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Introduction  

Mathematical modeling in the financial field is of great scientific and practical in-

terest, since the study of economic systems such as stock exchanges, banks, insurance 

and investment companies is important both to the participants themselves in these sys-

tems and to the state in terms of the functioning of the financial system. Regarding math-

ematical modeling, in particular, portfolio optimization, in our country has contributed to 

the works of Rachev [14, 15], Stoyanov [21], Stoilov [20], and others.  

One of the key problems of the decision-maker is known about the distribution of 

the future price of financial instruments. Knowledge of the principle of distribution of fu-

ture value as a random variable is necessary to evaluate the mathematical expectation, as 

well as the variance and other risk measures used in optimal portfolio models. These facts 

make it necessary for the decision-maker to construct complex models of optimal portfo-

lio with different optimization criteria. For these reasons, the mathematical modeling of a 

financial decision maker in the dissertation is up-to-date. 

The dissertation is structured in an introduction, 3 chapters, conclusion, contribu-

tions, list of publications, declaration of originality and bibliography. 

The first chapter analyzes the existing mathematical models of the decision maker, 

outlining their advantages and disadvantages. The basis of this analysis justifies the need 

for new, intelligent, efficient, yet sufficiently accurate methods and techniques, such as 

evolutionary algorithms. Perspective research areas are identified, and the Aim and spe-

cific tasks of the dissertation research are formulated. 

The second chapter presents the proposed bicriteria optimization model for the 

formation of a portfolio of different assets. To solve this model, was proposed a Hybrid 

Algorithm for portfolio selection. This hybrid algorithm for portfolio selection is based 

on the combination of both methods Firefly (FFA) and the Pattern search (PS). This 

combines the advantages of both methods to find a global optimal solution (in case the 

objective function is multimodal) and the precise localization of the optimum using the 

technique of shrinking the network size to a predetermined tolerance in Pattern search. 

Using the proposed bicriteria model and hybrid algorithm, a methodology for portfolio 

selection is presented. 

The third chapter describes the results of the tests performed for the formulated 

two models - the first with 3 assets, based on historical data from 2008 to 2018, and the 

second with 6 assets with historical data from 2007 to 2018, for the problem of portfolio 

selection. Through two optimization approaches: Interior Point in Matlab and the pro-
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posed hybrid algorithm for portfolio selection have solved the relevant optimization prob-

lems, and the obtained results were compared by three criteria - the number of iterations, 

the number of calculations of the objective function, and the time for which the calcula-

tions were performed. The obtained numerical results showed that the proposed bicriteria 

model and a hybrid algorithm are applicable and effective in solving the portfolio optimi-

zation problem with constraints for multi-periods. It has been found that the proposed 

hybrid algorithm finds a precise solution in the optimization of portfolios in a relatively 

short time, which proves its effectiveness to solve real problems of portfolio selection. It 

is shown that this hybrid algorithm overcomes one of the disadvantages of accurate 

mathematical methods for time series, due to their considerable computational difficulty.  

The conclusion summarizes and analyzes the obtained results and gives a possible 

further direction for research.  

 

Chapter 1. Analysis of models and methods for portfolio optimization and 

management 

The first chapter presents the mathematical modeling of the decision maker's ac-

tions as conditioned by an adequate description of uncertainty, the need to measure statis-

tical regularities, to account for and to measure a huge volume of dynamically changing 

information. Investment portfolio management is a key fundamental process in managing 

investments in the financial field. The choice of investment policy involves defining the 

investor's goals and the volume of investments, assessing the types of assets and selecting 

the most favorable ones, taking into account the factors of profitability and risk. From the 

point of view of psychology for studying the causes and peculiarities of human behavior, 

classical models for the formation of an optimal investment portfolio and models consid-

ering the dynamics in the value of different financial instruments, the estimation of pa-

rameters based on statistical data is examined. The basis of this analysis justifies the need 

for new, intelligent, efficient, yet sufficiently accurate methods and techniques, such as 

evolutionary algorithms.  

As a result of the review, the Aim of the dissertation research was formulated, 

namely: to propose models and methods / algorithms for portfolio optimization using 

time series in the financial field. To accomplish this, the following specific tasks need to 

be accomplished: 

 to review the existing evolutionary single and multi-criteria algorithms for port-

folio optimization;  
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 to propose a portfolio optimization model  that provide individual qualities of 

the portfolio;  

 to propose a portfolio optimization approach / methodology using time series.  

 to propose a portfolio optimization and management algorithm for a given crite-

ria that is sufficiently accurate and fast.  

 to conduct numerical experiments to test the performance of the proposed mod-

els and algorithms.  

 to develop a toolbox - a set of software modules of Matlab to enable the above 

tasks to be accomplished. 

 

Chapter 2. Optimization by a combination of FFA-PS. Hybrid evolutionary 

algorithm and methodology for portfolio selection 

This chapter describes the proposed bicriteria optimization model and the pro-

posed hybrid algorithm то solvе the problem of portfolio optimization and management 

under given constraints. A summary methodology for portfolio selection is also present-

ed.  

2.1. A portfolio model for the multi-period   

Studies in behavioral portfolio theory have shown that investors may have multi-

ple cognitive distortions (e.g. mental accounting, loss aversion, etc.) that play an im-

portant role in the decision-making process [16, 22].  

