
Bulgarian Academy of Sciences

Institute of Information and Communication Technologies

Alexander Nikolaev Popov

Modeling Lexical Knowledge for Natural Language
Processing

Doctoral Thesis

Doctoral Program: Informatics

Professional Area: 4.6 Informatics and Computer Science

Supervisor: Kiril Simov

Sofia, 2018

Contents

1 Introduction 1

1.1 Importance of the Topic . 1

1.2 Goals and Tasks of the Thesis . 4

1.3 Structure of the Thesis . 5

2 Problem Definition 6

2.1 Part-of-Speech Tagging . 6

2.1.1 Formal Definition . 8

2.1.2 Data sets . 8

2.2 Word Sense Disambiguation . 9

2.2.1 Formal Definition . 10

2.2.2 Variants of the WSD task 11

2.2.3 Data sets . 12

2.3 Word Similarity and Relatedness 12

2.3.1 Datasets . 13

3 Background and Related Work 14

3.1 Explicit Models of the Lexicon . 14

3.1.1 Word Sense Inventories . 14

3.1.2 WordNet . 15

3.1.3 Other Knowledge Resources 19

3.2 Word Sense Disambiguation – an Overview 20

3.2.1 Supervised Methods for WSD 21

3.2.2 Knowledge-based Word Sense Disambiguation 23

3.2.3 Applications of WSD . 27

3.3 Neural Networks for NLP . 30

3.3.1 Artificial Neural Networks for NLP 30

3.3.2 Neural Network Language Models 34

3.3.3 Neural Networks for Sequence Labeling 42

i

3.3.4 Multi-task Learning with Neural Networks 47

3.4 Summary and Motivation . 48

4 Recurrent Neural Networks for Part-of-Speech Tagging 50

4.1 Word and Suffix Embeddings for Bulgarian 50

4.2 Deep Learning Architecture for Part-of-speech Tagging 52

4.3 Experiments and Results . 53

4.3.1 Setting the Size of the Word Embeddings 54

4.3.2 Suffix Embeddings – Expressive Power and Size 55

4.3.3 POS Tagging with Word and Suffix Embeddings 55

5 Graph-based Modeling of Lexical Semantics 57

5.1 Improving KBWSD on Bulgarian Data 58

5.1.1 Gold Data and the Inference of New Relations 58

5.1.2 Experimental Setup and Results 61

5.2 KBWSD with Inferred Relations on English Data. Analysis of the

WN Relation Types . 64

5.2.1 Evaluating the Original WordNet Relations 65

5.2.2 Inference over WordNet Relations 67

5.2.3 Analysis of the Semantic Relations from eXtended WordNet 68

5.2.4 Analysis of the Syntax-derived Relations 69

5.2.5 Further Explorations of Relation Construction 70

6 Distributed Representation of Words, Lemmas and Senses Based

on Lexical Resources 75

6.1 Learning and Evaluating Embeddings from Different Knowledge

Graphs . 76

6.2 Increasing the Density of the Knowledge Graph Through Filtering

with Grammatical Role Embeddings 79

6.2.1 Learning Grammatical Role Embeddings from Parsed Corpora 80

7 Recurrent Neural Networks for Word Sense Disambiguation 86

7.1 Neural Network Architectures for WSD 86

7.1.1 Direct Classification of Word Senses 87

7.1.2 Learning Lemma, Synset and Context Embeddings in a

Shared Space . 89

7.2 Experiments and Results . 92

7.2.1 Training and Evaluation Data 92

ii

7.2.2 Experimental Results . 92

7.3 Discussion and Further Work . 96

8 Multi-task Learning with Recurrent Neural Networks 98

8.1 Combining a WSD Classier and a Learner of Context Embeddings 99

8.1.1 Analysis of the Results . 101

8.2 Combining POS Tagging and WSD 103

8.3 Discussion and Further Explorations 104

9 Summary and Outlook 106

9.1 Summary . 106

9.1.1 List of Publications Related to the Thesis 110

9.1.2 Approbation of the Results 117

9.1.3 Key Scientific and Applied Scientific Contributions 119

9.2 Outlook . 122

Declaration of Originality 126

Acknowledgments 127

Bibliography 127

Appendix A List of Tables 141

Appendix B List of Figures 145

Appendix C List of Abbreviations 147

iii

Chapter 1

Introduction

1.1 Importance of the Topic

Modeling the lexicon of natural languages is a task with long-standing importance

in a range of disciplines that study the principles through which linguistic sys-

tems enable communication among humans. Lexical knowledge has been given

a cornerstone role in many models within theoretical linguistics. For instance,

most of the formal grammars that attempt to explain the mechanisms of linguistic

understanding and production rely heavily on the lexicon for coordinating the

different levels at which meaning operates: syntax, semantics, discourse infor-

mation. Lexical Functional Grammar (LFG; Dalrymple (2001)), Head-driven

Phrase Structure Grammar (HPSG; Pollard & Sag (1994)), Conceptual Semantics

(Jackendoff, 1992) – all of these formalisms and others attach a high degree of

importance to meaning carried by lexical items and to the way they combine in

more complex structures.

Computational linguistics and natural language processing (NLP) have in-

evitably followed theoretical linguistics in its attempt to represent lexical knowl-

edge, be it for the purpose of building computational models that shed light on the

operations of language or in order to solve practical problems through automated

language processing systems. Even when no attempt is made to represent lexical

knowledge explicitly, it is already implied in the formalisms that are utilized in

those fields. For instance, syntactic parsers work with rigorously defined structures

that are provided by linguistic theory and they also need training data annotated

according to theoretical specifications. Already in those specifications there are

built-in assumptions about the lexicon, even when they have to do merely with

1

the morphosyntactic restrictions that operate on words in sentences. But the

lexicon can contain much richer information. Two different words with the same

morphosyntactic characteristics can determine very different sentence or phrasal

patterns: in terms of syntactic structure, semantic valency, admissible collocations,

etc. Increasingly, it is lexicon entries that are seen as the locus of this type of

information, which is utilized by numerous NLP applications performing tasks such

as: word sense disambiguation (Navigli, 2009), entity linking (Moro, Raganato,

& Navigli, 2014), machine translation (Vickrey et al., 2005), lexicalized syntac-

tic/semantic parsing (Collins, 2003; Giuglea & Moschitti, 2006), word similarity

calculation (Agirre, Alfonseca, et al., 2009), question answering (Moldovan & Rus,

2001), information retrieval (Stokoe et al., 2003), etc.

There are two broad approaches to modeling lexical knowledge in NLP, which

are certainly not mutually exclusive and do get combined in some cases. One line

of work attempts to formalize the lexicon according to a predefined framework.

Such models, like HPSG, have the advantage that they provide descriptions

which comply with certain specifications and can be used according to well-

understood schemas: in order to fill in logical structures, make inference, check

the well-formedness of linguistic expressions, etc. However, the detailed data

structures that are used in formalisms of this kind are usually expensive and slow

to build, especially when it comes to lexicons, which often need to specify tens of

thousands of entries in order to be effective. There are other detailed symbolic

models, apart from lexicalized grammar formalisms, that focus on other aspects

of lexical knowledge. Such are, for instance, WordNet (Fellbaum, Christiane,

1998), FrameNet (Baker et al., 1998), VerbNet (Schuler, 2005), etc., i.e. resources

that aim to describe the lexical semantic aspects of a language. Initiatives like

WordNet have their origins in psycholinguistic research based on the assumptions

that the relations between concepts and the overall semantic network structure of

the lexicon are major factors for the construction of meaning in the human mind.

The assumption has since been successfully explored in NLP and this is the reason

for the continued development of resources of this kind across languages. With this

kind of symbolic modeling, meaning is found in the relations that hold between

lexical items, rather than in the entries for the items themselves. The creation

and maintenance of such semantic networks is rather costly and time-consuming

as well, but it provides yet another way to model interactions between words in

natural language.

2

The second approach is oriented toward a more probabilistic and fuzzy rep-

resentation of lexical information, as opposed to the categorical features and

relations used in symbolic frameworks. Research initiatives such as Distributional

Semantics seek to model the properties of linguistic items on the basis of when and

how often these items are used. This is a data-intensive effort whose results are

based on the analysis of large, representative corpora, so that good approximations

of the actual distributions of the linguistic items can be obtained. Under this

approach, models of meaning are induced automatically from the data, rather

than through introspection and top-down designs on the part of the researcher.

While the top-down way of lexical modeling offers rich and easily interpretable

representations, for the creation of which no large amounts of data are needed, it

is prone to overemphasizing or deemphasizing phenomena that are not covered by

the limited data, in addition to being sometimes prohibitively expensive to apply

in actual analysis (due to the need for large annotation efforts involving trained

experts).

The two rough approaches outlined above can clearly complement each other

in different ways. Some linguistic structure is certainly necessary in order to

explain the more complex relations that arise in natural language and to go

beyond mere statistical co-occurrence. But this kind of theoretical analysis can

be fruitfully augmented by information that is hard to formalize efficiently (in

the sense of writing rules and formal descriptions): statistical counts of syntactic

structure distribution, collocation patterns, degree of distributional similarity,

etc. Moreover, there already are methods to generalize higher-order linguistic

principles from raw data and incorporate them back into theoretical descriptions.

The same applies in the other direction as well – theoretical structures can be used

to produce data for the purpose of obtaining distributional models. Since language

is a system that can be analyzed on multiple levels and since those separate

levels of analysis interact strongly with each other, it is only natural that lexical

information encoded in words and phrases should be rich, structured, diverse and

context-sensitive. Thus, combining theoretical and statistical views of the nature

of lexical knowledge is a path worth exploring and likely to yield valuable results.

Models that succeed in capturing the wealth of linguistic information carried by

the lexicon can help in automatically modeling linguistic structure at multiple

levels. Such knowledge in turn should allow for better applications that rely on

text analysis, more advanced feature generation for machine learning systems,

perhaps even theoretical insights based on big data analytics.

3

1.2 Goals and Tasks of the Thesis

This work was undertaken in conjunction with a project for the construction of a

Bulgarian version of the WordNet lexical resource and for its use for performing

word sense disambiguation in running text. That work was partly situated in

a project for building machine translation (MT) systems incorporating deeper

linguistic analytical capabilities. Since the MT systems under development were

covering both the Bulgarian-to-English and English-to-Bulgarian directions of

translation, the research was focused on both languages in parallel. This has led,

in the course of my work, to engaging with linguistic resources in both languages,

and with such resources that are more often than not related to WordNet. Thus,

modeling lexical knowledge in the dissertation is very much assuming the WordNet

model as a starting point.

The general goals of the dissertation are the following:

• To explore WordNet as the basis for solving lexical analysis tasks for NLP

and, if possible, to enrich its semantic model.

• To explore different automatic methods for solving one primary lexical

analysis task – word sense disambiguation (WSD).

• To develop distributional models of lexical knowledge that also incorporate

knowledge derived from theory.

• To explore different aspects of lexical knowledge, how they can be encoded

and what is the interaction between them (e.g. when performing in parallel

several kinds of lexical analyses on the same piece of text).

