the boundaries of signals. Orthogonality results in 

independent subimages. The higher degree of vanishing moments leads to the ability to represent 

polynomials of a higher degree with a smaller number of coefficients. 

1.2. Brief theory of spline and Legendre polynomials 

1.2.1 Spline functions 

From a mathematical point of view, a 'spline' is a partially linear function built from polynomial 

functions whose smoothness depends its derivatives. More generally, a spline is the set of all functions 

that are parts of a polynomial necessary to construct a function in the interval [a, b] with certain 

smoothness conditions. Splines whose polynomials are of low degree are called piecewise linear and are 

used as interpolating functions. 

1.2.1.1 Linear В – spline (“Hat” function)  

The ‘Hat” function is piecewise linear function, known as linera В – spline:  

battL +=)( .                                                                (1.1) 
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where a  и b  are coeffiecients. It can be used as a linear interpolant and/or finite element. Its 

multiscaling fucntion consists from three coefficients 210 ,, hhh : 

   )22()12()2()( 210 −+−+= thththt φφφφ .                                    (1.2) 

1.2.1.2  Cubic Hermitain spline  

Hermitian spline functions belong to a class of splines that are defective(A), i.e. piecewise 

polynomial function with constant defect on the knots. The most commonly used is the cubic spline 

consisting of a polynomial of degree ≤ 3 with two continuous derivatives for each subinterval. Cubic 

Hermitan spline is use for interpolation of data with continuous first and (possibly discontinuous) 

second derivatives of the nodes. Cubic Hermitan spline are constructed for two endpoints of a 

polynomial of the third degree dctbtattH +++= 23)(  and its the derivatives (or tangents) at these 

points.  

1.2.2 Legendre polynomials    

Legendre polynomials are t-order polynomials, i.e. itt ,,,1 L  and in  [-1,1] forms nonorthogonal baisis: 

)(
2

1
)( tPrt rr +=φ .                                                                          (1.3) 

where:  

( ) )()(12)()1(

)13(
2

1
)(

,)(

,1)(

11

2
2

1

0

tmPttPmtPm

ttP

ttP

tP

mmm −+ −+=+

−=

=
=
    

    

, for  L,3,2,1=m           (1.4) 

In the multiwavelet theory Legendre polynomials are in a interval [0,1]. The first multiscaling function 

is of Alpert [6]  which is construted from  the two functions )(0 tP  и )(1 tP : 

( )
0 01

0 1
1 1

1( )
( ) C C

( ) 3 2 1

P t
t z

P t t

ϕ
ϕ

−     
 Φ = = + = =       −      

,                          (1.5) 

where  0C  and 1C  are matrix coefficients.  

1.3. General theory of filter banks 

1.3.1 Scalar filter banks 

1.3.1.1 General theory 

Wavelet theory is based on a domain of basis functions interconnected by scaling and 

translation. At the heart of this domain is a wavelet basis function used to generate all other basis 

functions. It has certain characteristics in the L2 space and is called the mother wavelet, wavelet 

function, or just wavelet, and is denoted by ψ(t). There is a second function in the basis, allowing it to be 

built from a finite number of functions. This function is the parent wavelet, a scaling function, and is 

denoted by ϕ(t). The integer translations of the two functions form a Riez basis.  

(A) The difference between the degree of a spline and its smoothness is called the spline defect. 
For example, a piecewise linear continuous function (its graph is a polygonal line) is a spline of degree 
one of defect 1.   
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The two functions are obtained using a filter bank, which usually has a tree-like hierarchy of two 

different types - for analysis and recovery (synthesis) of functions. The filter bank is a combination of 

shift-dependent filters with coefficient M – downsampling, denoted with (↓M), and decimation 

(upsampling), denoted with (↑M). The structure of an r-channel filter bank is shown in fig. 1.4. This way 

of analyzing a function (signal) is called multi-resolution analysis (MRA). If the analysis and recovery 

regions consist of the same scaling and wavelet functions, the filterbank is called orthogonal, and when 

they  consist of different functions, the filter bank is called biorthogonal. 

 

 

Фиг.1.4.   М–channels scalar filter bank  

 

The two – channels filter bank with input signal x(n) is described by the equation: 

[ ] [ ]1 1ˆ (z) (z) (z) (z) (z) (z) ( z) (z) ( z) (z) (- z)
2 2

( ) ( ) ( ) ( )

0 0 1 1 0 0 1 1  

         

Χ H F H F H F H F

T z X z S z X z

= + Χ + − + − Χ

= + −
.  (1.6) 

which is equivalent of the matrix product:  

[ ] 








−








−
−

=
)(

)(

)()(

)()(

2
1

)()()(ˆ
11

00
10 zX

zX

zHzH

zHzH
zFzFzX . 

The matrix product (z)(z) 00 FH  is called a product filter. It is the foundation for finding of scaling and 

multiscaling functions by spectral factorization.  

1.3.1.2 Scaling and wavelet functions by a parameter 

The construction of orthogonal scaling and wavelet functions can be done by the poyphase 

matrix with a parameter [86],[129],[139 ] which is called a lattice structure:  










−
























−
= ∏

−

=
−

LL

LL
L

i ii

ii
p z

zH
φφ
φφ

φφ
φφ

cossin

sincos

0

01

cossin

sincos
)(

1

0
1                                      (1.7) 

where ]2,0[ πφ ∈i  and ],0[ πφL .  

In other research [86] a parameter structure is used: 
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
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K
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за 2≥K       (1.8) 

where I  is an identity matrix. In this way filter banks can be implemented directly.    

Additionally, a universal parameterization is given  [87]:         

),()(
cossin

sincos
)( βα

αα
αα

φ JJR =








−
=                                                               (1.9) 

where 








−
=

αα
αα

α
cossin

sincos
)(J  is a Jacobi matrix with πφαβ 2mod=− . Then Jacobi matrix has three 

diagonal matrices: 















−





























−
−=

=






















−=

2
cos

2
sin

10

10
2

cos21

2
cos1

2
sin0

2        

222
)(

φφ
φ

φ

φ

φφφφ

I

ABAIR T

                              (1.10)  

1.3.1.3 Properties of scaling and wavelet functions   

The subchapter describes more important properties of scaling and wavelet functions - 

Heisenberg's uncertainty principle, symmetry, flatness, and vanishing moments. 