2.1.1 Output conditions of the portfolio problem for the multi-period  

Let there are one riskless asset a0 and n risky assets {a1, . . .  ,  an} in security mar-

ket for trading. An investor wants to make a multi-period investment strategy, where the 

investment duration is divided into T periods. Suppose that the investor holds a portfolio 

X(t) = [x0,t, x1,t,... , xn,t]
T
 at time t, where x0,t denotes the wealth of riskless asset a0 at time 

t, and xi,t denotes the wealth of risky asset ai at time t, i = 1 , . . . ,  n ,  t  =  0 , . . . ,  T .  

Let r0,t and ri,t be the return of riskless asset a0 and risky asset ai at period t respec-

tively, i = 1 , . . . ,  n ,  t  =  1 , . . . ,  T. Then the wealth of asset ai at time t is:  

  xi,t = (ri,t + 1)
x+

i,t-1, i = 0 ,1 , . . . ,  n ,  t  =  1 , . . . ,  T     ( 2 .1)  

Using the recursive relationship in the multi-period investment, Eq. (1) can be re-

written as: 




 
t

j

jiiiiti Ttnixtjgxtgx
1

1,0,, ;,...,1,,...,1,0,),(),1(

      (2.2) 
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where gi(j,t) denotes the cumulative return of asset ai from period j to period t,   

gi(j,t) =  ( r i,t +1 ) ( r i,t-1 +1 ) ...(ri,j +1) ,  gi(t,t) =  r i,t +  1 .  

From Eq. (2.2), the multi-period portfolio wealth at time t is given by 

TttjgW ji

t

j

i

n

i

n

i

tit ,...,1,),(x 1,

100

,  



        (2.3) 

where  ξ i,0 = xi,0 + ∆xi,0; ξ i,j = ∆xi,j;  i = 0,1,…,n;  j = 1,…, T–1 

2.1.2 Robust optimization approach  

The goal of robust optimization is to find a solution which is feasible for all possi-

ble data realizations and optimal subject to a certain level of conservatism. Following the 

notation in [4]. In [16] define a parameter tГ
 and a subset tS to control the level of 

conservatism in tW , where    tttttt ГSJSJГ  ,,,0 , and   tjnijiJt ,...,1,,...,1,  . 

2.2 Dynamic prospect theory value function  

The prospect theory value function introduced in [12] is expressed by 










yWWy

yWyW
WPV

ˆ,)ˆ(

ˆ,)ˆ(
)(






       (2.9) 

where PV denotes the prospect theory value (PT value) function, W denotes the 

portfolio wealth; λ denote the loss aversion ratio; ŷ  denotes the given reference wealth; α 

and β denote the curvature parameters for gains and losses respectively. Tversky and 

Kahneman [21] experimentally determined the values of α = β = 0,88; λ = 2,25, which 

are considered as appropriate for describing most decision maker's behavior and used to 

make optimal decision-makings. 

2.3 Bicriteria model for portfolio selection  

In multi-criteria optimization problems, several criteria are optimized simultane-

ously, and in general there is no single alternative that optimizes all criteria. Unlike single 

criterial optimization, the solution to a multi-criteria problem can be seen as a concept ra-

ther than a definition. With this type of optimization, there is usually no optimal solution 

that satisfies all the criteria, and most often at least two of the criteria are in conflict, i.e. 

improving one of the criteria leads to a deterioration of at least one other criterion among 

the other criteria in the problem. Therefore, it is necessary to make a compromise solu-

tion that sufficiently satisfies the preferences of the decision-maker. Harry Markowitz's 

classic theory of building an optimal portfolio addresses two criteria (two functions): the 
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function of return  freturn(x), which must be maximized, and the function of risk  frisk(x), 

which must be minimized.  

Based on a detailed exposition in the dissertation research is proposed the follow-

ing modification of the classic Markowitz model (1.1):  

minx  
1

2

Tx xζ          (2.22) 

maxx μ
T
x            (2.23) 

subject to the constraints: 

|


n

i

ix

1

2 − div_target|  0,05,        (2.24) 

;1,...,1,0|| ,

1

,

0

,  


Ttxcx ti

n

i

ti

n

i

ti       (2.25) 

1

( ) 1
n

i

i

x


           (2.26) 

li  xi  ui ,          ;          .     (2.27) 

The formulated bicriteria model (2.22) - (2.27) aims at the same time to optimize 

two mutually contradictory criteria, namely to minimize risk and at the same time max-

imize profit / return. 

The advantages of the formulated optimization model (2.22) - (2.27) are the fol-

lowing: by using the constraint (2.24), the expected diversification of the portfolio is 

achieved; the constraint (2.25) ensures the robustness of the model, obliging the investor 

to fit within only the initial capital used; the constraints (2.27) set the lower and upper 

bonds of each of the assets involved in the portfolio and are relevant to the relative diver-

sification of the portfolio; equality (2.26) ensures that exactly 100% of the invested capi-

tal will be used for the assets; the formulation of relevant optimization problems, based 

on the proposal, the bicriteria model (2.22) - (2.27) enables the solutions of these prob-

lems to determine Pareto-optimal solutions, i.e. the combination of portfolio assets.  

The disadvantages of the bicriteria optimization model (2.22) - (2.27) are the fol-

lowing: the criterion (2.22) and the constraint (2.24) are nonlinear. This leads to the ex-

treme sensitivity of the solutions to any change in the input parameters. Finding a global 

optimal solution in this case is the NP hard problem [10]. Also, getting a representative 

sample of solutions across the Pareto Front is a laborious task. 