These overarching goals are reflected in the following list of focused tasks that

I attempt to solve in this thesis:

1. Enhancing the WordNet semantic network for the purpose of knowledge-

based word sense disambiguation.

2. Designing and implementing a neural network architecture for sequence-to-

sequence annotation.

4

3. Applying the neural architecture to the task of part-of-speech tagging;

experimenting with distributional morphosyntactic models as a source of

features for learning.

4. Adapting the neural architecture for word sense disambiguation.

5. Deriving different distributional lexical models based on enrichments of the

WordNet semantic network; testing the models on tasks such as knowledge-

based and supervised WSD and similarity/relatedness calculation.

6. Implementing neural systems for multi-task learning in order to test whether

and to what extent different aspects of lexical knowledge interact with each

other.

1.3 Structure of the Thesis

The dissertation is structured as follows. There is an introduction, followed by

seven chapters and a conclusion. It consists of 145 pages. The introduction

outlines the topic and the main goals and contributions of the dissertation. It

is followed by a chapter that defines formally the relevant tasks and by another

chapter that provides an overview of previous work on the same and related

topics. The following five chapters constitute the main part of the dissertation.

Chapter 4 describes a solution to the task of POS tagging. Chapter 5 presents

work on enriching the structure of a semantic network resource (WordNet) and

evaluating the new networks with regards to knowledge-based WSD. Chapter 6

extends this line of work to training distributed representation models of words

and word senses on the basis of such semantic networks. Chapter 7 presents

two alternative solutions to the task of WSD. Chapter 8 explores multi-task

learning with hybrid architectures that combine the previously discussed tasks.

The conclusion briefly recapitulates the methods for modeling lexical knowledge

covered in the preceding chapters, as well as the significant results that are

reported. It also contains: a list of the author’s publications related to the thesis;

information about academic presentations and projects related to the approbation

of the results; key contributions and outlook to future work. A declaration of

originality of the results is enclosed, followed by a list of the tables, a list of the

figures and a bibliography of the referenced works. Sources are cited in the thesis.

5

Chapter 2

Problem Definition

This chapter provides definitions of the problems set out before the thesis. Each of

the tasks presented serves as a testing ground for the hypotheses explored in this

work, as they are directly related to questions of representing lexical knowledge

about linguistic items. The problems are first described in a non-formal manner,

together with intuitive examples for illustration. Then a formal definition is given,

and finally the specific linguistic resources in use are discussed, as those play a

major role in constraining the problem definition (due to practical circumstances,

such as dictionary size, training data coverage, etc.). This paves the way for

the next chapter, which introduces important related work on automatic lexical

analysis in NLP.

2.1 Part-of-Speech Tagging

One of the most general characteristics of lexical items is their part of speech

classification. Lexical items grouped under the same part of speech category

share important commonalities: they are likely to appear in the same positions

in particular syntactic structures, they are often morphologically alike (in terms

of their constituents and the grammatical features they bear), they also tend to

share some relatively abstract conceptual features (e.g. nouns tend to refer to

things, or when not doing so, to present processes, events and other phenomena

as more thing-like).

There is no single way to organize the lexicon of a language into POS categories.

Different criteria have been devised by linguists and languages themselves differ

6

in their POS repertoires. Moreover, the shape of the lexicon is also determined by

the level of granularity at which POS categories are analyzed – a more fine-grained

approach will yield a greater number of POS tags (e.g. verbs in a language can

be analyzed into separate categories, such as auxiliary, modal, etc., or lumped

together in one broad category ”VERB”; further sophistication can be introduced

by adding grammatical categories, such as person, tense, number, to the definition

of POS categories). In the context of NLP, deciding what POS categories to

include in a lexicon and how granular they should be depends largely on what that

information will be used for. POS tagging often is configured as one task along a

pipeline of processing modules, each dependent on the preceding ones. Syntactic

parsers, for instance, rely strongly on POS tags, regardless of whether they are

based on probabilistic rules of classification techniques. In such an application,

fine-grained POS tags can be central markers of what a correct analysis would

look like (for instance, information about grammatical categories like person and

number can signal coordination between words occurring far from each other in

a sentence). In other applications, however, more coarse-grained POS analysis

might be sufficient – in WSD, to give an example that is relevant to this work, too

fine-grained distinctions between POS tags might in fact hinder generalization.

Regardless of how granular the analysis is, there is one crucial distinction that

obtains in all available POS tag sets. This distinction is between closed class (also

called ”function” or ”grammatical”) words and open class words (sometimes called

”content” or ”lexical” words). The former (determiners, prepositions, conjunc-

tions, etc.) admit new members very rarely and express abstract and/or highly

grammaticalized concepts, while the latter (nouns, verbs, adjectives, adverbs)

categories are renewed constantly, with new members being added or falling out of

use all the time. This aspect of the lexicon is important with regards to another

of the major tasks under investigation in this work – word sense disambiguation.

Closed class words typically exhibit a lower degree of ambiguity, unlike open class

words. It is often the case that a word form may be ambiguous not simply with

regards to the possible word senses it can select, but also with regards to the ways

it can be analyzed in terms of POS categories. For instance, ”tan” in English

may be used as a noun, verb or adjective. Here are three of its possible uses (the

glosses are supplied from WordNet): (noun) a browning of the skin resulting from

exposure to the rays of the sun; (verb) treat skins and hides with tannic acid so

as to convert them into leather; (adjective) of a light yellowish-brown color. This

kind of ambiguity means that accurate POS tagging is of major importance for

7

the subsequent correct disambiguation of word senses and illustrates how separate

aspects of lexical knowledge interact with each other (in this case, POS category

and conceptual meaning). Therefore, one could argue that a coarser POS tag set

would be preferable when the tags are to be used by a WSD system, since the

coarseness is likely to lead to higher precision of the POS annotation.

2.1.1 Formal Definition

Let us give the task a formal specification. By POS tagging we will mean the

procedure that assigns a label pi ∈ P to each word in a text T. Or in other words,

finding a mapping A such that:

A(wi) = pj

where:

• wi ∈ T = (w1, w2, ..., wn)

• pj ∈ P

T is the text that is to be POS tagged (hence it is important that the words in it

appear in a sequence) and P is the tag set from which the POS labels are drawn.

We want A to give us a label for each and every one of the words in T.

2.1.2 Data sets

As already discussed, there can be big variations between different POS tag sets.

This work is going to present results on data for the Bulgarian language, more

specifically the BulTreeBank POS tagged corpus (Simov & Osenova, 2004), using

a medium-coarse-grained tag set of 153 labels (the finest-grained tag set has 680

labels, though only 581 are attested in the corpus; Simov et al. (2004)). The

corpus contains about 38,000 POS-tagged sentences. In the final part of the

dissertation, where WSD and POS are solved in parallel, I use the SemCor corpus

for English (Miller et al., 1993). That corpus is a subset of the Brown corpus,

which is tagged with a 87-label tag set (Kucera & Francis, 1982); a simpler tag

set of just 12 POS categories is used for that experiment (Petrov et al., 2011).

8

2.2 Word Sense Disambiguation

Ambiguity is ubiquitous in human languages. It is found at multiple levels of

analysis, but perhaps it is most pronounced with regards to the lexical senses that

words select when used in context. As already discussed in the previous section,

a great number of the open class words in a language exhibit a degree of lexical

ambiguity. For instance, consider these sentences:

(1) The bat is a nocturnal animal.

(2) He swung the bat with all of his strength.

The two objects referred to in (1) and (2) are clearly very different. That the

same word form is used to refer to them both is a coincidence in the language.

Humans are very good at making such distinctions and can very effectively pick

on clues from the surrounding context. In the case of (1) and (2) probably even

a relatively simple algorithm that has access to good dictionary descriptions of

the separate senses of the word can distinguish between the two (e.g. by counting

how many of the words in the context appear in the dictionary definition of a

particular sense, which is in practice the popular Lesk algorithm (Lesk, 1986)).

But lexical ambiguity comes in many forms:

(3) The cows have been grazing much better and gaining weight lately.

(4) Three pairs of humpback cows and calves were spotted off the shore last month.

(5) He cows his opponents with displays of rhetorical mastery.

The word form cows in these sentences bears three distinct meanings: (3)

mature female of mammals of which the male is called ‘bull’; (4) the female of

certain other large animals, for example elephant, rhinoceros, whale, or seal; (5)

cause (someone) to submit to one’s wishes by intimidation1. Even if we were to

lemmatize the text, that is analyze the word forms to their dictionary forms, that

would not make the lexical distinction apparent on the surface (the lemma of

all instances of cows above is cow). It would be of help if we could successfully

perform POS tagging, which would identify the instances in (3) and (4) as nouns

and the instance in (5) as a verb. And since there is only one word sense of

cow as a verb (namely, to scare somebody into submission), that method would

disambiguate at least one of the uses.

1Source: https://en.oxforddictionaries.com/definition/cow

9

But distinctions such as that between the instances in (3) and (4) cannot be

dealt away with so easily. Moreover, here the difference in meaning is more subtle

than that demonstrated in (1) and (2); the senses in (3) and (4) are actually

polysemously related, rather than just coincidentally sharing the same surface

expression. More concretely, the sense in (4) seems to be a generalization of that

in (3), but in order to infer that the more general sense is in use, one has to have

access to multiple bits of knowledge: to what species of animals are cow and calf

applicable, what are the natural habitats of these animals (as opposed to that of

oxen), which of them are typically ”spotted”, what does ”humpback” mean, etc.

Questions of granularity are central to WSD as well, one would argue even more

so than to POS tagging. The word sense in (3), for instance, can be subsumed

under the one in (4) and that would facilitate the task significantly, but there

would also be a degree of information loss as well.

As briefly demonstrated, language-theoretical issues are central to the definition

of the WSD task. There are thus multiple ways distinctions in meaning can be

defined and motivated, at varying magnitudes. This work assumes that word

senses can be identified as separate linguistic entities and grouped together with

relation to word forms – into dictionaries or other resources. There are lines

of research in semi-supervised WSD wherein senses are inferred from data, but

this approach does not provide a common lexical framework for investigating the

lexicon and therefore I am not going to touch upon it in the thesis.

2.2.1 Formal Definition

Formally, by WSD we will mean the task of finding a mapping A such that2:

A(wi) = sjwi

where:

• wi ∈ T = (w1, w2, ..., wn)

• sjwi
∈ (s1wi

, s2wi
, ..., skwi

) = SensesD(wi)

• D = (SensesD(w1), SensesD(w2), ..., SensesD(wl))

2This formalization follows relatively closely Navigli (2009).

10

As with POS tagging, T is the text we are working with. However, for each word

in T that has an entry in a dictionary D there can be k distinct corresponding

word senses, with k not being fixed to a specific positive number. That is, in

WSD there is no single tag set which is used for classifying all the words in the

text, but each word found in the dictionary has its own tag set. This makes WSD

in fact a collection of classification tasks. Note that here we assume that A selects

only one pertinent word sense, but a system can be configured to select multiple

senses, with different or identical degrees of certainty.