1.3.1.4 Multiresolution Analysis (МRА) [139] 

 A key concept in wavelet theory is the nested structure called multiresolution analysis (MRA) or 

multiscale approximation ( MSA), consisting of successively coarser or finer spaces  Vj,: 

. . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . ,  ∈  L2(R) (Lebesgue space) 

                                          ← rougher space                                  finer space → 

MRA possesses following properties: 

1. Scaling – For each j,  

a function  jV∈)(tf   iff  1jV +∈)2( tf ; 

2. Inclusion -  For each  j   

1jj VV +⊆  ; 

3. Completeness  - The union of all subspaces jV ’s  in subspace  L2  is dense: 

)(2
RL=













∈
U
Zj

jVclosure ; 

4. Uniqueness – The subspaces jV  have no intersection: 

}0{=












∈
I
Zj

jV .                                                                           # 
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Consequently, the  j -level MRA applied on a function )(tf  is obtaned using scaling and wavelet 

coefficients according to: 

∑∑∑
=

−

=
+

−

=

−+−=
J

j

N

n

j

n

N

n

ntngntnhtf j

1

1

0
2

1

0

)2()()()()( ψφ .                                  (1.11) 

1.3.2 Vector filter banks (Multifilters) 

1.3.2.1 General theory 

The vector filter banks (or multifilter) are a generalization of scalar wavelet filter bank theory. 

Essentially, they are MIMO systems consisting of  r –scaling functions Φ = [ϕ0, ϕ1, ... , ϕr]T  and r –

wavelet functions  Ψ = [ψ0, ψ 1, ... , ψ r]T. This means that multiwavelet filter bank is consists of four 

analysis and synthesis multifilters which possess simultaneously the properties of orthogonality, 

symmetry, compact support,  and vanishing moments.  

A important difference between the scalar and vector filter banks is the number of subbands 

obtained in the decomposition. For example, an image decomposed at one level by a two-channel scalar 

filter bank forms four subbands (subimages) shown in fig. 1.11(а), while a two-channel vector filter bank 

forms sixteen  subbands (subimages) shown in fig. 1.11(b).  

 

 (a)           (b)  

Фиг. 1.11 A one level decomposition of a image; (a) scalar two channel filter bank   

(4 subbands);  (b) two channel multifilter bank (16 subbands) 

 

The input – output equation of the two channel vector filter bank is: 

[ ]

[ ] )(z)((z)z)((z)                  

)((z)(z)(z)(z)(z)ˆ

zXHGHG
2

1

 z XHGHG
2

1
X

1100

1100

−−+−+

+=
                       (1.12) 

or by the modulation matrix  



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




−
=


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

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−








−
−










−−
=









z)(

(z)
(z)(z)

z)(

(z)

z)((z)

z)((z)

)(

)(

z)(

(z)

(z)ˆ
(z)ˆ

X

X
HG             

X

X

HH

HH

zG

zG

G

G

2

1

X

X

mm

11

00

1

1

0

0

,                    (1.13) 

where, )(zX  is input vector signal,  

)(zH r - analysis multifilters, 0,1r =   

)(zGr -  synthesis multifilters, 0,1r =   

)(ˆ zX  - output vector signal.  
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(z)mH  - orthogonal analysis  modulation matrix, 

  (z)mG  - orthogonal synthesis modulation matrix. 

The perfect reconstruction conditions of multiwavelet filter banks using the modulation matrices are:   

cIGGGG

cIHHHH

==

==

(z)(z)(z)(z) mmmm

mmmm

~~
(z)

~
(z)(z)(z)

~
,                                                (1.14) 

where c  is a constant, I – an identity matrix, and ( .~ ) denotes the Hermitian matrix. Therefore, the 

conditions to obtain orthogonal multifilter banks are:  

0)(
~

z)()(
~

(z)

0)(
~

z)()(
~

(z)

)(
~

z)()(
~

(z)

)(
~

z)()(
~

(z)

=−−+

=−−+

=−−+

=−−+

zHHzHH

zHHzHH

cIzHHzHH

cIzHHzHH

0101

1010

1111

0000

                                           (1.15) 

which means that only the lowpass multifilter (z)0H  is needed.  

1.3.2.2 Properties of the multiscaling function 

In this sub-chapter we consider some important properties:  

А. polynomial reproduction of discrete polynomials;  

В. Pre–and post–filtering;  

С. Balancing;  

D. The sypport of a multifilter;  

E. Symmetry/antisymmetry of multiscaling and multiwavelet functions; 

1.4. Theory of spectral factorization  

The spectral factorization has a unique minimum-phase solution )( ωjeH  if para-Hermitian 

polynomial matrix )( ωjeP is positive definite on the unit circle 1 || =z , absolute integrable with a 

finite energy and satisfying the Paley-Wiener conditions [152]: 

� For scalar spectral factorization  

−∞>∫
−

π

π

ω ω
π

deP j )(ln
2

1
             or             ∞<∫

−

π

π

ω ω
π

deP j )(ln
2

1
;  

� For matrix spectral factorization  

−∞>∫
−

π

π

ω ω
π

deP j )(detln
2

1
            or              ∞<∫

−

π

π

ω ω
π

deP j )(detln
2

1
. 

Therefore, the spectral factorization is the process of determining the minimum phase 

function belonging to a given power spectrum )( ωjeP  which is the product of two factors, H(z), 

and H*(z), either of which are to be determined, i.e. )()()( zHzHeP j ∗=ω .   

The fundamental theorem of the spectral factorization is Fejér – Riesz theorem for positive 

definite functions. The terminology comes from prediction theory, where the nonnegative function 

)(zν  plays the role of a spectral density for a multidimensional stationary stochastic process. Fejér [71] 



 11

first shows the importance of the class of trigonometric polynomials that admit only positive real 

values; as a theorem it is proved by Riesz [114]. The Fejér – Riesz theorem for a trigonometric 

univariate polynomial is: 

∑
−=

=
N

Nk

k
k zz νν )(                                                              (1.16) 

When the function )(zν  is real for all  z ∈ T, then the coefficients for all k satisfy the following equality 

k−=νν . If 0)( ≥zν  for all z∈T (unit circle), the factorization of the function )(zν  is:  

)()()( zpzpz ∗=ν                                                            (1.17) 

where ∑
=

=
N

k

k
k zpzp

0

)( is called a scalar spectral factor and )(zp∗  is a Hermitian polynomial.  

The scalar spectral factor p(z) is unique to a unitary matrix multiplier U(z) [59], [60], i.e.,  

)()()( zUzpzpnew = .                                                     (1.18) 

The Wilson – Burg method [142] for spectral factorization constructs a minimum-phase signal 

from its spectrum. This is an iterative method with good numerical convergence [58]. Its main 

application is in study of analytic and bounded functions whose zeros do not lie on the unit circle.  