Therefore, for the above formulated multi-criteria optimization model (2.22) - 

(2.27) it is necessary to choose the appropriate approach to solve. To solve model (2.22) - 
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(2.27), a scalar approach was chosen, reformulating the model into a single criterial using 

the method of ε-constraints of Haimes et all. [11], analogous to the Markowitz model of 

mean variance (1.26) - (1.29). This method optimizes one of the criteria and transforms 

the other criteria into constraints. This results in proven weak Pareto-optimal solutions 

[19]. In the specific case, the criteria of the maximum of return (2.23) are reformulated as 

a constraint, requiring the return to be greater than or equal to a given percentage of R 

(see 2.29). The final appearance of the proposed modification of the model (1.1) and 

model (1.26) - (1.29) by adding the additional constraints (2.24) and (2.25) is: 

minx  
1

2

Tx xζ          (2.28) 

subject to the constraints: 

μ
T
x  R           (2.29) 

|


n

i

ix

1

2 − div_target|  0,05,        (2.30) 

;1,...,1,0|| ,

1

,

0

,  


Ttxcx ti

n

i

ti

n

i

ti       (2.31) 

1

( ) 1
n

i

i

x


           (2.32) 

  li  xi  ui ,          ;          .     (2.33) 

The following methodology is proposed to generate many of the Pareto front solu-

tions:  

i. A series of ten optimization problems is solved at a different percentage of the 

minimum expected return R in the constraint (2.29). In doing so, R accepts the values: 

{6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5%}. As a result, ten Pareto front 

points are generated and the investor or decision-maker is enabled to choose the appro-

priate final compromise solution. 

ii. The diversification target value is assumed to be div_target = 0,33333. 

iii. The lower bound for each asset is assumed to be 0, and the upper bound is 

taken to be the value of all capital. 

iv. The novelty in the proposed model (2.28) – (2.33) compared to the models in 

[7, 17], is taking into account the negative behavioral characteristics of the investor or 

decision-maker and ensuring robustness through the constraint (2.31) without going 

beyond the original capital. Moreover, the constraint (2.30) guarantees a sufficient degree 
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of diversification of the resulting optimal portfolio. By varying the value of R in the 

constraint (2.29), the end result is an optimal portfolio with the expected rate of return. 

2.4 A hybrid evolutionary algorithm for portfolio selection based on FFA and Pat-

tern search  

It should be noted that the formulated model (2.28) - (2.33) leads to the solution of 

a complex NP-hard problem of nonlinear programming. The traditional robust optimiza-

tion techniques [2, 3, 5] may fail to obtain the optimal solution. In order to solve the port-

folio model effectively, a hybrid algorithm for portfolio selection based on FFA and PS is 

proposed. This combines the ability to find a global optimal solution (in case the objec-

tives function is multimodal) and the precise localization of the optimum through shrink-

ing the mesh size to a predetermined solution mesh tolerance in Pattern search.  

The proposed new hybrid algorithm for portfolio selection based on FFA-PS is 

presented below as follows: 

Step 1. Determine the FFA parameters: α, 0 and . Set iteration limit – itlim. Set diversi-

fication limit – divlim. 

Set iteration counter k=0 and set diversification counter   

divcount=0. 

Step 2. Initialize fireflies' positions {P
k
(1 ) , . . . ,  P

k
(S)}, using the two- stage initialization 

strategy [12, 16].  

While ( there is improvement of at least one firefly brightness repeat): 

Step 3. For each firefly P
k
(i) find the brightest firefly it can see. 

Step 4. Calculate the new fireflies' positions and update the fireflies' swarm. Update it-

eration counter: k = k+1. Check the stopping criteria and if it is met - go to Step 6. 

End While  

Step 5. If mod (k/100) = 0, start the Pattern search procedure. 

Step 6. Show the best obtained solution to the decision maker.   

Step 7. Check the stopping criteria. If any of the stopping criteria is met - go to Step 8. 

Otherwise set a diversification search. Update the diversification counter:  

divcont = divcount + 1. 

Step 8. END. 

Applying scalarization, the robust portfolio model (2.28) - (2.33) includes one cri-

teria / single objective function. This model is a single objective model. It could be ex-

tended to a multi-objective model, taking into account the minimum transaction lots, tax 

and cardinality constraints, which exist in the real world.  
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2.5 Methodology for portfolio selection  

There are several basic stages to a portfolio selection of different assets. This dis-

sertation work proposes a generalized portfolio selection methodology that is implement-

ed by performing the following procedures, as shown in Fig. 5.  

 

 

Fig. 5 A generalized methodology for portfolio selection  

 

Chapter 3. Results of numerical experiments 

This chapter describes the numerical experiments performed on the problem based 

on the (2.28) - (2.33) model for portfolio optimization with specific constraints. Based on 

historical data, two experimental models for three and six assets have been formulated to 

research the effectiveness of the proposed hybrid algorithm for portfolio selection. 

Through two optimization approaches: Interior Point in Matlab (fmincon solver) and the 

proposed new hybrid algorithm for portfolio selection results were obtained for the two 

models and compared.  