2.2.2 Variants of the WSD task

There are two widely adopted variants of the WSD task, which is reflected in the

popular Senseval/SemEval competitions. One is the lexical sample WSD task,

where a system is required to disambiguate a specific subset of the open class

words per sentence (typically just one of them). The other variant is the all-words

WSD task, where all open class words (or those that appear in a dictionary) are

the target of disambiguation. As a demonstration of the difference between the

two, let us look at one of the earlier examples once again:

(6) He cows his opponents with displays of rhetorical mastery.

In the lexical sample task only one of the words would be selected for disam-

biguation. It could be any of the open class words, but let us say that ”displays” is

that word. In WN, the lemma ”display” is linked to 6 nominal senses and 2 verbal

ones. A system solving this task would then need to select one of these options

for this particular context. Typically, such systems are trained against separate

data sets per lemma – each sentence in them contains word sense annotations

only of that particular lemma and nothing else. With the all-words task, on the

other hand, all open class words in the sentence would typically be selected for

classification: ”cows”, ”opponents”, ”displays”, ”rhetorical”, ”mastery”.

The first variant is easier with regards to gathering training and evaluation

data, since much less human annotation needs to be done in preparation. The

all-words task requires much larger amounts of data, since systems are expected

to work with the full lexicon (or an approximation of it). This work will focus

entirely on the all-words task – because it is more challenging and because most

downstream applications that rely on the output of WSD systems need to get this

kind of lexical information about all open class words.

11

2.2.3 Data sets

The datasets that I use are as follows. For training supervised systems: SemCor

(Miller et al., 1993) is used for training on English data, it contains roughly

360,000 words from the Brown corpus, about 226,000 of which are tagged with

WordNet senses (Miller et al., 1993). For development and evaluation, the following

datasets are used: Senseval-2 (2283 sense annotations of nouns, verbs, adjectives

and adverbs; Edmonds & Cotton (2001)), Senseval-3 (1850 annotations of nouns,

verbs, adjectives and adverbs from editorial, news story and fiction texts; Snyder &

Palmer (2004)), SemEval-2007 (455 annotations of verbs and nouns only; Pradhan

et al. (2007), SemEval-2013 (1644 annotations of nouns only; Navigli et al. (2013)),

SemEval-2015 (1022 annotations of nouns, verbs, adjectives and adverbs from

biomedical, math/computer science, social studies; Moro & Navigli (2015)). In the

case of knowledge-based WSD, the models are evaluated on SemCor for English

data and on the BulTreeBank corpus for Bulgarian data (Popov et al., 2014)3. In

one case the SemEval-2013 data is also used for evaluation.

2.3 Word Similarity and Relatedness

I use this final task in the thesis in order to evaluate the quality of the distribu-

tional lexical models that are generated. Calculating the semantic similarity and

relatedness of pairs of words amounts to determining how close in meaning those

words are. It is important to bear in mind that this closeness is here interpreted

on the basis of taking the words alone and comparing them only with regards

to their lexical semantics, i.e. no contextual information of particular usages is

taken into account. Another important note is that there is a significant difference

between ”similarity” and ”relatedness”. The former measures to what extent two

terms mean the same thing, while the latter express to what degree the terms can

be expected to occur in the same context.

Calculating such scores is a highly subjective endeavor, therefore the very

measures that are employed to this purpose are to some extent arbitrarily chosen.

Typically, however, a numerical scale of closeness is selected when constructing

gold resources (e.g. from 1 to 10) and the annotators evaluate how alike or related

the members of word pairs are. In the thesis the rankings of word pairs calculated

3Popov, A., Kancheva, S., Manova, S., Radev, I., Simov, K., & Osenova, P. (2014). The
Sense Annotation of Bultreebank. Proceedings of TLT13, 127-136.

12

by automated systems are related to the gold rankings using Spearman’s rank

correlation.

2.3.1 Datasets

The following datasets are used for evaluating the performance of distributed lexical

models on word similarity and relatedness calculation: WordSim-353 Relatedness,

WordSim-353 Similarity (Agirre, Alfonseca, et al. (2009) describe the two subsets

of the WordSim-353 data set; Finkelstein et al. (2001) describes the original data

set) and SimLex-999 (Hill et al., 2015). The first one measures relatedness, while

the latter two are used to evaluate similarity calculation. Models of the lexicon

that perform better on one or the other datasets will obviously be characterized

by specific features (e.g. better grouping of synonyms and antonyms, or better

clustering of related concepts).

13

Chapter 3

Background and Related Work

This chapter presents previous work that is relevant to the dissertation thesis,

both as motivation for it and as direct influence on the ideas explored. First,

several explicit models of the lexicon are discussed – resources that aim to organize

knowledge about lexical items in a structured manner, so as to be applicable to

different kinds of NLP and, more generally, computational tasks. In particular,

one of these resources – WordNet – serves as a chief object of investigation and

research tool of the thesis. Having introduced it, the overview then moves on to

discuss different approaches to WSD. Particular focus is given to knowledge-based

WSD, as it is one of the methods employed in this work. The section that follows

provides a brief overview of neural network approaches to NLP and then pays

special attention to neural network language models, whose use has become nearly

ubiquitous in the last few years, and to neural network methods for sequence

labeling – both tasks of particular importance to the thesis. Finally, multi-task

learning is briefly touched upon.

3.1 Explicit Models of the Lexicon1

3.1.1 Word Sense Inventories

As discussed in the problem definition section, doing WSD and being able to

evaluate results and compare them fairly among systems depends on an available

enumeration of the possible words senses for the words in the lexicon. Settling

1As with the problem definition part dedicated to WSD, this section largely follows Navigli
(2009).

14

on a suitable enumeration methodology is in itself a big theoretical issue. There

are many difficult points to be considered: how granular should the partition of

meaning into word senses be (i.e. should senses be more or less general), how

domain-centered or domain-independent an enumeration is desired, how should

lexical change (the addition, loss and shift in meaning of word senses over time)

be handled, etc.

There have been attempts to design lexicons which capture meaning as struc-

tures of semantic components and can assemble senses dynamically from the

deeper representation of lexical items. One of the most popular examples of such

projects is the Generative Lexicon developed by James Pustejovsky (Pustejovsky,

1991). Lexical items, under this generative approach, are characterized by a lexical

type, argument structure, event structure and, most importantly to the lexical

qualification, four qualia. The latter are akin to semantic features, which together

provide a description of the item, respectively: formal (the category that most

expressively characterizes the item in a larger domain), constitutive (how the

parts of the item are related to it), telic (what is the purpose or function of the

thing denoted by the lexical item) and agentive (factors involved in the origin

or “bringing about” of an object) qualia (Pustejovsky, 1995). Thus structured,

lexical knowledge can be dynamically constructed in context and interfaced more

naturally with syntactic structures. A somewhat similar methodology to describ-

ing the lexicon that provides compositional capabilities and aims to express the

meaning of lexical items through semantic primitives is Conceptual Semantics

(Jackendoff, 1992).

An investigation into how compositional lexicons can be integrated with

enumerative lexicons is certainly an important task, but this work is going to focus

on an analysis that uses enumerative resources only (although it will become clear

that a way to carry out such an incorporation might be implicitly present in the

methodologies investigated). To this purpose, the most popular computational

resource with enumerated senses is selected as lexicon – WordNet (Fellbaum,

Christiane, 1998).

3.1.2 WordNet

Word senses in WordNet (WN) are organized in synonym sets or synsets. A synset

consists of one or more word senses that are used to refer to roughly the same

concept. Each word sense is a pairing of a lemma and a concept; the latter is

15

shared among the word senses grouped in a synset. Naturally, slight differences

in meaning between the separate word senses do exist, as there are no absolute

synonyms in natural language; but even though their usage might differ somewhat,

the core meaning of the associated concept is shared among the synonyms. If

a synset consists of more than one entry, those are in effect the same concept,

but expressed through different words, which all share the same POS category.

A word, or rather the lemma of a word in the lexicon, can have multiple senses

associated with it and they will all be members of different synsets. For instance,

here are the nominal senses of the word ”school” taken from the online interface

to WordNet, version 3.12:

SensesWN(schooln) = {{schooln
1},

{schooln
2 , schoolhousen

1},
{schooln

3 , schoolingn
2},

{schooln
4},

{schooln
5 , schooltimen

1 , school dayn
2},

{schooln
6},

{schooln
7 , shoaln

3}}

As can be seen, some of its senses constitute synsets by themselves, like schooln
1,

whose gloss in WN is ”an educational institution”, schooln
4 (”a body of creative

artists or writers or thinkers linked by a similar style or by similar teachers”) or

schooln
6 (”an educational institution’s faculty and students”). The senses that are

grouped in synsets together with senses of other words refer to concepts whose

meaning should be clear from the groupings; e.g. the second sense of ”school”

refers to a building, its fifth refers to a period of time and its last one – to a

group of fish. The senses for the word are ranked by lexicographers according to

the primacy of their use, which is also an important piece of information, as will

become clear.

In this dissertation I assume WordNet 3.0 as the lexicon. This version contains

sense mappings for a little over 147,000 strings. Each string may be associated

with senses that bear any of the four open class POS labels: {n, v, r, a} or {noun,

verb, adverb, adjective}. The total number of synsets in the lexicon is about

117,000 and the total number of POS-associated strings is around 155,000. The

different POS are characterized on the whole with different degrees of polysemy.

2http://wordnetweb.princeton.edu/perl/webwn

16

Thus, for instance, nouns have a degree of polysemy 1.24, if monosemous strings

are counted, and 2.79, if monosemous strings are excluded3.

Synsets also contain: a short definition (called gloss), just like the ones provided

for the different senses of ”school”; some example sentences; unique identifiers;

frequency counts (calculated against a sense-tagged corpus) and information about

membership in the so called ”lexicographer files” (also called ”supersense tags”) –

groupings of senses defined on the basis of syntactic and logical properties, such

as ”noun.artifact”, ”verb.change”, etc.

Finally, synsets and word senses are connected with each other through a

set of basic lexico-semantic relations. Those relations are all binary and what

makes them so important is that they in practice connect the otherwise isolated

entries of WN into a semantic network, or semantic graph. This structure provides

another view at lexical meaning: lexical items can now be situated in a web of

concepts and thus their relative position in it becomes a strong descriptor of

meaning. WordNet was in fact developed as a resource for testing psycholinguistic

hypotheses and thanks to this structure it does indeed mimic some aspects of how

lexical knowledge is supposedly stored in the human brain. Two types of relations

are provided in WN: lexical and semantic. The lexical ones connect specific word

senses (i.e. the senses of specific words that might be grouped together in a synset

with other senses), while the semantic relations connect whole synsets (i.e. these

relations apply to all members of the two connected synsets). Here I list the types

of relations, as these will be important at a later stage of the dissertation.

Lexical relations in WN:

• Antonymy: When two senses are used to express the opposite meaning, e.g.

hota
1 is the opposite of colda

1.

• Pertainymy: Obtains between an adjective and a noun that the adjective

can be said ”to pertain to”, e.g. felinea
1 pertains to catn

1.

• Derivational relation: When one word form is in fact derived from another,

such as in nominalization (diven
2 nominalizes divev

2), verbalization (waterv
1

verbalizes watern
1), and others (e.g. slownessn

1 is derived from slowa
3).