The matrix spectral factorization plays a crucial role in different applications that arize in 

MIMO systems and control theory [82],[141], [148]. The Bauer’s method is well–known for spectral 

factorization [14], and the implementation of Youla and Kazanjian [102], [103], [109], [149] has been 

successfully applied [30], [54], [78], [81].  

1.5  Theory of spline basis functions 

The author has constructed - Linear В–splines; reduced support Hermitian spline for an interval [0,1]; a 

cubic Hermitian spline ; and a Quintic Hermitian spline.   

1.6. Results and conclusions 

Based on the identified problems, the author makes a contributionto the theory of wavelets and 

multiwavelets. For this purpose, a new universal unitary matrix structure was developed, applied in the 

construction of a new parametric structure model for directly constructing scaling and wavelet 

functions. 

From the overview it follows that scalar and/or vector filter banks can be constructed from 

Bernstein polynomials, Legendre polynomials, cubic and quintic Hermitian polynomials, as well as 

linear and quadratic B -splines.  
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CHAPTER 2  

CONSTRUCTION METHODS OF SCALING AND MULTISCALING FUNCTIONS FROM 

POLYNOMIALS AND SPLINES 

 

2.1 Basis change method 

The basis change method for construction of scaling and multiscaling functions consists of 

constructing a coefficients matrix of the basis functions for a defined interval. This is a product 

of a scaling function ( )tφ  or a multiscaling )(tΦ  function with a nonsingular matrix A, i.e. 

IAAAA == −− 11 . In the multiscaling function case it leads to a new function: 

( ) ( ) 2 (2 ) k
k

t A t AC t kΦ = Φ = Φ −∑% .                                                   (2.1) 

Changing the basis in (2.1) can be represented as:  

{
1( ) 2 ( ) (2 )

2 (2 )        

k
k I

k
k

t AC A A t k

t k

−Φ = Φ −

= Φ −

∑

∑H

%

.                                                       (2.2) 

where supp )(tΦ  = supp )(
~

tΦ ,  and the new matrix of coefficients is determined by: 
1−= AACkkH .                                                                                       (2.3) 

The basis change method is used for the design of multiscaling functions from - Legendre 

polynomials and B–spline, cubic and quintic Hermitian splines. 

2.2 Brute force method 

The brute force method is a direct method for the design of scaling and multiscaling functions 

consisting of equalization of the basis function with a scaling function ( )tφ  or a multiscaling )(tΦ  

function over a defined interval. To apply this method we need: 

(a) to divide the basic functions of :   

left (L):  )(tLΦ           and              right (R): )(tRΦ  . 

(b) divide the support  of  the basis functions of subintervals. 

The matrix coefficients from the multiscaling function is found for each subinterval. Example, 

for the multiscaling function  

( )0 1 2( ) 2 (2 ) (2 1) (2 2)t C t C t C tΦ = Φ + Φ − + Φ −  

each matrix coefficient is found from the matrix equations 

)2(2)( 0 tCt Φ=Φ ,                                when t  ∈ [0,1/2],                                       (2.4)   

)12(2)2(2)( 10 −Φ+Φ=Φ tCtCt ,   when  t ∈ [1/2, 3/2]                                   (2.5) 

)22(2)( 2 −Φ=Φ tCt ,                         when  t ∈ [1/2, 1].                                         (2.6) 
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2.3 Inner product method 

The inner product method uses tensor products and an integral depending on the interval 

of the basis functions. A disadvantage of the method is its computational complexity. 

2.3.1  “Hat” scaling function 

The support of the multiscaling “Hat” function is [0,2] 

0 1 2( ) 2( (2 ) (2 1) (2 2))   t h t h t h tφ φ φ φ= + − + − . 

The scalar coefficients is determined in the dependent the neighbouring coefficients: 

� 0h  dependent  from 1h ;  

� 1h  dependent  from 0h и 2h ;  

� 2h  dependent  from 1h .  

This leids to construction and solving of the linear systems:  

0 1 2

0

[ , , ] 2[ , , ]

0

      

q r

a b c h h h r q r

r q

 
 =  
  

.                                     (2.7) 

where three scalar coefficients are: 

1

0 1 2

4 1 0
1 1 5 1 1 1 1 1

[ , , ] , , 1 4 1 , ,
4 12 4 122 2 2 2 2 2

0 1 4

 h h h

−
  

     = =             

. 

2.3.2 Multiscaling function of cubic Hermitian spline  

The support of the multiscaling function for cubic Hermitian spline is [0,2] 

)22Φ(2)12Φ(2)2Φ(2)Φ( 210 −+−+= tCtCtCt  

where 0C , 1C , and 2C  are matrix coefficients. By dividing cubic Hermitian basis functions of ‘left’ and 

‘rigth’: 

-  left ( L) for the interval ]1,0[∈t : 










−

−
=Φ

23

32 23
)(

tt

tt
t

L
,                                          (2.8) 

- rigth (R) for the interval ]2,1[∈t : 










−−−

−−−
=Φ

23

32

)2()2(

)2(2)2(3
)(

tt

tt
t

R
.                    (2.9) 

is derived the matrix equation: 

[ ] [ ]
1

CCC

−

















=
QR0

RQR

0RQ

CBA
2

1
,,

T

T
210 .                                       (2.10) 

whose solutions are the matrix coefficients: 

















−−
=

8

1

8

1
4

3

2

1

2

1
0C , 














=

2

1
0

01

2

1
1C , и  

















−

−
=

8

1

8

1
4

3

2

1

2

1
2C .                           (2.11) 
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2.3.3 Alpert multiscaling function  

The support of the Alpert multiscaling function is [0,1]:  

    )12(2)2(2)( 10 −Φ+Φ=Φ tCtCt .  

where 0C  and 1C  are matrix coefficients, and whose basis functions lie in different intervals. From the 

inner products: 

)12(),12(2)12(),(

)2(),2(2)2(),(

1

0

−Φ−Φ=−ΦΦ

ΦΦ=ΦΦ

ttCtt

ttCtt
                                  (2.12) 

the two matrix coefficients can be determined 

0

1
0

1 2

2 3 1

4 4

C

 
 
 =
 
  

 and 



















−
=

4
1

4
3

0
2
1

2

1
1C .                                       (2.13) 

2.4 Results and conclusions 

Chapter 2 discusses research opportunities in constructing new methods for constructing banks 

of polynomials and splines. Thus, three methods for constructing scaling and/or multiscaling functions 

have been developed. They have been applied to Legendre polynomials, cubic and quintic Hermitian 

polynomials, and linear and quadratic B-splines. 
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CHAPTER 3  