3.1 A three-asset model and 10 years historical data  

In the first experiment, a modified Markowitz's mean variance model (2.28) - 

(2.33) is applied, to construct an optimal portfolio of French stocks, US Treasury bonds 

and deposits with a 1% constant positive interest rate. Historical returns on these three as-

sets over 10 years are used to calculate the geometric mean, the correlation matrix, and 

the covariance matrix, which served to formulate of the portfolio optimization problem as 

Selecting an extract of historical data 

Choosing a model for portfolio selection 

Determination of expected rate of return and target of diversification 

Formulation of an optimization problem 

Choosing an algorithm to solve 

Solution - portfolio with optimal combination of assets 
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a quadratic programming problem, so that the summarized expected rate of return on the 

three assets in the portfolio is not less than in advance given target value.  

The formulation of the portfolio optimization problem is: 

MIN F = [0.010616427928XBONDS

2
 + 2.(– 0.000337020935)XBONDS.XSTOCKS +  

             + 2.( –0.000000539066)XBONDS.XDEPOSITS + 0.002284457879XSTOCKS

2
 + 

             +2.0.000000462459XSTOCKS.XDEPOSITS+0.000000002090XDEPOSITS

2
],              (3.6) 

subject to:     

  μ
T
X = –0.22 XBONDS  + 0.18XSTOCKS  + 0.08456 XDEPOSITS  R  

 |


3

1

2

i

ix − 0,33333|  0,05,      

 ;1,...,1,0|| ,

3

1

,

3

0

,  


Ttxcx ti

i

ti

i

ti     

  XBONDS + XSTOCKS + XDEPOSITS  = 1 

  XBONDS , XSTOCKS , XDEPOSITS      0 

The above problem is solved 10 times for different expected rates of return in per-

centages: R = 6%, R = 6,5%, ..., R = 10,5% using incremental step of 0,5%. First the op-

timization has been carried out with help of the developed hybrid algorithm for portfolio 

selection, and after than by fmincon solver of Matlab “Optimization Toolbox” [18], by 

means of the Interior point algorithm, whose advantage is, that allows for all kinds of 

constraints.  

3.1.1 Results from optimizing a 3-asset portfolio through the proposed bicriteria 

model and using the hybrid algorithm and with the Matlab fmincon solver 

Table 9 presents the results of the numerical experiments performed with the hy-

brid algorithm. For each parameter value R from 6% to 10.5%, ten evaluations with the 

Hybrid algorithm were performed. The red solution indicates the best solution, in ad-

vance given target value of expected return for optimization of portfolio with three assets 

based on historical data for a period of 120 months or 10 years.  

Except Table 9. Results via hybrid algorithm for three assets and a 6 % returm 

№ 
Value of Objective func-

tion 

Optimal portfolio 

Bonds Stocks Deposits 

6% expected rate of return 

1 5.794066940371048e-04 0.195533308441747    0.305914684499346    0.498582406818212 

2 5.431084013674748e-04 0.159477056833486    0.370032551199147    0.470295740570779 

3 5.871732296605341e-04 0.148121541017727    0.416191315799532    0.436124992962780 
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4 6.599734985032965e-04 0.152215198424261    0.448699495334937    0.397648450327024 

5 6.051161402039595e-04 0.194374079230470    0.328854690650089    0.476588428394402 

6 5.822353927709721e-04 0.149571215636529    0.411098896797715    0.439676629466057 

7 6.626166141358330e-04 0.150578769257309    0.452484170030794    0.394181626971399 

8 6.417347482106582e-04 0.153503697558590    0.437228280942269    0.410088866107027 

9 7.333492161955965e-04 0.160118041513668    0.473496518659992    0.365081714458605 

10 5.352082093821857e-04 0.162491508733274    0.358816119183875    0.478759042850245 

 

In Fig. 6 shows trends using three assets and different expectation rates of return. 

 

 

Fig. 6 Trend for experimental model with three assets  

 

3.1.2 Results on optimizing a three-asset portfolio through the proposed bicriteria 

model and using the Matlab's fmincon solver  

The results of the optimization for all ten optimization problem with the second 

approach for the different expected rate of returns on the fmincon solver by Matlab's "Op-

timization Toolbox" are summarized in Table 10 as follows:  

Table 10. Results via Matlab's  fmincon solver 

Value of Objective 

function f 

Exp. rate 

of return  

R [%] 

Iteration 

Total objective 

function evalua-

tions 

Optimal portfolio 

Bonds [%] 
Stocks 

[%] 
Deposits [%] 

5.387437690212220E-4 6 22 98 0.168966        0.347022        0.484012 

5.388831287378297E-4 6.5 18 89 0.168262        0.348713        0.483025 

5.430593589223452E-4 7 22 94 0.161816        0.365296        0.472888 

5.640361640922369E-4 7.5 22 94 0.154267        0.392602        0.453131 

6.311263811064216E-4 8 17 76 0.151272        0.435088        0.413640 

6.403115399398162E-4 8.5 18 98 0.144184        0.445191        0.410626 

6.710914897734869E-4 9 21 118 0.144424        0.465421        0.387285 

6.821441041356491E-4 9.5 16 90 0.138080        0.464479        0.393496 

6.883647044897766E-4 10 16 84 0.130139        0.467585        0.396123 

6.959992168393732E-4 10.5 20 108 0.127702        0.469306        0.396252 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

6% 7% 8% 9% 10% 

Deposits[%] 

Bonds [%] 

Stocks [%] 

Total [%] 
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In Fig. 7 and Fig. 8 shows the optimal configurations of a portfolio with three as-

sets at different expected rates of return  

 

 

 Bonds  Stocks  Deposits 
 

 

 

     
 

Fig. 7 Optimal portfolios for expected rates of return 6% and 7,5% 

 

 

      

Fig. 8 Optimal portfolios for expected rates of return 9 % and 10,5 % 

 

 

The points obtained for the Pareto front are shown in Fig. 9. Each calculated Pare-

to-optimal portfolio is represented as a triangle located on the Pareto-surface in this case 

with coordinates 1) the risk measures (standard deviation) and 2) the expected return.  
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Fig. 9. Pareto front approximation via fmincon solver 

 

3.1.3 Comparison of obtained results for the three-asset model with the both ap-

proaches  

This section compares the results for the first model with the hybrid algorithm and 

the Matlab's fmincon solver. Table 12 presents the results of the calculations for the "120 

months, 3 assets" model, with the red highlighting is the best solution by expected rate of 

return of 6% to 10.5%. 