Semantic relations in WN:

• Hypernymy: A taxonomic relation which expresses the fact that A is a kind

of B (this is also called an is-a relation), e.g. lionn
1 is a kind of big catn

1, i.e.

3For more information see https://wordnet.princeton.edu/documentation/wnstats7wn

17

the latter sense is a hypernym of the former (hyper means ”over” in Greek).

This relation holds between nominal and verbal synsets.

• Hyponymy: The inverse relation of hypernymy, but applicable only to

nominal synsets, e.g. lionn
1 has as one of its hyponyms lionessn

1.

• Troponymy: The inverse relation of hypernymy, but applicable only to verbal

synsets, e.g. communicatev
1 has as one of its troponyms send a messagev

1.

• Meronymy: A relation denoting that B is a part of A (also called a part-of

relation), e.g. beakn
2 is a meronym of birdn

1.

• Holonymy: The inverse of meronymy, i.e. A has a part – B, e.g. computern
1

is a holonym of processorn
3.

• Entailment: When the activity (or process, state, etc.) expressed by one

verb automatically implies that another activity expressed by another verb

is also true, e.g. walkv
1 entails stepv

1.

• Similarity: This relation obtains between adjectives that are similar in

meaning to each other, e.g. slowa
1 is similar to sluggisha

1.

• Attribute: When a certain value regarding a noun is expressed via an

adjective (usually in a relative manner), e.g. slowa
1 expresses the value of

the attribute speedn
2.

• See also: This relation indicates that two adjectives are related, e.g. slowa
1

is similar to unhurrieda
1.

Though first developed for somewhat different purposes, WordNet has evolved

into the de facto standard for computational semantic lexicons in NLP. Different

projects have sprung up over the years: for annotating corpora with senses

from the WN inventory, developing WordNet versions in languages other than

English4, consolidating multilingual WordNet indices (Bond et al., 2016), etc. For

better or for worse, the sense inventory of WN (or modifications of it) is almost

universally used in WSD tasks, competitions, evaluation frameworks. This work is

no exception – it assumes the Princeton WordNet 3.0 as a lexicon for the English

word senses; for the Bulgarian word senses it employs a partial inventory mapped

to the original WordNet hierarchy and used to further annotate a treebank (Popov

et al., 2014).

4http://globalwordnet.org/wordnets-in-the-world/

18

3.1.3 Other Knowledge Resources

In addition to an enumeration of word senses, WSD systems often benefit from the

use of additional knowledge resources. The interaction between conceptual bits of

knowledge, as assembled in specific, context-dependent communicative situations,

is highly complex and dependent on multiple structuring systems, some of which

are extra-linguistic in nature. In fact, modern research suggests that meaning is

always, to a differing degree, constructed dynamically and creatively, operating

within the restraints of body and world rather than merely manipulating learned

definitions of units of meaning (Bergen, 2012). Therefore, linking together different

resources that can provide complementary representations of lexical knowledge

and learning how to leverage that interconnected web of resources is a central

task in computational lexical analysis.

There are many such resources that are of interest, but covering them is outside

of the scope of this work. A few of them need to be singled out, however, since

they are directly related to it. Most important of them is SemCor (Miller et al.,

1993), a semantically annotated portion of the Brown Corpus (Kučera & Francis,

1967). SemCor is the largest sense-annotated corpus available, with 226,040 sense

annotations spread over 352 documents and based on the WN sense inventory

(another large annotated corpus is OntoNotes (Weischedel et al., 2013), but it

uses a somewhat modified version of the WN sense groupings). It is the resource

most widely used for training WSD systems. This work too uses SemCor for the

training of supervised systems; in addition to that, it also uses it for enriching

semantic knowledge graphs used for knowledge-based WSD and for evaluating the

accuracy of the systems. Another resource used is eXtended WordNet (Mihalcea

& Moldovan, 2001), a project to annotate the WN glosses with WN senses, so

that the annotated text is available as training/testing data or as some kind of

knowledge enhancement of WN.

Among the many other available knowledge resources, several more will men-

tioned here in order to give a sense of the possible lines of further work regarding

the issue of integrating dense conceptual representations of lexical knowledge into a

single model. VerbNet (Schuler, 2005) is a resource that organizes English verbs by

mapping PropBank (Kingsbury & Palmer, 2002) verb types to Levin verb classes

(Levin, 1993)5. It provides an inheritance hierarchy of the verb senses, where every

5In her seminal study Levin provides a classification of over 3,000 English verbs on the basis
of their semantics and syntactic behavior. The commonalities between verbs are used to group

19

class and subclass is presented together with the syntactic and semantic structures

it can be a predicate of. The verb senses are also mapped to other lexical resources

such as WordNet and FrameNet via the SemLink project6. FrameNet (Baker

et al., 1998) is a resource built on the principles of Frame Semantics, a theory

that seeks to organize lexical knowledge in an encyclopedic manner, into frames,

or structured collections of facts that are used to guide procedural knowledge.

For instance, the ”buying” frame informs the meaning of the word ”buy” via

knowledge about the different actors, objects, attributes, etc. that are or can be

brought together in a buying scenario. FrameNet uses semantic roles like VerbNet,

but its semantic roles are much more conceptually specific (e.g. the frame for

buying has its specific roles, such as ”Buyer”, ”Goods”, ”Means”, etc.).

All of these lexical resources provide parts of the whole picture – by combining

information about lexical items that has to do with their function at the levels of

lexical and sentential semantics, syntax, conceptual representation, etc. Knowledge

resources such as Wikipedia and DBpedia also provide important information

that is complementary – encyclopedic knowledge about the world and the entities

that inhabit it. Bringing all these separate resources together is an important

task and in fact there is already work that has attempted to link together some

of them (such as the BabelNet7 project that brings together multiple resources

including WordNet, Wikipedia, VerbNet, FrameNet, Open Multilingual WordNet,

GeoNames, etc.; see Navigli & Ponzetto (2012) for more information).

3.2 Word Sense Disambiguation – an Overview

Word sense disambiguation, as defined in the previous chapter, is one of the most

popular NLP tasks having to do with lexical and semantic analysis, and also one

of the most difficult in NLP and artificial intelligence in general. Some of the

reasons for its difficulty have been touched upon already: it combines in itself

multiple classification tasks; the number of senses per word vary in number (from

1-2 up to dozens); depending on the lexicon chosen, the senses might be too

granular to make clear distinctions between them; training data is sparse and

insufficient to cover all words and senses; the interaction between linguistic units

them in a coherent hierarchy of verb types. PropBank is a corpus in which verb predicates and
their arguments are annotated with abstract arguments that are akin to semantic roles like
”Agent”, ”Theme”, etc.

6http://verbs.colorado.edu/semlink/
7http://babelnet.org/

20

is so multi-faceted and dynamic that very rich and diverse knowledge resources

are needed to perform correct disambiguation; etc. This section provides a brief

look at some of the most popular approaches to solving the WSD task and their

respective advantages and shortcomings. As noted in the previous chapter, only

WSD with respect to words whose senses are readily enumerable (via a lexicon of

some sort) is taken into consideration. Therefore, no references to unsupervised

learning methods are provided in what follows. Focus is put on supervised and

knowledge-based methods, which are an object of study in the dissertation. A

presentation of supervised methods using neural networks is postponed until the

next section, which deals exclusively with neural network approaches in NLP.

3.2.1 Supervised Methods for WSD

Supervised machine learning (ML) methods for WSD are aimed at training

classifiers that can label words in text, with their senses available in an enumerative

resource. The classifiers are trained on labeled corpora of natural language text,

where some or all open class words (depending on the lexicon used and on the type

of WSD task) have been disambiguated manually. Different supervised learning

algorithms can be trained on such data. All of them depend crucially on an

input representation of the data that is to be labeled. Typically in NLP tasks

this representation is constructed as a set of features: bits of information that

describe the data through a particular theory-informed filter. The usual repertoire

of features for supervised ML models for NLP includes: the string of the token8

considered for classification as well as of those surrounding it (this context is

constrained within a window of observation and the tokens do not have to be those

directly adjacent to the central one, but can be obtained by other methods, e.g.

following its syntactic dependencies in the sentence), combinations of the string

tokens, the lemmas of the tokens, their POS tags, the syntactic and semantic

roles of the analyzed token, etc. More global features can be included as well: a

domain, genre or topic label for the text as a whole, a list of topics or entities

mentioned in it, etc. Thus, depending on what features the models takes in, the

input data may have to go through a number of preprocessing steps.

8Tokens in NLP are the individual language units that are analyzed (in isolation or in
context). Typically, text is tokenized into words, punctuation marks, numbers and other
relatively autonomous symbolic units, before more complex analyses can be carried out. This is
also the case with WSD.

21

Navigli (2009) provides an overview of several supervised algorithms. Decision

lists and decision trees are two options for learning relatively compact and human-

interpretable models for WSD. These algorithms leverage the training data in

order to learn a set of rules capturing dependencies relevant to the correct labeling

of tokens. These rules are expressed using the feature representations of the

context, e.g. what string is the target word followed by, what POS categories,

what tokens is it preceded by, in what positions precisely, etc. Under the list

approach, the rules are given scores depending on how powerful they are and the

highest scoring one is selected. Under the tree approach, rules are organized in a

binary-branching structure, so that each binary choice against a particular rule

narrows down the space of available answers; when a terminal node in the tree for

a particular word is reached, a single sense can be selected. Even though these

approaches offer the advantages of succinctness and interpretability, they suffer

from issues arising from data sparseness and the inflexibility of symbolic rules.

Another algorithm presented there is Naive Bayes, which relies on calculating

the conditional probabilities of senses {s1(w), ..., sn(w)} for word w when a

particular set of features is observed in the context. The probabilities for each

feature are calculated from the training data. This algorithm assumes that the

different features are independent of one another, which is too often a wrong

assumption with regards to language. Even so, Naive Bayes classification performs

respectably across different NLP tasks and with regards to WSD in particular,

and it is fast to estimate.

Exemplar-based learning is yet another relatively robust and easy to estimate

kind of model. The algorithm looks at the training data and keeps in memory the

observed training instances as points in the feature space. New instances are then

situated in the same space and classification is carried out depending on which

sense cluster they are closest to. Simple methods such as the k-Nearest Neighbor

algorithm are used to estimate closeness to the different clusters.

The system that consistently achieves the highest score or is among the highest

scoring contenders on WSD tasks at the moment (see for instance Raganato,

Camacho-Collados, & Navigli (2017)) is a supervised one – It Makes Sense (IMS),

a support vector machine (SVM) algorithm with a fine-tuned feature-extraction

step (Zhong & Ng, 2010). A previous version of IMS took part in the SemEval-

2007 competition where it ranked among the best WSD systems (Pradhan et al.,

2007). Since most of the top-ranked systems at this point were supervised ones

22

(among the SemEval-2007 top systems were also Maximum Entropy, Naive Bayes

and k-Nearest Neighbor classifiers), but very few of those were open source and

available for easy configuration and evaluation, IMS was developed precisely with

such features in mind. It offers a default pipeline of pre-processing tools (tokenizer,

POS tagger, lemmatizer), in which users can integrate their own tools, as well as

a module for easily configuring the feature extractor. The default classification

algorithm is LIBLINEAR (Fan et al., 2008) with a linear kernel. Since then, IMS

has been evaluated with different feature extractors, including with an integration

of word embeddings as features, with very good results (Taghipour & Ng, 2015;

Iacobacci et al., 2016). Papandrea et al. (2017) demonstrate SupWSD – a Java

API for WSD that seeks to replicate all the advantages offered by IMS, but

also provides a software kit for WSD that is easy to use, configure and extend.