METHOD OF SPECTRAL  FACTORIZATION    
 

3.1 Design of the product filter  

The most important part when using the method of spectral factorization for find desirable 

scaling or multiscaling function that satisfies the mandatory smoothness condition of scalar or matrix 

filter product  

)(
2

1
)(det

1

zQ
z

zP
m








 +=
−

                                                                   (3.1) 

where )(zQ  is a linear phase polynomial. The matrix product filter  

k
k

k
k

k
k

k
k zPzPPzPzPzP ++++++= −

−
+−

+−
−

−
1

10
1

1)( LL  

satified the half-band filter condition: 
IzPzP 2)()( =−+ ,                                                                           (3.2) 

which means that 

,0 IP =  и 0,02 ≠= kP k .                                                                    (3.3) 

The simplest matrix product filter is the two channel product filter ],[)( 1−×∈ zzCzP rr  of an first 

order, i.e. 1=k  [89]: 

zPPzPzP T
10

1
1)( ++= − ,                                                                      (3.4) 

To achive smoother scaling or multiscaling functions we need higher-order scaling or matrix 

product filters. This is equivalent to the multiplyer mz)1( +  in the mandatory smoothness condition and 

singular matrix polynomial.   

3.2 Quadratic equation method 

The method use solving of quadratic equations [89]. Example, for scalar spectral 

factorization of product filter  )(zp  

))((        

)()(        

                                        

 )(

2
210

2
2

1
10

2
21

0
1

1
2

2

k
k

k
k

k
k

k
k

zhzhzhhzhzhzhh

zhzh

zpzpzp

pzpzpzpzp

++++++++=

=

++++

++++=

−−−

∗

−
−

−
−

−
−

LL

L

L

       (3.5) 

where )(zh  is scalar spectral factor and )(zh∗  is scalar Hermitian spectral factor.  

3.3 Roots method (Wiener-Hopf factorization)   

Roots method [31], [129] use find of polynomial roots: 

∏∏
−

==

−

−−−=

=
mk

j
j

m

i i
ik zz

z
zzzp

zhzhzp

1

2

1

1

)()
1

)((        

)()()(

                                                  (3.6) 

where 0≠kp  and Hermitian root ∗z  is root when z  is also root.  
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3.4 Cepstral method 

The cepstral method is based of FFT [28], [33], [83], [94], [110]  as can be use to construction of 

nonsymmetrical orthogonal scaling function. The main idea is logarithm of the scalar filter product: 

)
2

()
2

()(log
1

0

1

0 ∑∑∑
∞∞

−
∞

∞−

− +++== n
n

n
n

n
n zl

l
zl

l
zlzp .                             (3.7) 

The factorization consists from the sum of two polynomials as well as iterative finding the coefficients of 

spectral factor: 

11110

00

11

),
2

1
exp(

−− ++−+=

=

nnnn hl
n

hl
n

n
hlh

lh

L

.                                                     (3.8) 

3.5 Bauer’s method 

The Bauer’s method is based on the Fejer-Riesz theorem for matrix case [29], [60], [80], [120], 

[122] which means that spectral factorization of scalar )(zp  product filter with coefficients kk pp =− ,  

or (matrix) TPP 11 =−  with product filter )(zP  is obtained by Choleski decomposition of the block-band 

matrix: 

T

nnn
k

nnn
k

nnn
k

nnn
k

T

kkkk

kkkk
nn

CCC

CCC

CCC

CCC

FF
PPPP

PPPP
T





































=

=



















=

−−

−−

−−

−−

−+−−

−+−−
×

OOOO

L

L

OOOOOO

OOOO

L

L

OOOOOO

OOOOOO

L

L

OOOOOOOO

)1(
0

)1(
1

)(

)1(
0

)1(
1

)(

)1(
0

)1(
1

)(

)1(
0

)1(
1

)(

11

11

       

 (3.9)                         

Consequently, the Bauer’s method for spectral factorization is equivalent to the Choleski 

decomposition of )1()1( +×+ nn  block–band  Toeplitz matrix [23], [24]: 
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T

nnn
k

mm
k

nnn
k

mm
k

T
nnnn

k

kk

k

k

nn

CCC

CC

CC

C

CCC

CC

CC

C

FF

PPP

P

PP

PPPP

PPP

T

























































=





























=

××

−−

−

−

×

)(
0

)(
1

)(

)(
0

)(

)1(
0

)1(
1

)0(
0

)(
0

)(
1

)(

)(
0

)(

)1(
0

)1(
1

)0(
0

01

1

101

10

L

OO

OO

OM

L

OO

OO

OM

L

OO

M

O

OOOOM

L

L

. (3.10) 

The scalar (matrix) spectral factor  from the last row  is definited: 

kn
k

nnn zCzCCzH −− +++= )(1)(
1

)(
0

)( )( L .                                                          (3.11) 

The main disadvantage is its sublinear convergence for singular polynomials (matrix product filters).  

3.6 Results and conclusions 

Chapter 3 includes an overview of scalar spectral decomposition methods, a development for the 

matrix case of the smoothness condition for a scalar product filter. The product filter of Alpert 

multiwavelet filter is developed.  
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CHAPTER 4 

ALGORITHMS FOR BAYER’S  METHODS 
 

4.1 General theory of the fast Bauer’s method 

The advantages of the fast Bauer’s method are avoiding  the Choleski decomposition  of a 

Toeplitz matrix of an enormous size and the obtaining of a spectral factor with exact values using  well-

known software tools such as Мatlab [92], [93] or Maple [90]. For the purpose, it is necessary to 

reduce the degree of the product filter to a first order and solve a NME. Consequently, the k–order 

product filter by rearranging the matrix coefficients kP  

k
k

k
k

k
k

k
k zPzPPzPzPzP ++++++= −

−
+−

+−
−

−
1

10
1

1)( LL ,    and TPP 11 =− .        (4.1) 

is a construction a new product filter of order one, i.e. k = 1.   

zPPzPzP 10
1

1
ˆˆˆ)(ˆ ++= −

− .                                                     (4.2) 

where 0̂P , and TPP 11
ˆˆ =−  are the new matrix coefficients.  