 

Except Table 12. Comparison of the results for the first model with the both approaches  

The best 

solution  

Value of Objective 

function 

Optimal portfolio 

Bonds Stocks Deposits 

6% expected rate of return 

Hyb. A 5.352082093821857e-04     0.162491508733274    0.358816119183875    0.478759042850245 

MATLAB 5.387437690212220е-04 0.168966        0.347022        0.484012 

6,5% expected rate of return 

Hyb. A 5.261467870846590e-04 0.162489036358221 0.352846326472330 0.483859796759362 

MATLAB 5.388831287378297е-04 0.168262        0.348713        0.483025 

 

It can be seen that in all ten evaluations with different expected rates of return, the 

Hybrid algorithm has obtained more accurate solutions than the fmincon solver. In this 

case, the differences in the value of objective function reach 1.6e-04 (see Table 12, return 

10.5%). This difference seems insignificant, but it is related to significant differences in 

the percentage of assets in the portfolio. Also, the more is the volume of investment in a 

portfolio, and the greater will be the profit/gain due to use of more precise solutions.  
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In Fig. 10 shows a comparison of the results obtained with the both approaches with a re-

turn of 10.5%. 

 

 

Fig. 10: Optimal portfolio with the both approaches and exp. rate of return 10,5%. 

 

In Fig. 11 shows the trend of the value of the objective function for the three assets 

obtained by the hybrid algorithm and the Matlab's fmincon solver over the whole interval 

of expected rates of return.   

 

 

Fig. 11: Trend of the value of objective function for the model with three assets  

 

3.2 A six-asset model and historical data for 10 years and 11 months 

In the second experiment, a modified Markowitz's mean variance model (2.28) - 

(2.33) is applied, to construct an optimal portfolio of American stocks, Japanese stocks, 

French and Swiss stocks, American Treasury bonds and 1% constant negative interest 

rate. The historical 131-month returns on these six assets are used to calculate the geo-

metric means, the correlation matrix, and the covariance matrix, which served to formu-

late of the portfolio optimization problem as a quadratic programming problem, so that 
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the summarized expected rate of return on the six assets in the portfolio is not less than in 

advance given target value.  

The experiment was complemented by a similar approach proposed by Cesarone 

et al. [8, 9]. The authors include in the portfolio optimization model the real constraints 

that no more than K assets should be contained in the portfolio (cardinal constraints). 

They also include a quantitative constraint so that each asset in the portfolio is limited at 

a certain interval. The second constraint is too strict and can be omitted to obtain an op-

timal solution of higher quality. The cardinal constraint is not introduced in the present 

dissertation and the optimization process is divided into two stages. In the first stage, the 

optimization is done with all available assets and for a certain return. Then the best K as-

sets (in this case, K = 3) are included in the second optimization stage, where the optimi-

zation problem is solved several times with different returns. Finally, a specific return 

and optimal solution is chosen. 

The formulation of the portfolio optimization problem is: 

MIN F = [0.001745X1
2
 + 2.( 0.000490 )X1.X2 + 2.( 0.000521)X1.X3 + 2.( 0.000898 )X1.X4 + 

    + 2.(0.0000003) X1.X5 + 2.(0.000367)X1.X6 + 0.002190X2
2
 +  

  + 2.(0.001883)X2.X3 + 2.(0.001306)X2.X4 – 2.(0.00000008)X2.X5 + 

  + 2.(0.001641)X2.X6 + 0.003336X3
2
 + 2.(0.002022)X3.X4 – 2.(0.0000002)X3.X5+  

  + 2.(0.001703)X3.X6 + 0.009293X4
2
 – 2.(0.00000009)X4.X5 +  

  + 2.( 0.001174)X4.X6 + 0.00000000008X5
2
 – 2.(0.00000008)X5.X6 + 

+ 0.001815X6
2
],                  (3.7) 

subject to:    

 μ
T
x =  0.01259x1 + 0.010284x2 + 0.24x3 –0.35x4 –0.084426x5 + 0.48x6  R  

 |


6

1

2

i

ix − 0,33333|  0,05,      

 
;1,...,1,0|| ,

6

1

,

6

0

,  


Ttxcx ti

i

ti

i

ti     

 x1 + x2 + x3 + x4 + x5 + x6 = 1 

 x1 , x2 , x3 , x4 , x5 , x6     0 

After this stage, only the 3 assets with the highest percentage are included in the 

new portfolio and construct a new optimization problem, which is solved in the second 

stage of optimization. 