The evaluation of the tool with the best-performing settings reported for IMS

consistently matches up the original results or even surpasses them in some cases.

3.2.2 Knowledge-based Word Sense Disambiguation

Knowledge-based WSD (KBWSD) is a family of methods for approaching the task

which do not rely on statistical knowledge learned directly from data, but rather

exploit information that is encoded in resources modeling the lexicon. Thus, such

methods are not directly data-driven, they are theory-driven (however, insofar

as theory is always informed by data, it can be said that they are, indirectly,

data-driven as well). A big advantage of KBWSD is that the algorithms of this

broad family have full coverage over the senses in the lexicon that is used. Since

the algorithms rely only on the information in the same knowledge resources

that provide the enumeration of senses, this in theory allows them to make

informed choices regarding each and every disambiguation case, in contrast to

supervised approaches, which are tied to the availability of wide-coverage training

data. The downside to KBWSD is that it rarely achieves results rivaling those

of supervised systems. In addition to that, as was discussed in the section on

knowledge resources, human language lexicons coordinate all kinds of data at

various levels of linguistic analysis and the composition of lexical items is often

very complex and creative. Therefore, defining a lexicon/knowledge resource that

can exhaustively and effectively capture lexical knowledge for the purposes of

KBWSD is a tremendous hurdle, both theoretically and practically.

23

The different KBWSD approaches explored in the literature all reflect the

availability of resources and the ways in which the information encoded in them

is put to use. In the absence of large structured lexical resources, early work

in WSD was focused on simpler strategies for using lexical knowledge. One of

the earliest and simplest methods for KBWSD relies on calculating the degree of

overlap between target word definitions. This algorithm, called the Lesk algorithm

after its inventor (Lesk, 1986), takes the dictionary definitions of word senses for

target words that occur together in a shared context and calculates the degree

of overlap between them. For two words w1 and w2, those two senses – sw1
j and

sw2
k – are selected that share the highest number of words in their respective

definitions. This calculation is manageable when just two words are considered,

but with larger contexts the number of combinations to be considered grows

exponentially, since the final selection of senses has to satisfy the above condition

globally over the whole context. There exist variants of the algorithm which

significantly minimize its complexity, e.g. by calculating the overlap between

target word sense definitions and the words in the actual context only. Other

modifications of the Lesk algorithm expand the definitions of target words by

adding the definitions of the words contained in the first-level glosses, or by adding

definitions of other concepts connected to the original sense via the structure

of a semantic network such as WordNet (Banerjee & Pedersen, 2003). Oele &

van Noord (2018) combine the Lesk algorithm with word embeddings and obtain

improvements over the original version9. However, at present approaches based on

definitions overlap are generally not able to achieve state-of-the-art results among

KBWSD systems.

The construction of computational lexicons like WordNet enabled more complex

KBWSD methods to be devised. The semantic network of WN-like resources can

be exploited to derive metrics for the disambiguation of words in context that

go beyond naive methods like the calculation of definitions overlap. Semantic

similarity measures based on structured resources are somewhat akin to the

Lesk algorithm, but with them closeness of meaning is calculated on the basis of

semantic representations. A target word is disambiguated by selecting that sense

which yields the greatest score Ŝ (Navigli, 2009):

Ŝ = argmax
S∈SensesD(wi)

∑
wj∈T :wj 6=wi

max
S′∈SensesD(wj)

score(S, S′)

9For more information on word embeddings, see section 3.3

24

where T is the text (w1, w2, ..., wn). Thus, evaluating the score function becomes

the central issue under this approach (note that this formulation also suffers from

exponentially rising complexity when senses need to be selected for all target

words in a context, in a globally optimal way). Different similarity measures have

been put forward. The most basic one using WN calculates the number of graph

edges standing on the shortest path between the two senses (Rada et al. (1989);

by ”graph” here is meant the WN hierarchy, i.e. the hypernymy/kind-of relations).

More complicated measures take into account the number of vertical turns taken

in traversing the WN hierarchy (i.e. do you only go from more to less specific or

vice versa, or do you go both up and down the hierarchy of kinds; the more times

you do it, the more tenuous the link is) and the relative depths of the two senses

(Sussna, 1993), the subgraph density of their common ancestor (Agirre & Rigau,

1996), etc. Semantic similarity approaches do not seem to exploit a rich enough

theoretical representation of lexical meaning, as they do not really achieve higher

accuracy compared to the Lesk algorithm (Navigli, 2009).

More sophisticated methods that rely on lexical representation have been

proposed. Analyzing lexical chains (Halliday & Hasan, 1976) in text as mechanisms

for maintaining discourse cohesion is the basis for many of those. Lexical chains

consist of a series of lexically related words that is woven through the text, bridging

sentences and paragraphs. Since a meaningful text is likely to contain different

lexical chains, algorithms explore that property in determining the most probable

senses of words – the senses selected are part of potential chains with greater

weights (where the weight is determined by the types of relations found in the

chains and the distance in text over which they obtain; see Galley & McKeown

(2003)). Navigli & Velardi (2005) present an algorithm for KBWSD based on

lexical chains that first identifies monosemous words and assigns the relevant

senses to them, then iteratively selects word senses for the polysemous words that

are most strongly connected to the already disambiguated senses via relations from

the KB. A number of hand-written semantic pattern rules are used to constrain

the calculation of similarity based on the lexical chains.

Another popular alternative are the so called graph-based methods. Under them,

a ranking algorithm is typically used that calculates the relative importance of the

nodes in the semantic graph. Since the nodes are actually the word senses, the

most highly ranked ones are returned as disambiguation choices. Mihalcea (2005)

constructs a weighted graph with edges between all possible word senses in the

current context, where the weights are calculated using the Lesk algorithm. Then

25

a random walk algorithm (PageRank; Brin & Page (1998)) is used to iteratively

calculate the importance of nodes from a global perspective. This overcomes

the combinatorial explosion of having to calculate the similarity of all pairs of

possible senses, one of the major setbacks in similarity-based approaches. Navigli

& Lapata (2007, 2010) describe a two-stage process for graph-based WSD. First

the whole KB is explored in order to find a subgraph that is most relevant to the

current context. Then a graph-based centrality algorithm is used to find the most

important word senses in the subgraph. PageRank again gives some of the best

results.

Agirre & Soroa (2009); Agirre et al. (2014) take a somewhat different approach

in that they do not make the ranking calculation over a subgraph of the KB.

Instead, they use the whole graph, while the probability of initiating a new random

walk is done in two ways: through the standard, static interpretation of restarting

the random walk algorithm and through its personalized interpretation, whereby

certain nodes in the graph are given greater weight (and therefore their immediate

surroundings are as well). The formula for calculating the PageRank vector P

(the importance of all nodes in the graph) is the following:

P = cMP + (1− c)v

where M is an N x N transition probability matrix (N being the number of nodes

in the graph), c is the damping factor (usually set to 0.85) and v is an N x

1 stochastic vector. The second part of the equation gives the probability of

randomly jumping to any of the nodes in v and terminating a random walk. The

algorithm runs iteratively until convergence or for a fixed number of iterations.

Under the static version, v is uniformly initiated (with values of 1/N), while the

personalized version divides the probability mass among the nodes corresponding

to the senses of the target words in the particular context. Personalized PageRank

obtains good accuracy scores that, albeit still lower than those of supervised

systems, are not too far behind on general domain data and in cases of domain-

specific data are able to do even better (Agirre, De Lacalle, et al., 2009). The

algorithm, which is implemented in the UKB software toolkit10, can also be used

for word similarity calculation (Agirre, De Lacalle, et al., 2009) and named entity

disambiguation (Agirre et al., 2015). Agirre & Soroa (2009) show that extending

the semantic graph (in this case adding relations from eXtended WordNet) has

10http://ixa2.si.ehu.es/ukb/

26

a positive effect on the accuracy score of the algorithm, i.e. graph density is

important. Moro, Raganato, & Navigli (2014) discuss a similar disambiguation

system that uses the Random Walk with Restart algorithm (Tong et al., 2006)

and BabelNet (Navigli & Ponzetto, 2012) as a semantic graph.

3.2.3 Applications of WSD

Word sense disambiguation has proved to be one of the most difficult core NLP

tasks. Until the rise of statistical machine translation in the 1990s, WSD was

deemed a crucial element in MT, since it provides a system with the ability

to correctly translate lexical items between languages (i.e. as a – relatively –

separate task from that of mapping syntactic structures). However, the difficulty

in obtaining high precision and recall has hampered its application in downstream

tasks and at present it is not entirely clear that high-accuracy WSD is even

necessary. The uncertainty has had an impact on the quantity of available data

and empirical work, making it harder to achieve satisfactory levels of accuracy,

which in turns feeds back in a vicious circle into the initial concern (i.e., confirming

the necessity of performing WSD). This difficulty is due to at least two aspects of

the problem that need to be balanced. On the one hand, the learning task itself

is very challenging and requires rich and smartly handled representations, as well

as good algorithms. On the other, there is the issue of how word senses partition

the lexicon. Too granular word senses are too difficult to label correctly, while

the too coarse-grained do not give much meaningful information. In addition to

that, it is perhaps the case that different NLP applications can best make use of

word sense representations at different levels of granularity. Nevertheless, a brief

discussion is offered below, on the various potential applications of WSD, with a

reference to some work done in parallel to the research that constitutes the main

focus of the thesis.

Navigli (2009) focuses on several potential such areas. Information Retrieval

(IR), the author argues, could benefit from WSD if content words both in queries

and in potential document results are disambiguated. In that way, only the

pertinent meanings of the search terms will be taken into consideration and

search results will be more adequate to the needs of the user. Another potential

advantage is the ability to link synonymous word senses in documents, or senses

that are related in a relevant way to the search terms. Sources cited by the survey

give conflicting information regarding the actual usefulness of WSD in IR. For

27

instance, Sanderson (1994) argues that only WSD with accuracy over 90% can

contribute positively to IR. However, Stokoe et al. (2003) shows that even at a

level of accuracy of around 62% WSD can still lead to small gains in IR. Testing

the 90% hypothesis is not easy, as sense-annotated data is not easily obtainable

in the necessary quantities; Schütze & Pedersen (1995) show that such accuracy

in WSD does indeed lead to a significant boost in IR systems.