4.2 Algorithms for the fast Bayer’s method 

The fast Bauer’s method is based on representing the  Cholesky factorization of a Toeplitz matrix 

iteratively row-by-row, which leads to the nonlinear matrix equation (NME) [89], [90]: 

[ ] 1

1)(
10

)1( PXPPX nTn −+ −=                                                              (4.3) 

where from the solution ,0
)0( PX =  we find that  

Tttt CCX ][ )(
0

)(
0

)( = .                                                                   (4.4) 

Since when ∞→n , XX n →)( , then  

1
1

10 PXPPX T −−=                                                                      (4.5) 

On the basis of the previous theory are constructed Algorithm 1 (Fig. 4.1) and 2 (Fig.4.2) for 

finding of scalar( matrix) spectral factors with exact values by Bauer’s method for spectral factorization.  

4.3 Numerical methods for fast Bauer method 

The chapter considers the three methods solving the NME–FPI method, Newton method and 

GDARE.  

4.4 Fast Bauer method (scalar case) 

This section considers the fast Bauer method for scalar spectral factorization. 

4.5 Fast Bauer method (vector case)  

In this section using the fast Bauer method for matrix spectral factorization we obtain Alpert 

multiscaling and multiwavelet functions.   

4.6 Results and conclusions 

Chapter 4 is devoted to developing Algorithms 1 and 2 for the fast Bauer method and solving 

them numerically according to three numerical methods. This is imposed by the main drawback of the 

classical Bauer method for spectral decomposition – the need to form Cholesky decomposition of  a  

block Toeplitz matrix.  
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=================================================== 
Inputs: kPPP ,,, 10 K (matrix coefficients of )(zP ) 

Outputs: kCCC ,,, 10 K ( matrix coefficients of )(zH ) 

Begin:  
  If  k >1  

Construct block matrices  0̂P , 1̂P  to reduce the order to one, 

k= 1; 
  end   

 Step 1: Find the matrix X̂  by solving  ( 1
1

10
ˆˆ PXPPX T −−= ) numerically; 

 Step 2: Find the matrix 0Ĉ  as the Cholesky factor  of X̂  ( TCCX 00
ˆ = ); 

 Step 3: Find the matrix 1Ĉ from TCPC −= 011
ˆˆˆ ; 

If  k >1 

            Extract  kCCC L,, 10  from 0Ĉ  и 1Ĉ ; 

end  
 End  

=================================================== 
Fig. 4.1 Algorithm 1: Fast Bauer’s method 

 

=================================================== 
Inputs: kPPP ,,, 10 K ( matrix coefficients of )(zP ) 

Outputs: kCCC ,,, 10 K (matrix coefficients of )(zH ) 

Begin:  
  If  k >1  

Construct block matrices  0̂P , 1̂P  so that  k = 1; 

  End 
Using a suitable computer algebra system   

Step 1: Set up a symmetric matrix X̂  with symbol entries ijx ; 

Step 2: Set up and solve the nonlinear systems of equations: 

0ˆˆˆˆˆ)ˆ( 1
1

10 =+−= − PXPPXXf T ; 

Step 3: Find the matrix 0Ĉ  as the Cholesky factor  of X̂  ( TCCX 00
ˆ = ); 

Step 4: Find the matrix 1Ĉ  from TTCPC −= 011
ˆˆˆ ; 

If  k >1 

               Extract kCCC L,, 10  from 0Ĉ  и 1Ĉ ; 

End 
 End  
=================================================== 

Fig. 4.2 Algorithm 2: Exact Bauer’s method 
 

 

The method is further complicated when finding a desired multiscaling function from a singular 

filter product, since despite the huge dimensions of the Toeplitz matrix (>106) the convergence is even 

sublinear. The main advantage of BMB is the compilation and solution of NME with  - FPI and Newton’s 

methods. A major advantage and application of the developed Algorithm 2 is finding desired orthogonal 

multiscaling functions with exact coefficients. This is verified by constructing orthogonal Alpert 

multifilter banks. 
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CHAPTER 5 

APPLICATIONS OF METHODS FOR CONSTRUCTIONS OF WAVELET AND 

MULTIWAVELET FILTER BANKS  

 

5.1 Applications of Bauer’s methods for spectral factorization 

5.1.1 Haar scaling function 

The Haar product filter is singular k = 1 order para – Hermitian polynomial on the unit circle 

( z 1= − ) with two double zeros, 

1
1 0 1(z)p p z p p z−

−= + +                                                         (5.1) 

where the coefficients are 
2

1
,1 10 == −pp . After applying the exact Bauer’s method for spectral 

factorization the spectral factor  is:  

1
0

1 1
( )

2 2
h z z−= + .                                                                (5.2) 

An important charachteristic and essential disadvantage of Bauer’s method is the convergence of 

the diagonal value in block – band Toeplitz matrix: 

nn 2

1
1

1
1 +≈+                                                                    (5.3) 

with an absolute error 






 +−+=
nnHaar 2

1
1

1
1ε  which means that to achieve the desired precision: 

(a) 910−≈   the size of  nnH ×  needs to be: 

410=n  → 9103.1
20000

1
1

10000

1
1 −×=







 +−+=Haarε . 

(б) 1510−≈  the size of  nnH ×  needs to be: 

710=n  → 15
77

1025.1
102

1
1

10

1
1 −×=









×
+−+=Haarε . 

Then, Bauer’s method (classical version) is considered for spectral factorization of the Haar product 

filter with size n= 5-65×103 of block – band Toeplitz matrix. The numerical errors of the spectral 

factor and the product filter are shown in fig.5.1 and are obtained by:  

( )

( ) ( ) 1

|| ( ) ( ) ||

|| ( ) ( ) ( ) ||

n
h

n n
p

h z h z

p z h z h z

ε
ε

∞

−
∞

= −

= −
                                                          (5.4) 

where ( ) ( ) ( ) 1
0 1

n n nh h h z−= + .  

5.1.2 Daubechies scaling function 

The Daubechies 4 product filter  

3 3 2 2 1
3 2 1 0( ) ( ) ( ) ( )p z p z z p z z p z z p− − −= + + + + + +  

 is a singular k = 3 order para – Hermitian polynomial on the unit circle  with quadruple zeros z 1= − ): 
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16

)14()1(
        

)9169(
16

1
 )()()(

24

3131

+−+−=

−+++−== −−−

zzz

zzzzzhzhzp
.                                         (5.5) 

According to the exact Bauer’s method the well-known spectral factor is:   

))31()33()33()31[(
24

1
)( 321 −−− −+−++++= zzzzh .                        (5.6) 

After applying Bauer’s method for a Toeplitz matrix of size n = 58750 the numerical error of the product 

filter is εp  ≈ 1.793×10-10, while of the spectral factor is εh  ≈ 1.534×10-5  even for  n = 65000. 