The formulation of the portfolio optimization problem for the second stage is: 
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min f = [0.0017453940x1
2
 + 2.(0.0000002754)x1.x2 + 2.( 0.0003672134)x1.x3 +  

   + 0.0000000008x2
2
 − 2.( 0.0000000767)x2.x3 + 0.0018149142x3

2
]       (3.8) 

subject to:   

 μ
T
x =  0.011259x1 − 0.00084426x2 + 0.0048x3  R  

 


3

1

2

i

ix − 0,33333|  0,05,      

 ;1,...,1,0|| ,

3

1

,

3

0

,  


Ttxcx ti

i

ti

i

ti     

 x1 + x2 + x3 = 1 

 x1 , x2 , x3  0 

The problem was solved 10 times using a different rate of return for R = 6%, R = 

6.5%, ..., R = 10.5% in increments of 0.5%. The Matlab's fmincon solver was used by In-

terior point algorithm. 

3.2.1 Results on optimizing a six-asset portfolio through the proposed bicriteria 

model and using the Matlab's fmincon solver 

Optimization for solving the six-asset model problem is accomplished in two 

steps. In the first stage, the optimization is performed with all six assets for the expected 

rate of return. The obtained results for the first stage through the Matlab's fmincon solver 

are presented in Table 18. 

Except Table 18. Results for the 1st stage via Matlab's fmincon solver 

Optimal value of 

objective function  

R 

[%] 

iter f  

eval 
Swiss 

stocks 

French 

stocks 

Japanese 

stocks 

American 

bonds 

Deposits 

1% neg. 

int.rate 

American 

stocks 

2.2088264574732

003e-4 
6 86 802 0.171817 0.028714 0.039459 0.001748 0.557528 0.200734 

2.2459003508634

788e-4 
6.5 43 435 0.170496 0.022932 0.039854 0.001661 0.554468 0.210590 

 

For expected rate of returns R = 6%, R = 6.5%, R = 7%, R = 9% and R = 9.5%, 

the fmincon solver finds the optimal solution with the highest values of the variables:  x1 , 

x5 , x6 (Fig. 12). 
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Fig. 12 Optimal portfolios for expected rates of return 6% и 9% 

 

For returns R = 7.5%, R = 8%, R = 8.5%, R = 10% and R = 10.5%, the fmincon 

solver finds the optimal solution with the highest values of the variables x1 , x3 , x6 ( Fig. 

13). The final message of the solver in these cases is: “Possible local minimum. The con-

straints are satisfied. The fmincon solver stopped because the current step size is less than 

the default step size tolerance value and the constraints are satisfied within the constraint 

tolerance default value”.  

     

Fig. 13 Optimal portfolios for expected rates of return 8,5% и 10,5% 

 

In view of the obtained values for the objective function, it can be assumed that 

the obtained solutions by fmincon for returns R = 7,5%, R = 8%, R = 8,5%, R = 10% and 

R = 10,5% are only local optimal. For this reason, in the second stage of optimization, a 

portfolio is constructed, including the Swiss stocks, Deposits 1% negative interest rate 

and American stocks, i.e. variables x1, x5, x6.  
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The Hybrid algorithm also shows that the variables x1, x5, x6 have the highest val-

ues. Considering only the variables with the highest values in the ten best solutions found 

with the Hybrid algorithm (Table 19), variable x1 participates 5 times, variable x2 partici-

pates 4 times, variable x3 participates 3 times, variable x5 participates 10 times and the 

variable x6 participated 8 times. As a result, it is confirmed that the portfolio in the se-

cond stage must contain the indices: Swiss stocks, Deposits 1% negative interest rate and 

American stocks (SP 500 USA), i.e. variables x1, x5, x6. 

 

3.2.2 Results on optimizing a six-asset portfolio through the proposed bicriteria 

model (2.28) - (2.33) and using the Hybrid algorithm 

This section presents the results of the tests performed on the second model with 

the Hybrid Algorithm (see Table 19), with the red indicating the best solution, with the 

expected rate of return in the interval (6-10.5) % for optimizing the portfolio with six as-

sets. For each different return value, six evaluations were performed using the Hybrid al-

gorithm. 

Except Table 19. Results for second model via Hybrid algorithm, the red is the best solution, 

with a return of 6% to 10.5% and 6 evaluations.  

№ 
Value of ob-

jective func-

tion 

Optimal portfolio 

Swiss stocks 
French 

stocks 

Japanese 

stocks 

American 

bonds 

Deposits 1% 

neg. int.rate 

American 

stocks 

6% expected rate of return  

1 
16.68187620

659e-04    

0.1367074361

36592    

0.0128230481

96617    

0.353371471

013417    

0.09344566

3495940    

0.0053625634

16308    

0.39733363

0693842 

2 
5.829186983

791690e-04    

0.0738327990

08721    

0.2553126124

69978    

0.029745219

454827    

0.00084164

3904796    

0.3851961999

12611    

0.25797672

3120115 

3 
10.26571748

e-04    

0.5149368327

94863    

0.2312382915

11671    

0.012675074

571854    

0.01645487

2848148    

0.0429553483

99033    

0.18262529

5735171 

4 
5.829169994

432790e-04    

0.0738501685

60546    

0.2553397174

75985    

0.029722985

266706    

0.00084184

1039746    

0.3851935914

59225    

0.25796332

8059998 

5 
15.04299253

011e-04    

0.0819612343

29811    

0.5309551487

12454    

0.070369337

813015    

0.02813930

1566989    

0.0487414303

39631    

0.24005495

9214900 

6 
5.828098768

309748e-04    

0.0738619742

76137    

0.2553835342

04454    

0.029564277

267465    

0.00091453

8076972    

0.3851360968

66381    

0.25797069

6123819 
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3.2.3 Comparison of obtained results for the six-asset model with the both ap-

proaches 

This section compares the results for the second model with the hybrid algorithm 

and the Matlab's fmincon solver. Table 20 presents the results of the expected rate of re-

turns in the interval (6-10.5) %. 