Another field whose tasks involve locating specific kinds of information –

Informaton Extraction (IE) – also should benefit from accurate WSD. Named

entity recognition (NER), for instance, has been explicitly and implicitly reframed

as a disambiguation problem (e.g. Agirre et al. (2015), as already mentioned,

or Ciaramita & Altun (2006), who have implemented a tagger for the 41 super-

senses for nouns and verbs in WN and thus obtain information about entities

belonging to traditional NER classes like person, location, organization, etc.). In

task 8 of SemEval-2010 (Hendrickx et al., 2009), which deals with another IE

task – relation extraction, the best-performing system used rich lexical features,

including hypernyms of WN senses, Levin verbal classes, disambiguated results

from PropBank and FrameNet parsers, etc. (Rink & Harabagiu, 2010).

WSD can be used as a source of features for models performing other core NLP

tasks, such as POS tagging, dependency parsing, semantic role labeling (SRL),

etc. For instance, Agirre et al. (2011) show that using semantic class / supersense

tags from WN can help improve results in transition-based dependency parsing;

MacKinlay et al. (2012) demonstrate that word sense hypernyms can, depending

on the system configuration, improve HPSG parse ranking. Brown et al. (2014)

recast the task of identifying VerbNet classes for the purpose of SRL as WSD,

obtaining significant improvements. Zapirain et al. (2013) in turn investigate the

semantic role classification subtask and how selectional preferences can be used

to improve results on it (identifying selectional preferences can be seen as a task

connected to WSD).

Machine translation is a natural area for the application of WSD. Picking

the correct translation of words in context is central to MT and it can easily be

recast as a WSD task. However, the influence of WSD research on MT has not

been strong, in part, of course, due to the fact that WSD systems have failed to

achieve high accuracy scores. Carpuat & Wu (2005) report a negative impact

of WSD on BLEU scores. They used a supervised model to provide translation

candidates for an SMT system, but this only led to worse results. One hypothesis

28

for explaining this is that the SMT model is powerful enough on its own and the

then-current state-of-the-art WSD cannot provide beneficial information in most

cases; another explanation is that WSD systems simply cannot be integrated in a

meaningful way with SMT systems. In Cabezas & Resnik (2005), target language

lexical items are interpreted as ”sense tags”, or as soft translation variants for the

translation model, which selects the final translation via its language model. The

study reported a small improvement against a stronger baseline than the one in

Carpuat & Wu (2005). Vickrey et al. (2005) re-conceptualize WSD as translation,

whereby the possible senses are target words or phrases learned from parallel

corpora; the study does report an improvement in results on word translation and

blank-filling.

In Chan et al. (2007) disambiguation is done between alternative translations

of source phrases. The selection is done in view of maximizing the length of WSD-

proposed chunks of text; WSD scores are also factored in. The approach yields

statistically significant BLEU score improvements. In a subsequent study Carpuat

& Wu (2007) integrate WSD deeper into SMT. Multi-word phrasal disambiguation

is carried out and the resulting improvement is reflected across eight different

translation metrics. In this case the supervised WSD system provides additional

context, so that correct translations proposed by the baseline SMT system are

ranked higher than erroneous ones. In addition, the decoder is able to pick longer

translation sequences, which tends to correlate with better translations.

Simov, Osenova, & Popov (2016a)11, work carried out in conjunction with the

main research done for the thesis, utilize the output of a WSD system in order

to bolster factor-based SMT in the context of English-Bulgarian and Bulgarian-

English translation. The baseline model uses only word forms as factors, while the

WSD-inflected models replace the word forms with synset and word translations.

The translations are obtained via WSD and a mapping between the Princeton

English WordNet and a Bulgarian WordNet (Popov et al., 2014). The word form

is thus replaced either with the corresponding synset or with a ”representative

lemma” for the target language synset (based on frequency counts with regards

to the synset lemmas). This approach fails to improve upon the baseline, but it

demonstrates that lemma-replacement leads to much bigger improvement than

synset-replacement, suggesting that recasting translation as WSD may indeed

11Simov, K., Osenova, P., & Popov, A. (2016). Towards Semantic-based Hybrid Machine
Translation Between Bulgarian and English. In Proceedings of the 2nd Workshop on Semantics-
Driven Machine Translation (SedMT 2016).

29

be productive, especially if more sophisticated and context-sensitive strategies

for lemma-selection are devised. In Simov, Popov, Zlatkov, & Kotuzov (2016)12,

a somewhat similar approach is taken, in that Minimal Recursion Semantics

(Copestake et al., 2005) is used for better token-to-token alignment between

source and target language text, which is then used for rule-based post-processing

of the SMT system output. This approach allows for the transferring via the

token-alignments of additional information such as dependency links, word senses

and elementary predicates.

3.3 Neural Networks for NLP

This section concentrates on the use of artificial neural networks (NNs) for solving

NLP tasks, and in particular the lexical analysis tasks tackled in this work:

POS tagging and WSD. Before turning to them, I first direct my attention to

neural network language models (NNLMs), since research in that area has yielded

tremendous advances in recent years – mostly due to the efficient learning of

powerful representations of words and other linguistic units (popularized in the

literature as embeddings). These representations provide rich input for systems

that carry out further analysis of text sequences, as they tend to capture many

aspects of lexical knowledge. Such distributional models can be seen as an

instance of feature learning – the automatic discovery of relevant features for data

classification; the generation of embeddings has led to much lesser dependence

on feature engineering – the laborious process of devising feature sets that can

adequately represent input data. The section on NNLMs is mostly a compressed

version of Popov (2016b)13, while the part on WSD with NNs – of Popov (2018)14.

3.3.1 Artificial Neural Networks for NLP

Artificial neural networks (from now on called simply ”neural networks”) are

named so because they are inspired by biological neurons and the networks that

are formed by them. NNs consist of nodes and connections between the nodes.

12Simov, K., Popov, A., Zlatkov, L., & Kotuzov, N. (2016). Transfer of Deep Linguistic
Knowledge in a Hybrid Machine Translation System. In The Workshop on Deep Language
Processing for Quality Machine Translation (DeepLP4QMT) (p. 27-33).

13Popov, A. (2016). Neural Network Language Models–an Overview. In The Workshop on
Deep Language Processing for Quality Machine Translation (DeepLP4QMT) (p. 20-26).

14Popov, A. ”Neural Network Models for Word Sense Disambiguation: An Overview.”
Cybernetics and Information Technologies 18.1 (2018): 139-151.

30

The nodes, or neurons, can be organized in separate layers. Each neuron can be

connected to a number of other neurons, which transmit to it signals of varying

strength. A neuron that receives some combined input from its connections carries

out some kind of processing (typically a non-linear transformation called ”an

activation function”) and on the basis of that outputs its own activation to further

nodes in the network. The connections between layers of neurons are typically

represented in matrix format, where each neuron from one layer is connected to

neurons from the other layers via a dedicated vector (a row or column in the

matrix, depending on the direction). The real numbers that represent these links

are called ”connection weights” and are dynamically modified as the network

learns to carry out specific tasks.

There are two main types of NNs that are of interest to this thesis: feedforward

and recurrent NNs. Before examining how precisely I use those in the NLP tasks

explored in the dissertation, those are briefly described here.

Feedforward Neural Networks

Feedforward NNs are the simplest kind of artificial neural networks. They can be

composed of any number of layers between and including the obligatory input and

output layers – the existence of such intermediary layers makes an NN ”deep”.

Single layer perceptrons, for instance, do not have hidden layers and are thus

the simplest example of an NN (those types of NNs were famously shown in

the past to be unable to learn the XOR boolean function (Minsky & Papert,

2017)). Multi-layered feedforward NNs (often called multi-layer perceptrons)

have additional hidden layers which allow them to learn much more complex

dependencies. Learning in feedforward networks can be done in different ways, but

is almost always carried out via the backpropagation of error gradients – the results

obtained at the output layer are compared to a training signal and the divergence

between the two values is used via the backpropagation of error gradients in order

to optimize the connections between the network layers.

Feedforward networks are also characterized by the requirement that inter-

layer connections do not form cycles (Sundermeyer et al., 2015). This prevents

them from handling longer contexts, as their context representation capability

is restricted to fixing sliding windows centered around particular input elements.

This is especially important in relation to NLP tasks, as language is characterized

by linearity and thus text/speech is most naturally processed in terms of time

31

series. Since feedforward NNs can only represent a limited snapshot of the input

data, they are not very effective in handling pattens that are encoded over larger

time intervals. Such patterns are also known as long distance dependencies – a

term in linguistics used for syntactic relations between words and phrases that

cross the tree structure analysis of a sentence and cannot be analyzed in localized

terms; in a more abstract sense the term can be generalized to all kinds of linguistic

and extra-linguistic relations that obtain in linguistic series. Recurrent neural

networks (RNNs) are a more advanced variant of NNs that was developed for the

purpose of handling such long time series.

Recurrent Neural Networks

The basic formulation of RNNs is not radically different from that of feedforward

NNs (for a good overview of RNNs as used for supervised sequenced labeling,

see Graves (2012). Larger contexts are handled in RNNs via looping connections

between time states of the hidden layers. This mechanism acts as a kind of

dynamic memory for the model and it can now theoretically remember important

information from an arbitrary number of steps back. This behavior can be

formalized in the following way. As with feedforward networks, for a sequence of

inputs x1, x2, ..., xn, the network computes the output vector yt via the formula:

yt = W hyht + by (3.1)

where Why is a matrix with the connection weights between two layers (in this

case, between the hidden and the output layer), ht is the state of the hidden layer

for the current time step and by is the bias for the output layer. The recurrence is

introduced with the computation of the values for ht:

ht = F act(W xhxt +W hhht-1 + bh) (3.2)

where Fact is the activation function in the hidden layer, the first term in the

summation is the input times the relevant connection weight, the second one is the

vector of the previous hidden state multiplied by the relevant hidden-to-hidden

connection weight and the last one is the hidden layer bias.

Thus, the LMs are no longer constrained to learning from mere snapshots of

narrowly local data. However, RNNs suffer from the exploding/vanishing gradients

32

problem. The longer the contexts that need to be handled and (consequently) the

deeper the networks handling them, the backpropagated error gradients become

much too large or much too close to 0. The former case is easier to solve (e.g.

by capping the gradients), but the latter is more difficult to deal with and can

prevent an NN from training at all. Because backpropagation works by computing

the error gradients for earlier layers via the chain rule, whenever the top gradient

is close to zero, the chain multiplication of increasingly small numbers effectively

erases the training signal and the NN can barely progress, if that is at all possible.

More sophisticated variants of RNNs have been designed to tackle this problem

– Long Short-Term Memory Cells (LSTMs) and Gated Recurrent Units (GRUs; see

Cho et al. (2014)). Even though somewhat simpler than LSTMs, GRUs have been

found to perform comparably with LSTMs, in some cases even outperforming

them (for example, see Chung et al. (2014); Yin et al. (2017)). In the thesis I use

the LSTM architecture in terms of handling recurrences, as it is the more popular

variant of the two in NLP and since no great difference between the performance of

the two architectures has been demonstrated. Below I provide a brief description

of LSTM units, as those will be important in the following chapters.

The LSTM cell is internally more complex than vanilla RNN hidden layers.