5.1.3 Alpert multiscaling function 

The Alpert matrix product filter  is a singular k = 1 order para – Hermitian polynomial on the 

unit circle ( z 1= − ) with quadruple zeros, i.e. 
2

4

16

)1(
)(det

z

z
zP

+= . After applying of Bauer’s method for a 

size of Toeplitz matrix n>104   the error of matrix spectral factor is ≈Hε 0.53×10-6 for a Toeplitz matrix  

of size n > 104.  

5.1.4 Fast Bauer method 

5.1.4.1  Scalar spectral factorization  

A)  Haar scaling function  

The Haar product filter given in (5.1) has is with coefficients equal to 0 1p = , 2111 == −pp . 

Then, the solution of the nonlinear scalar (matrix) equation (NME)  

1

12
0

4

1
1    −

−

−=

−=

x

xppx
                                                                        (5.7) 

is 
1

2
x =  . By using the Cholesky decomposition of the solution we find that   

  
1

01
1

011

2
000

−− ==

==

hphph

hhhx
T

 

which leads to the normalized Haar coefficients: 

2

1
2

1

1
011

0

==

==

−hph

xh

.                                                                    (5.8) 

The fast Bauer method is fast, simplie, and elegant.  Moreover, the spectral factor can be found with 

exact values. 

A) Daubechies 4 scaling function  

 Now, let us investigate the fast Bauer method for scalar spectral decomposition of higher order 

product filter. Such an example is the Daubechies 4 scaling function.   
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Obvious, the function is supported in the inteval [0,3]. Thererfore, in order to apply the fast Bauer 

method it is necessary to reduce the support of product filter to [0,1]. This means that the scalar product 

filter coefficients will be restructured into two matrix product coefficients, i.e.: 

1
1 0 1( )p z p z p p z−= + +% % %                                                      (5.9)  

където 
0 1 2

0 1 0 1

2 1 0

p p p

p p p p

p p p

 
 =  
  

%  и 
3 2 1

1 3 2

3

0

0 0

p p p

p p p

p

 
 =  
  

% .    

The result is that finding scalar spectral factor with exact values becomes impossible. This is a 

result of the singularity of  the matrix product filter with its quadruple zeros. 

5.1.4.2 Fast Bauer method for spectral factorization  

(А) Using Algorithm 2   

The seven examples with different singularity (Table 5.4) of the scalar and matrix product filters 

are considered by applying the fast and the exact Bauer methods. The obtained spectral factors 

are  with exact values. In addition, a new supercompact multiwavelet filter is found with  

smothness 28.1=SUPS  which is better  than CL 06.1=SUPS .   

The accuracy of the resulting matrix coefficients is calculated respectively:  

-  for coefficients of the scaling or the multiscaling function:  

|||| )(
00

n
H CC −=ε                                                                                      (5.10) 

- for coefficients of the scalar or the vector product filter: 

||][][|| )(
1

)(
1

)(
0

)(
00

TnnTnn
P CCCCP −−=ε                                                   (5.11) 

 

Table 5.4  The characteristics of scalar case (example 2)  and matrix cases (examples  1, 3–7)  

Example Singularity  Zeros of the unit circle 

1 No  None  

2 Yes Two double 

3 Yes Two double   

4 Yes Quadruple  

 5 Yes Quadruple 

6 Yes Quadruple  

7 Yes Decuple 

  

Example 1:  (Nonsinglar para – Hermitian polynomial) [95]. 

This is nonsingular prara – Hermitian matrix polynomial of order -2: 
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−−=  have zeros of 
2
1

 and 2 .  Since the order is 

greater than one a new 44×  matrix polynomial withmatrix coefficients 0̂P  и 1̂P  is obtained. The 
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solution of NME 


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



−
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−
−
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1530340
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1
X  leads to  the matrix spectral factor with exact 

coefficients: 

1 24 0 1 1 0 41 1 1
(z)

1 17 0 4 0 034 34 34
H z z− −−     
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. 

Example 2: (Haar scaling function). 

The scalar filter product   

z

z
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2
11 )1(
)1)(1(2)(

+=++=++= −−  

has double zeros (z = -1). The solution of NME is  1=x  which leads to nonnormalized  Haar 

scaling function 

11)( −+= zzH . 

Example 3: (Singular matrix polynomial) [61]. 

The singular matrix polynomial  
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Example 4: (Integer Multiwavelet) [32]. 

This is para – Hermitian matrix polynomial  
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After multipliying of the spectral factor with )1,2(diag=C  the well-known integer  
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multiscaling function is obtained [89]: 
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 as its complementary function is the multiwavelet function 
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Example 5: (A new supercompact multiwavelets). 

The orthogonal CL multiscaling function  [90]   
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leads to the CL product matrix filter:  
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solution of the NME TCCX 00=  is the symmertrical nonsingular matrix:  
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Since, the square leads to two solutions 
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then the two new orthogonal  multiscaling functions are: 
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Their  multiwavelet functions  are found by  QR decomposition: 
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The pairs multiscaling and multiwavelet functions are shown in fig. 5.4.  
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(a)    

 (b)  

Fig. 5.4 The two new orthogonal  supercompact multiscaling functions T],[Φ(t) 10 φφ=  (red)  

and  multiwavelet functions  T],[Ψ(t) 10 ψψ= (blue; (a) (М1) (b ) (М2) 

 

Example 6: (Alpert multiscaling fucntion). 

The singular para – Hermitian product matrix polynomial 

zzzP 








−
−+








+









−−
= −

13

32

4

1
10

01

13

32

4

1
)( 1  

with 
16

)1(
)(det

42 zz
zP

+=  has quadruple zeros(z = –1).  
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Example 7: (Legendre multiscaling function of  order 5) . 

The singular para – Hermition matrix polynomial with 5×5 matrix coefficients 10 , PP ,  the 

supercompact multifilter 1
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zeros on the unit circle. The solution leads to the multiscaling function:  
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The numerical errors for the product filter in examples 1–7   Pε  and for the spectral factor Нε ,  

as a result of a fixed-point iteration and Newton’s method obtained with Алгоритъм 1 fast 

Bauer method  are shown in fig.5.5 and fig. 5.6. The results show big differences in the 

convergence for the two methods.  

Б) Using built-in functions 

The results from the bult – in functions ‘dare’ and  ‘idare’  for  solve of GDARE are:   

Maple - The results of the numerical errors for solving of GDARE  with ‘dare’  in Maple (Table 5.6) 

show a high precission of the spectral factorization. Further, obtaining of a high-precission 

spectral factor (~1011) can be achieved only for nonsingular polynomial (Example 1).  In cases of 

para – Hermitian matrix polynomials that possess multiple zeros on the unit circle the achieved 

precission is very low (~104) (Examples 4–7). Moreover, in cases of para – Hermitian matrix 

polynomials that possess double  zeros or with different signs (z=±1, Example 3) on the unit 

circle, the obtained solution is incorrect. Therefore, using the built-in function is not 

recommended. 