 

Except Table 20. Results for the1st stage via Matlab's fmincon solver and Hybrid algorithm  

 
Value of ob-

jective func-

tion  

Optimal portfolio 

Swiss 

stocks 

French 

stocks 

Japanese 

stocks 

American 

bonds 

Deposits 

1% neg. 

int.rate 

American 

stocks 

6 % expected rate of return 

Hyb.A 5.82809877e-4 0.073862 0.255384    0.029564    0.000915    0.385136    0.257971 

MATLAB 2.20882646e-4   0.171817 0.028714        0.039459        0.001748        0.557528        0.200734 

6,5 % expected rate of return 

Hyb.A 5.9857358e-04 0.080005    0.071475    0.110320    0.000285    0.368099    0.367313 

MATLAB 2.24590035e-4 0.170496 0.022932        0.039854        0.001661        0.554468        0.210590 

 

 

When comparing the results, it can be seen that better values for the minimum of 

the objective function are obtained by means of the Hybrid algorithm. It is more accurate 

in calculations than the Matlab's fmincon solver in 6 out of 10 evaluations with different 

expected rates of return. The difference in favor of the Hybrid Algorithm is increasing as 

the desired rate of return increases (see Table 20, return 9.5%, 10%, 10.5%). 

Stage 2: In the second stage of optimization, an optimal portfolio is calculated us-

ing the modified Markowitz's mean variance model, comprising three types of assets: 

Swiss stocks, Deposits 1% constant negative interest rate and American stocks (SP 500 

USA). Each of the ten tests with different rates of return, and the six corresponding eval-

uations were performed by the Hybrid algorithm. As in the other tests described above, 

the Matlab's fmincon solver found similar solutions, but with less precision. 

Figures 14 and 15 present the results for optimal portfolios with expected rates of 

returns of 6%, 7.5%, 9% and 10.5% obtained through the Matlab's fmincon solver. 

 

 

 

 



K.Stoyanova-Chokova: Models and methods for optimizing and managing portfolio using time series  

 

 

21 

 

 Swiss stocks  Deposits 1% neg. int. rate  American stocks 
 

     

Fig. 14 Optimal portfolios for expected rates of return 6 % и 7,5 % 
 

     

Fig. 15 Optimal portfolios for expected rates of return 9 % и 10,5 % 

 

In all 10 cases considered for different expected rates of return, the Hybrid algo-

rithm received more accurate solutions compared to the Matlab's fmincon solver. The dif-

ference in the values of the objective function reaches 4,289f-04 at R = 6,5% (see Table 

21 and Table 22). 

Except Table 21. Results for the 2nd stage via Matlab's fmincon solver 

Value of objective func-

tion f 
 R [%] Iteration 

Total evalu-

ations of ob-

jective func-

tion  

Optimal portfolio 

Swiss stocks 

Deposits 

1% neg. 

int. rate 

American 

stocks 

7.570803525333860E-4 6 21 138 0.255126        0.187342        0.546048 

7.418840314847011E-4 6.5 21 143 0.261102        0.189784        0.540048 
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Except Table 22. Results for the 2nd stage via Hybrid algorithm  

(The best of 6 solutions obtained for any R value) 

Value of objective func-

tion f  
R [%] Iteration 

Total evalua-

tions of ob-

jective func-

tion 

Optimal portfolio 

Swiss stocks 

Deposits 

1% neg. 

int. rate 

American 

stocks 

3.454245734754128e-04    6 100 4000 0.17643308 0.4546998    0.3663634 

3.129365174569988e-04 6.5 100 4000 0.16513090    0.4835514    0.3503956 

 

3.3 Implementation of the proposed bicriteria model and hybrid algorithm by 

portfolio management  

When choosing an investment policy, the goals of the investor and the volume of 

investments are defined, the types of assets are evaluated and the most favorable ones are 

selected, taking into account the factors of return and risk. Forming a securities portfolio 

involves a two-step optimization process. In the first stage, the specific assets in which 

the investment will be invested are determined. This is clearly illustrated in the disserta-

tion with the 6-assets experimental model. After the first optimization phase, the three 

most profitable assets were identified to be included in the final portfolio and the remain-

ing three assets were rejected. In doing so, the diversification of the portfolio is taken into 

account in order to maximize the expected return. In this way, by applying the formulated 

bicriteria model and the Hybrid algorithm developed, the decision maker is significantly 

assisted in the selection of the final assets in the portfolio (Fig. 16). 

 

Fig. 16. Portfolio management 

 

Portfolio 
management 

optimization 

asset selection 

proportion in the 
portfolio 

models 

decision 
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In the second optimization stage, the proportions of invested capital for the select-

ed assets are calculated. Again, the decision-maker is substantially assisted in their deci-

sions, as they are provided with optimal solutions for 10 different investment policies - 

with an expected rate of return in the interval [6%, 10.5%] in 0.5% increments. When 

making the investment, the optimal quantities of each asset type are purchased according-

ly.  

An initial portfolio formed after a given period of time may not be optimal for the 

investor.  