Its cell state is modified by the outputs of several gates: forget gate, input gate

and output gate. The LSTM cell has four hidden layers inside, which learn the

appropriate weights needed to correctly forget and update (parts of) the cell state.

Their outputs are calculated via the following equations (Graves et al. (2013)):

it = σ(W xixt +W hiht-1 +W cict-1 + bi) (3.3)

ft = σ(W xfxt +W hfht-1 +W cfct-1 + bf) (3.4)

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc) (3.5)

ot = σ(W xoxt +W hoht-1 +W coct + bo) (3.6)

ht = ottanh(ct) (3.7)

where i, f, c, o correspond to the input gate, forget gate, cell state and output gate

activations, σ denotes the sigmoid activation function and tanh – the hyperbolic

tangent. The memory learns to selectively decide which pieces of information to

keep and which to forget, thus making it possible to remember input from many

steps ago and to discard input that is not relevant to the current state.

33

3.3.2 Neural Network Language Models

NNLMs constitute an important research area in NLP, as they sit in the core of

many applications which rely on generating or validating meaningful sequences of

human language, on the basis of previously observed context: speech recognition,

spelling correction, machine translation, etc. Before NNLMs came into wide use,

count-based language models (LMs) represented the state of the art. That is,

language modeling relied on counting the co-occurrence of words in large text

corpora, in order to estimate the probabilities of sequences of words. In count-

based LMs, maximum likelihood estimations are obtained per n-grams, i.e. word

sequences of length n. This is done by counting the appearances of particular

n-grams as opposed to (n-1)-grams containing the same tokens except the n-th

one. The apparent advantages of count-based LMs lie in that they are relatively

simple to estimate and to interpret, and that the algorithms for decoding the

most probable sequences are well-understood (e.g. the Viterbi algorithm). The

downsides, however, are far from negligible: strong independence assumptions

(also known as Markov assumptions), data sparseness (any sequences beyond 5-

grams are almost never replicated in the corpora), difficulty in handling unknown

words.

The above-stated issues are to a great extent addressed by NNLMs. Instead

of counting co-occurrences of words, neural networks perform non-linear trans-

formations on input contexts and attempt to predict some unseen part of the

text based on those intermediate representations. By updating the connection

weights (i.e. the weight matrices) between the layers of the NN, the predictions are

refined against the available training data, until the model has captured a good

generative model of the language. This approach has a number of advantages over

count-based LMs. First of all, the transformation of the input (usually one-hot

vectors, whose size is that of the vocabulary and therefore very big) via the hidden

layer connections in effect creates a representation of words that is embedded

in a much lower-dimensional space, i.e. the transformed vectors for words and

contexts typically have just several hundred positions, as opposed to tens of

thousands. These compressed representations result in the clustering of words

that are semantically ”close” to one another. This largely remedies the handling

of previously unknown sequences, as those can now be approximated to other ones

that follow similar trajectories through the embedding space (character-based

NNLMs have been proposed in order to deal with unknown words – by learning

34

the embeddings of characters in a similar way and combining them into novel

word representations (Ling et al., 2015)). This method has the hidden advantage

that the lower-dimensional representations come roughly to encode along their

positions certain lexico-semantic categories (such as number, gender, animateness,

etc.).

Deep Neural Network Language Models

NNLMs come in several flavors. The earliest attempts at obtaining such represen-

tations used feedforward neural networks. These models resemble count-based

LMs in that predictions are made on the basis of sliding windows of length n-1 (i.e.

much like n-grams). However, feedforward LMs do alleviate the data sparseness

issue and do not make such strong independence assumptions as count-based LMs.

Figure 3.1: Feedforward neural network language model; figure taken from Mikolov
et al. (2010).

Figure 3.1 represents graphically a feedforward LM. The sliding context window

selects words which are embedded in the shared space. The vectors for the words

are then concatenated and passed forward to a hidden layer, which downsizes

the word-context representation to a vector of the size of the embedding space.

Finally, a probability distribution function (typicall softmax) maps the embedding

vector to a vocabulary-sized representation that indicates how much each word

in it is activated. This final vector is compared to a gold label where the correct

word choice is given all the probability mass (1) and all the rest of the words are

kept at 0. The model supplies embeddings for the words in training corpus, all the

while their representations get more and more precise with the iterations over the

data. Large output vocabularies are sometimes problematic, since they require

35

heavy computation with large matrices, which can slow down training radically.

A possible alleviation of the computational hurdle is using a hierarchical softmax :

decomposing the final probability into two factors: that of the word belonging to

a certain class and the probability of it being a specific word from that same class

(Sundermeyer et al., 2015). With a good selection of class inventory, computational

complexity can be reduced enough so that training is done in manageable time.

RNNs, particularly LSTM-based architectures, were used to improve upon the

performance of feedforward NNLMs. The use of RNN LMs has led to significant

reductions in perplexity and word error scores (see for instance Mikolov et al.

(2010, 2011). Being able to represent past context and to keep a dynamic memory

of observed data is clearly very important for the accurate modeling of language.

Shallow Neural Network Language Models

LSTM networks and other powerful NN architectures have been used in many

areas of NLP. However, some of the most significant developments in NNLM

research recently are rooted in a much simpler general solution. Mikolov, Chen,

et al. (2013) introduced shallow NNs as a way of training models on amounts of

data that had been until then impossibly huge. These networks do away with

the hidden non-linear transformations of deep networks, all that is left between

the input and output phases is a projection layer. Thus, training time with these

log-linear solutions is decreased from weeks to days, possibly hours, on billion-word

corpora.

Two architectures were proposed in the cited publication: CBOW and Skip-

Gram. They follow essentially the same principles, but while the CBOW archi-

tecture makes predictions about a single word characterized by a context of N

words, Skip-Gram operates in the reverse manner – it tries to guess a surrounding

context of N words on the basis of the word in the middle. Depending on what

training data is available, the two architectures offer different advantages (e.g.

typically Skip-Gram is more effective with large amounts of data). The removal of

the hidden layer, unsurprisingly, harms the precision of the output. The trade-off,

however, is worth the sacrifice – this makes it possible to train word embeddings

of useful sizes (e.g. 500-position vectors) on data that is big and diverse enough

to capture most of the variability found in human languages (e.g. the pre-trained

vectors distributed by Google15 are obtained after training on a 100-billion-words

15https://code.google.com/archive/p/word2vec/

36

corpus). Since then, additional improvements of the models have been put forward,

as well as other approaches to embedding itself (see Pennington et al. (2014)) and

the embedding of non-word linguistics units (characters, suffixes).

Figure 3.2: The CBOW and Skip-Gram architectures; figure taken from Mikolov,
Chen, et al. (2013).

This increased efficiency in learning distributed representations of words has

facilitated much of the important NLP research lately. The availability of high-

quality embeddings has allowed researchers to move away from the time-consuming

process of feature engineering. These developments highlight the power of NNLM

to capture dependencies in text. A simple but very effective demonstration of this

power is to be found in performing simple algebraic operations on word embeddings.

For instance, Mikolov, Chen, et al. (2013) give the following equation:

vector(”King”)− vector(”Man”) + vector(”Woman”) ≈ vector(”Queen”)

Multiple dimensions of meaning are seemingly captured in the same way by word

vectors (syntactic, lexical, stylistic, etc.), which suggests that even relatively

simple LMs can implicitly capture a great deal of linguistic knowledge that has

been modeled before via much more elaborate theoretical constructs.

NNLMs for Representing Concepts, Word Senses and Synsets

The outlined NNLM approaches have been used to learn representations chiefly

from natural language data, i.e. word and character embeddings. In theory,

however, the same methods can be applied to learning distributed representations

37

of any kind of unit that occurs in natural series. This idea has been taken up

in a line of research that aims to go beyond word representations – to obtain

similar information about concepts and word senses. Word embeddings pack a

lot of information in themselves, but they bundle together different senses, as

many words mask polysemous or homonymous relations between concepts sharing

the same form. Different solutions to the problem have been proposed, below I

examine a few of those.

The first broad family of approaches is that of retrofitting methods, i.e. adapting

an already existing resource. Faruqui et al. (2014) is one successful example of

this approach, where word embeddings are adapted so as to reflect the structure

of a lexical knowledge base. The retrofitting is done through the minimization

of an objective function that keeps the new vectors close to the precomputed

embeddings (per pair of vectors for the same word) and at the same time keeps

words related via the knowledge base close in the embedding space as well. Several

sets of word embeddings are retrofitted against three different knowledge bases

and improvements are reported across various tasks, with different knowledge

bases affecting the word embeddings in specific ways. Johansson & Pina (2015)

derive distributed sense representations from precomputed word embedding spaces.

They use a lexicon and a semantic network in order to describe words as convex

combinations of vectors corresponding to their senses. Sense vectors are subject

to an additional constraint – that they remain close in the vector space to the

rest of the senses in their semantic neighborhood, which is defined on the basis

of the knowledge graph (KG) structure. The thus-defined optimization problem

is approximately solved with respect to the squared Euclidean distance between

sense vectors and their neighbors. The senses and their neighborhoods are based

on SALDO, the Swedish semantic network (Borin et al., 2013), and the evaluation

is carried out with respect to the task of mapping senses to FrameNet semantic

classes. Using the same SVM classifier with sense embeddings as features gives

significantly better results than the analogous experiment with word embeddings.

Rothe & Schütze (2015) is another contribution to the line of work which

seeks to extend existing vector space models (VSMs) for words to other linguistic

units, such as synsets and lexemes (synsets are defined there as sets of synonyms,

while lexemes are pairings of words and synsets, or put in another way, lexemes

correspond to word senses). The system implemented – AutoExtend16 – also uses

a lexical resource to constrain existing word embeddings and to extend them to

16http://www.cis.lmu.de/~sascha/AutoExtend/

38

the new unit representations within the same space. AutoExtend interprets words

as the sums of their attendant lexemes, and synsets as the sums of theirs in turn.

This maps the three different units in the shared space. The learning of the new

embeddings is done with autoencoders, where the input and output layers are fed

with the word embeddings, while the hidden layer computes the vectors for the

synsets. The transition from word to synset embeddings determines the lexeme

embeddings. Constraints derived from WordNet relations keep similar synsets

close together in the embedding space.

Camacho-Collados et al. (2015) put forward NASARI17 – a system for auto-

matically constructing vector representations for WordNet synsets and Wikipedia

pages (each page being thought of as a concept in its own right). The BabelNet

mapping between WN and Wikipedia concepts is exploited in order to derive

two vectors per concept: a word-representation vector based on the Wikipedia

page and other pages linked to it, and a synset-representation vector based on

the WN synsets for the words in the set of concept-related Wikipedia pages. A

technique for measuring lexical specificity is used for calculating the vector weights

and synsets are also clustered using the WN hierachy, so that the synset vectors’

dimensionality is significantly reduced. The two vector representations per concept

can then be used for different applications; the paper evaluates the vectors on word

similarity measurement and sense clustering, obtaining very competitive results

in all cases. This work does not rely on NNLMs, but rather on the structure and

correspondences between lexical/knowledge resources.