Matlab - Although achieving better accuracy (табл. 5.7) in comparison with Maple, for singular para 

– Hermitian matrix polynomials with multiple zeros, or with double zeros, or with different 

signs on the unit circle, only the R2018a version provided solutions. Only the precision of the 

solution of the NME and the spectral factor for example 7 (with decuple zeros) is lower than 

Maple.  

 

Table 5.6 Errors Xε , Hε , and Pε  for examples 1–7, using the ‘dare’ in Maple 17 

Example Xε  Hε  Pε  

1 2.35e-11 7.01e-11 3.29e-9 

p0 = 2, p1 = 1 

1.22e-8 6.10e-9 0 

p0 = 1, p1 = 1/2 
2 

6.10e-9 4.50e-9 5.55e-17 

3 Incorrect solution X 

4 5.95e-4 5.95e-4 6.59e-10 

5 1.69e-4 2.90e-4 6.59e-10 

6 2.20e-4 5.95e-4 2.64e-10 

7 2.61e-3 4.41e-2 7.82e-3 
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      (a)                                                                                 (b) 

Фиг. 5.5. Log–log plots of the numerical errors obtained by fixed point iteration (FPI) applied 

to the fast Bauer method (FBM) for scalar and matrix  spectral factorization of the product filter. 

(a) the residuals Pε  (b) the errors Нε  of the spectral factor. 

 

 

         (a)                                                                                       (b) 

Фиг. 5.6. Log–log plots of numerical errors obtained by Newton method applied to the fast 

Bauer method (FBM) for scalar and matrix spectral factorization of the product filter;  

(a) the residuals Pε  (b) the errors Нε  of the spectral factor. 
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Таблица 5.7  

Nummerical errors Xε , Hε , Pε  of examples 1–7   by using  

build- in functions (‘dare’ и ‘idare’ ) for 14  Matlab versions   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Matlab verion Example Xε  Hε  Pε  

1 1.78e-15 5.55e-17 
    5.90e-16 
6.11e-16 (R2011a) 

p0 = 2, p1 = 1 
No solutions, Report = -1* 

p0 = 1, p1 = 1/2 
2 

4.95e-09 3.50e-09 0 

3 1.49e-06 8.31e-07 5.68e-14 

4 No solutions.  Report = -1* 

5 No solutions.  Report = -1* 

6 No solutions.  Report = -1* 

R2011a (DARE) 
R2012a (DARE) 

7 0.00105 0.0137 1.09e-10 

1 1.78e-15 5.55e-17 4.44e -16 

p0 = 2, p1 = 1 
No Solutions. Report =  -1* 

p0 = 1, p1 = 1/2 
2 

4.95e-09 3.50e-09 0 

3 1.49e-06 8.31e-07 5.69e-14 

4 

5 

6 

No Solutions. Report =  -1* 

R2015a (DARE)  
R2016a (DARE) 

7 
0.00111   

(R2016а) 
0.0147 

(R2016а) 
1.53e-11 (R2016а) 

1 7.11e-15       4.16e-17    1.78e-15 

p0 = 2, p1 = 1 
No solutions, Report = -1* 

p0 = 1, p1 = 1/2 
2 

7.00e-09 4.95e-09 5.55e-17 

3 1.56e-06 7.98e-07 9.95e-14 

4 5.45e-05 5.45e-05 8.88e-16 

5 3.58e-05 6.16e-05 6.66e-14 

6 4.32e-05 6.12e-05 4.44e-16 

  R2018a (DARE) 

7 0.00108 0.01418 1.978e-11 
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Таблица 5.7 (continued) 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend: 

*Report -1 – meant “the associated symplectic pencil has eigenvalues on or very near the 

unit circle”; 

**Report 3 – means “The symplectic spectrum has eigenvalues on the unit circle”; 

 
5.1.5 Comparative Analsysis of Bauer’s methods 

The main advantage of Bauer's method is the ability to find a spectral factor, and the main 

disadvantage is the need for the Cholesky decomposition of an n×n Töpletz matrix of large dimensions 

(more than n=65×103). A major advantage of the fast Bauer method in first-order product filter 

decomposition is the avoidance of the Toeplitz matrix decomposition, which makes the method fast, 

simple, and elegant. The other important advantage is the exact values of the spectral factor and the 

product filter. This allows for simplified hardware schemes to implement filter or multi-filter banks. A 

major drawback of Bauer's fast method is that, due to the strong influence of unit axis roots in scalar 

spectral decomposition, it is not guaranteed to find a spectral factor with exact values (Daubeschies 4 

scaling function).  

 

Matlab verion Example Xε  Hε  Pε  

1 3.55e-15 1.11e-16 3.55e-15 

p0 = 2, p1 = 1 
No solutions. Report = -1* 

p0 = 1, p1 = 1/2 
2 

5.55e-09 3.92e-09 0 

3 No solutions. Report = 3** 

4 No solutions. Report = 3** 

5 4.45e-05 7.64e-05 2.29e-13 

6 4.33e-05 6.12e-05 8.88e-16 

R2019a (IDARE) 
R2019b (IDARE) 
R2020a (IDARE)  
R2020b (IDARE) 
R2021a (IDARE) 
R2021b (IDARE) 
R2022a (IDARE) 
R2022b (IDARE) 

7 0.00101 0.0131 
9.50e-11 (R2022a,b) 
1.46e-10 

1 5.33e-15 8.88e-16 3.55e-15 

p0 = 2, p1 = 1 
No solutions. Report =  3** 

p0 = 1, p1 = 1/2 
2 

No solutions. Report =  3** 

3 8.54e-07 6.44e-07 1.56e-13 

4 No solutions. Report = 3** 

5 No solutions. Report = 3** 

6 4.73e-05 6.69e-05 8.88e-16 

R2021a  
Update 4 (IDARE) 

7 9.87e-04 0.01277253 2.97e-10 
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5.2 Applications of orthogonal multifilter banks 

5.2.1 The lifting scheme of Alpert multiwavelet filter bank with diadic approximation   of 

√3 and applied to  2D сигнали 

The influence of 2– and 3–bits quantization of √3 = a/b in the lifing scheme is considered for 

balanced and non balanced Alpert multiwavelet filtter bank. PSNRs for 3–bits in balanced and 

nonbalanced multifilter lead to high-quality images, while 2–bits quantization lead to big errors. Hence, 

for nonbalanced filter bank and 2–bits quantization for all decomposition levels J > 1  the obtained 

images have a mesh structure as well as for balanced filter bank  for J ≥ 4 artifacts appear. Therefore, 3– 

bits quantization  is necessary to achieve high-quality image for two types balancing.  