After the portfolio is formed, a certain time interval is usually waited, after which 

the effectiveness of the portfolio is evaluated. At this stage, the yield from the portfolio is 

calculated, and the result obtained is compared with the selected benchmark. If the effec-

tiveness of the portfolio is positive, it will keep the portfolio so formed for a new period 

of time. A new effectiveness evaluation is then carried out. If the portfolio effectiveness 

is negatively assessed, the portfolio is re-evaluated, which is associated with changes in 

the investment objectives and a possible re-selection of assets. The formulated bicriteria 

model and the proposed hybrid algorithm can be used cyclically in the portfolio man-

agement process. Their ability to work with a portfolio of six assets has been proven with 

a time series of 131 months (almost 11 years). This leads to the expectation that the mod-

el and algorithm can be applied to solve real portfolio optimization problems.  

3.4 Summary  

Optimization by population of fireflies of the two experimental models was real-

ized with the hybrid algorithm for portfolio selection developed in the thesis, based on 

Yang's FFA method from 2007 and the Hook&Jeeves's Pattern Search method from 

1961. 

Throuth used two optimization approaches Interior point by nonlinear optimiza-

tion with constraints in Matlab and the created hybrid algorithm, were tested different op-

timization problem, namely 30 portfolio optimization tasks were solved. The effective-

ness of the approaches was evaluated by the following criteria: number of iterations, 

number of objective function evaluations and time for which the evaluations were per-

formed. The size of the evaluation tasks varied. In the first experiment, ten calculations 

for the expected rate of return in interval (6-10.5) % in increments of 0.5, and in the se-

cond one, six evaluations, identical to the above expected returns. As a result, it was 

found that the Hybrid algorithm for portfolio selection solved the tasks of the two exper-
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iments more accurately than the result obtained through the Matlab's fmincon solver and 

reached the final solution in a relatively short time. It provides important information to 

decision-maker in the selection of assets to participate in the portfolio, taking into ac-

count predefined criteria. In this way, the financial analyst, the manager or other deci-

sion-maker is assisted in deciding which assets to exclude/include in the portfolio. At the 

next optimization stage, the exact proportions of the assets included in the portfolio are 

determined. Obtaining high accuracy results is related to adjusting the parameters in the 

algorithm. 
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Conclusion 

The dissertation research is devoted to problems, related to the development of 

new, highly efficient mathematical models and methods for portfolio optimization and 

management, which is not only of scientific but also practical interest for the exchanges, 

banks, insurance and investment companies as well as the state for the functioning of the 

financial system. 

The study uses mathematical models for decision-makers in a stable economic sit-

uation, while extending the model of classical finance theory that the decision-maker 

seeks only to maximize its utility. In real life, decision makers face a number of con-

straints: cardinal, transaction costs, turnover constraints, commercial, etc., which are de-

scribed in detail. The behavioral factors of the decision-maker are also influenced, as the 

actions of the investors/managers/decision-maker sometimes deviate from the rational.  

Both optimization approaches – Interior point in the Matlab and the created hybrid 

evolutionary algorithm for portfolio selection make possible the work with time series of 

historical real data indexes over 10 years of all available international public information.  

Numerical calculations were performed for two experimental models with differ-

ent numbers of assets participating in the portfolio, and with different series of output real 

data is able to test the feasibility of the new hybrid algorithm for portfolio optimization 

and be able to compare the two approaches to solving the problem for portfolio optimiza-

tion with constraints.  

From all conducted experiments, it can be concluded that both approaches are ap-

plicable to the nonlinear optimization of a portfolio with constraints.  

A detailed examination of the results of the two experimental models shows that 

the Hybrid evolutionary algorithm easily overcomes the disadvantages of the time series 

method for significant computational difficulty, another advantage is its efficien-

cy/accuracy with which it finds optimal solutions. It is more accurate in calculations than 

Matlab's fmincon solver. 

In conclusion, the created hybrid algorithm for portfolio selection with constraints 

is applicable and effective for solving a wide range of tasks in real financial processes. In 

this way, the working hypothesis of the present work was confirmed that evolutionary al-

gorithms can be successfully applied in the optimization of portfolio with constraints. 
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Solving larger-scale real-world problems could be a direction for future research that will 

enrich the research area.  

The obtained and described results in the dissertation research are presented and 

published in a total of seven publications, one of which is a book chapter, four of which 

have been reported at international conferences. 
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Contribution summary 

 

As a result of the research carried out in this paper, have been made the following scien-

tific and applied contributions:  

 A bicriteria optimization model for portfolio selection has been formulated, 

which is a modification of the Markowitz's mean variance model  

 A summary methodology for portfolio selection is proposed. 

 A Hybrid evolution algorithm is created based on FFA and PS. The advantage 

of the proposed algorithm is the accuracy in the calculation of the optimal solution and 

the relatively short time to solve the optimization problems. The polynomial 

computational complexity of the Hybrid evolutionary algorithm allows it to be 

successfully used to solve large-scale optimization problems. 

 On the basis of the proposed bicriteria optimization model, corresponding 

tasks are formulated, which are solved by the created Hybrid algorithm and by the 

standard Matlab's fmincon solver. The obtained results confirm the working capacity of 

the Hybrid algorithm. 

 A set of software modules of Matlab has been developed to implement the 

Hybrid algorithm to solve the problem of portfolio optimization while minimizing risk, 

with different difersification and expected rates of return.  
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