5.2.2 Comparative analysis of three orthogonal multifilters for denoising of gray-levels 

image 

 Signal denoising is one of the most common applications. It is the shrinking, suppressing, or 

removal, if possible of the noise.  

 In this research is consider an input signal s with AWGN, e ~ N(0, σ2)  and obtain the denoisng 

signal ŝ . The technique for denoising the signal s (gray level images) is the multiwavelet transform that 

possesses the important property that the input signal energy is concentrated in several wavelet 

coefficients, the noise energy in subbands with Gaussian distribution. The ‘hard’ and ‘soft’ threshold 

values are selected. The highest PSNR for ‘hard’ threshold is obtain for denoising with Alpert multifilter, 

while for ‘soft’ threshold– GHM.  

5.2.3 Comparative analysis of orthogonal scalar and vector filters for image compression 

of astronomical image from scanned photograph plates 

The Haar – like, Daubechies - like multiwavelet filter banks [86], [87] with its scalar versions and 

GHM multifilter are compared for compression of astronomical images from scanned photograph 

plates. The results shows better quality of compression for such a type images with Haar – and 

Daubechies like multiwavelets. Extremely effective for lossless compression for images with highly non-

smooth areas of uniform intensity is the Haar – like multiwavelet filter bank  to 5 decomposition level. A 

disadvantage of  scalar Daubechies filter bank is the existence of structure dependence in the astronomy 

image from scanned photograph plates.  

5.3 Results and conclusions 

Chapter 5 shows fast Bauer method compared with the classical method, and the finding  of 

scalar or matrix spectral factor without Cholesky decomposition of n×n Toeplitz matrix and with exact 

coefficients. 

To avoid unwanted defects in image processing of gray-level images it is quite enough the 3-bit 

quantization of the coefficient √3 with balanced or nonbalanced Alpert multiwavelet filter bank.  

The balanced Alpert multiwavelet filter bank, despite its shorter length and smaller coding gain, 

achieves a higher PSNR compared to GHM and CL multifilters for image denoising of some test gray 

levels images. Moreover, for gray image 'Lizard' the balanced and nonblanced Alpert filter achive better 

PSNR.    

Compression of astronomy images from scanned photograph plates is achieved by using of 

multifilter version of scalar filters - Haar – like or Daubechies - like multiwavelet filter banks. 
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CONCLUSION 

 
The dissertation investigates problems related to new methods for developing scaling or 

multiscaling functions satisfying orthogonal or non-orthogonal conditions. 

Four explicit and simple methods have been developed and investigated to prove the hypothesis 

that multiwavelength filter banks can be constructed from different basis functions (polynomials, 

splines) and that Bauer's method of spectral decomposition can be used to derive desired 

multiwavelength filter banks.  

The contributions are in the field of wavelet theory. It is possible to consider and apply other 

polynomials and spline functions not considered in the dissertation. 

A big attention needs to be paid to the development of Bauer’s method for the matrix spectral 

decomposition of low degree singular matrix polynomials that avoids the Cholesky decomposition of 

large Toeplitz matrices. From a mathematical point of view - it solves multidimensional singular matrix 

polynomials, and from an engineering point of view - it solves the problem of finding orthogonal 

multiscaling functions with desired smoothness. 

Two algorithms of Bauer's spectral decomposition method for singular matrix polynomials are 

developed for the first time. Its numerical errors using the fixed point and the Newton numerical 

methods were studied, as well as solutions of NME for 14 versions of Matlab (‘dare’ and ‘idare’)  and 

Мaple 17 (‘dare’).  

Moreover, the obtained matrix spectral factors are with exact values. One example is the Alpert 

matrix product filter which is constructed for the first time.   

Scalar and multiwavelet filter banks of Haar and Daubechies, Haar – like and Daubechies - like, 

CL, Alpert, and GHM for denoising and compression of gray-level images are considered.  

The process of design is based on basic matrix algebra so that it can be easily and conveniently 

used by both students and researchers. 

 

FUTURE DEVELOPMENT 

 

Modern signal processing is undergoing rapid development in the analog and discrete domains. 

In particular, the wavelet theory is part of basic research in many fields. Therefore, a new direction is 

the development and generalization of the theory of spectral matrix decomposition for the multivariable 

case. This can lead to improved denoising, compression, or mixed signal processing in the big-data area.  

Another new direction is the implementation of the lifting scheme, and software  or hardware 

implementations of the orthogonal multiwavelet filter banks.  

In this scientific study, the scientific results are applied in the processing of gray-level test 

images. The investigation and proof of the advantages of the obtained new multi-filter banks in color 

photos or video processing is another task for future research. 
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AUTHOR CONTRIBUTIONS 

 
Scientific results  
 

1. Three elegant, simple and fast methods for deriving the matrix recursion coefficients of scalar 

and vector functions are constructed: basis change, brute force and inner product . 

2. For first time a two-channels Alpert matrix product filter is constructed. 

3. Two new orthogonal supercompact multiscaling functions are obtained by using fast Bauer 

method for matrix spectral factorization and their complementary orthogonal supercompact 

multiwavelet functions are obtined.  

 
Scientific - applied results 
 

1. By using the three methods and Bauer’s method of spectral factorization scaling or multiscaling 

functions from B–spline, qudtaric B–spline, cubic and quintic Hermitian spline and Legendre 

polynomials are designed. 

2. Two new algorithms for fast and exact Bauer methods are constructed.  

(a) Algorithm 1 – fast Bauer’s method; 

(б) Algorithm 2  – exact Bauer’s method;  

The author has constructed two numerical methods (based on the fixed-point iterations 

technique and based on the Newton method) for solving of singular NMEs. Comparitive analysis 

of build–in functions ‘dare’ и ‘idare’ in Maple and Matlab for solving of singular NMEs by 

Generalized Discrete Time Algebraic Riccati Equation (GDARE) of Seven examples are detail 

considered in detail.  

3. A novel lifting scheme for the Alpert multiwavelet filter bank with two types quantization of 

coefficient √3 is constructed. It is applied in filter banks to gray-level images without additional 

processing.  

4. The мultiplierless modules for analysis and syntesis of a perfectly restorative bio-orthogonal 5/3 

filter bank on Xilinx's Virtex and Spartan series are implemented.  
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