Another way to learn distributed representations of senses is to automatically

sense-annotate huge amounts of natural text and then train an NNLM on the

processed data. Iacobacci et al. (2015) use the BabelNet sense inventory and

the Babelfy KBWSD tool (Moro, Cecconi, & Navigli, 2014) to tag a dump of

Wikipedia. Only senses chosen by the tool with confidence above a specified

threshold are selected at the end. This produces sense annotations with high

confidence scores for more than half the open class words: about one billion tagged

words and 2.5 million unique word senses. The annotated corpus is used to train

an NNLM and the resulting sense embeddings are shown to perform at the state

of the art on similarity and relatedness datasets, i.e. working with specific senses

is, as expected, preferable to working with word forms. However, this approach

has several disadvantages: 1) WSD systems suffer from low accuracy when using

granular lexicons (such as WordNet) and therefore this introduces a significant

17http://lcl.uniroma1.it/nasari/

39

amount of noise in the training data for the NNLM; 2) even with large corpora,

it is difficult to get full coverage of the word senses in a lexicon; 3) it produces

embeddings for senses only (since words are replaced with senses in the text).

Mancini et al. (2016) propose an interesting solution – called SW2V 18 – to

some of the identified problems. Their solution works at several steps. First, they

use a shallow word-sense connectivity algorithm in order to annotate the open

class words of a large corpus with potential word senses. The algorithm relies on

the interconnections (i.e. semantic relations from a KG, in this case BabelNet 3.0)

between the potential word senses in a given text (in reality this is a sentence or

a paragraph). Senses that have a connectivity measure above a certain, optimized

threshold are connected to the word forms used in the text. The procedure is

linear in time and has the added advantage that it often connects more than one

sense to a word, thus alleviating the granularity problem of lexicons mentioned

earlier. The next component of the process is a reformulation of the CBOW

architecture (Mikolov, Chen, et al., 2013), the difference being that it allows senses

(or synsets, supersenses, images, etc.) to be added to the input context and to

the output labels. Different configurations are thus possible (words and senses

as input & words and senses as output; synsets as input & words and synsets as

output, which is the best-performing one; etc.). The SW2V-trained embeddings

are shown to perform very well on several tasks: word similarity, sense clustering,

induction of most common senses.

Chen et al. (2014) is an earlier effort that combines some features of the

retrofitting approach, training on a sense-tagged corpus and adapting an NNLM

for learning sense embeddings together with word embeddings. First, word

embeddings are learned and then those are used to initialize sense embeddings

by combining the word vectors for relevant open class words in the sense glosses

in WN. These are used to execute a simple WSD algorithm based on comparing

potential sense vectors with context vectors for the relevant sentences. The sense

annotations that are above a certain confidence threshold are used in a next

round of training with a modified Skip-Gram architecture, where context words

and senses are predicted in tandem. This method achieves state-of-the-art or

competitive results on word similarity, domain-specific WSD and coarse-grained

WSD.

18http://lcl.uniroma1.it/sw2v

40

A somewhat different way of creating distributed representations of concepts

is via generating artificial sequences on which NNLMs can be trained. Goikoetxea

et al. (2015), for instance, use a random walk algorithm to traverse a knowledge

graph (in their case, the KG is WordNet). The walks can be restarted at each

step with some probability and each one of them eventually generates an artificial

”sentence”. That is, the relational structure of the KG provides the connections

between concepts/synsets and the artificial sentences come to reflect this type

of conceptual information. The sentences may consist of the node identifiers, or

in the case of WordNet as KG they can be replaced by a lemma chosen from

the particular synset; hybrid sentences can be produced as well, if the method is

configured to replace synset IDs with lemmas with a certain probability. Once

an artificial corpus is created in this way19, the word2vec tool20 is used to obtain

a distributed representation. The authors train lemma embeddings and evaluate

them on popular datasets for word similarity and relatedness. They report very

competitive results compared to the word embeddings learned via the Skip-Gram

architecture in Mikolov, Chen, et al. (2013), as well as results comparable to the

state of the art when using a combination of resources (such as random walk

embeddings + Skip-Gram on text).

Goikoetxea et al. (2016) explore different strategies for producing such com-

binations and arrive at the conclusion that embeddings learned from separate

data resources tend to be complementary and even simple strategies like vector

concatenation yield very good results (sometimes better than more sophisticated

combination methods). Ristoski & Paulheim (2016) study a similar approach

to learning embeddings from an RDF database – they use both random walks

and a kernel-based method to generate their artificial corpora. This family of

approaches offers two big advantages: 1) no annotated data is necessary for

training the models; 2) the representation is built from knowledge encoded in the

KG, which is often complementary to what can be extracted from natural texts.

This approach to a great extent sidesteps many of the issues discussed above (it

has wide coverage, puts the word and sense vectors in the same space, there is no

noise from inaccurate WSD), but in turn is not able to explore data from natural

texts.

19This work uses the UKB tool and its function for printing random walks in order to generate
the corpus. I also make use of this functionality: http://ixa2.si.ehu.es/ukb/

20https://code.google.com/archive/p/word2vec/

41

3.3.3 Neural Networks for Sequence Labeling

In the following section I examine the application of NNs to two specific sequence-

to-sequence NLP tasks, i.e. problems where a series of inputs must be transformed

into an output series of elements drawn from a different pool of classes. The

tasks which the thesis focuses on are POS tagging and WSD. NNs, and more

specifically RNNs, are selected as a primary supervised method because they

provide a convenient and powerful approach to capturing variable-length contexts.

Many applications built to solve these two tasks, especially more recent ones,

utilize the previously described LSTM architecture.

There is one simple modification to LSTM networks that is very popular

for sequence-to-sequence tasks in general: making them bidirectional (Bi-LSTM;

Schuster & Paliwal (1997)). This merely stands for the fact that the input

sequence is fed twice to two different LSTM layers – the first one is given the

input as is ({w1, w2, ..., wn}), while the second one receives it in reversed order

({wn, wn-1, ..., w1}). The two LSTMs produce a sequence of outputs: {h1
forward,

h2
forward, ..., hn

forward} and {h1
backward, h2

backward, ..., hn
backward}. The separate

representations from the hidden layers are combined per input step – usually

through concatenation (hforward
i ◦ hbackward

i), but non-linear combinations can be

applied as well (e.g. tanh(Lfhfi + Lbhbi + bl), where Lf, Lb and bl are parameters

that specify how the combination is done (Ling et al., 2015)) – and then fed to a

classifier over the set of possible tags (e.g. a softmax layer). This modification of

the recurrent architecture allows the model to look forward and backward from

the word/token that it tries to tag/disambiguate, an ability that is very important

in sequence-to-sequence tasks in NLP, as in language important information is

often withheld until a future moment.

Neural Networks for POS Tagging

Collobert & Weston (2008) is a slightly earlier but very influential work on

POS tagging with neural networks. In it, a convolutional neural network solves

in parallel several NLP tasks (such as POS tagging, chunking, named entity

recognition, semantic role labeling). Instead of sequential processing, convolutional

networks examine a snapshot of the whole context and learn to discover patterns

in it. In this way information is shared between the different detection and

42

Figure 3.3: A bidirectional RNN (Popov, 2016b)

classification tasks, which helps better constrain all of them and is also an example

of multi-task learning.

Wang et al. (2015a) is a more recent work, in which POS tagging is treated as a

sequence-to-sequence task. It employs a bidirectional LSTM network and achieves

results competitive with the state of the art. It also examines different strategies

for encoding input data: from one-hot vectors combined with binary encodings

for case marking to specially-trained word embeddings, whereby the embedding

procedure doesn’t learn to predict withheld words but rather to guess whether it is

presented with a ”correct” context (i.e. a naturally occurring sequence) or with an

”incorrect” one (where a certain word in the natural sequence has been swapped

with a randomly chosen alternative). Through the addition of a morphological

feature (bigram suffix encoded as a one-hot vector) the network is able to achieve

state-of-the-art results. Wang et al. (2015b) show how the same architecture can

be successfully used for solving other sequence-to-sequence tagging tasks: chunking

and named entity recognition. Huang et al. (2015) combine a bidirectional LSTM

network with a CRF layer for POS tagging, chunking and NER. They note that

this architecture is less dependent on embedded input, achieving accurate scores

without recourse to word embeddings.

Plank et al. (2016) evaluate a bidirectional LSTM POS tagger on data for 22

languages and obtain state-of-the-art or close to state-of-the-art results on all of

them. Character-based embeddings are shown to be especially useful when tagging

non-Indoeuropean and Slavic languages. Another innovation is an auxiliary loss

43

function that forces the network to distinguish between rare and common words

(another instance of multi-task learning; the logic behind this addition is that in

this way the network will learn when to trust features pertaining to more frequent

words). Ling et al. (2015) is another work that effectively demonstrates the benefit

of character-based word embeddings – that a Bi-LSTM model can successfully

learn to compose words out of smaller units (characters) and to incorporate

both lexico-semantic and lexico-syntactic information in the composition. Such

models handle better morphologically complex languages (e.g. Turkish) and

have the added advantage of being able to give meaningful representations to

out-of-vocabulary words.

With regards to POS tagging in Bulgarian, Simov & Osenova (2001) describe a

hybrid approach: a simple RNN combined with a rule-based system. This system

achieves ”95.17% accuracy for POS disambiguation and 92.87% for all grammatical

features”. Simova et al. (2014)21 report on the accuracy of several POS taggers

against the BulTreeBank data: 95.91% (BLL Tagger), 94.92% (Mate morphology

tagger), and 93.12% (TreeTagger). This work uses the full BulTreeBank tag set of

680 labels. It is also interesting in that it exploits the interaction between multiple

dependency parsers and POS taggers in order to improve accuracy scores and can

thus be seen as a roundabout instance of multi-task learning.

Neural Networks for WSD

There are several strategies for using RNNs for WSD. One is to use such an

architecture in an identical way to what was described with regards to POS

tagging – the RNN outputs a hidden layer representation per each input, which is

subsequently what the classifier trains upon (be that a softmax activation function,

a CRF layer, etc.). K̊agebäck & Salomonsson (2016) train a Bi-LSTM model

to solve the lexical sample tasks of Senseval-2 (Kilgarriff, 2001) and Senseval-3

(Mihalcea et al., 2004), i.e. the network only has to deal with one disambiguation

case per sentence. The Bi-LSTM takes both left and right contexts surrounding

the target word, reformulated as the corresponding states of the forward and

backward LSTMs, and then reshapes that representation through a lemma-specific

hidden layer. Thus, there is a separate model trained per lemma that reshapes

21Simova, I., Vasilev, D., Popov, A., Simov, K., & Osenova, P. (2014). Joint Ensemble Model
for POS Tagging and Dependency Parsing. In Proceedings of the First Joint Workshop on
Statistical Parsing of Morphologically Rich Languages and Syntactic Analysis of Non-canonical
Languages (pp. 15-25).

44

the output of the Bi-LSTM into a vector whose dimensions match the number

of word senses of the lemma. The Bi-LSTM layer, however, is shared among the

lemma models and continues to learn throughout all training cases. The presented

architecture achieves state-of-the-art results and has the added advantage of not

requiring any feature-engineering apart from word embeddings as input. However,

a significant disadvantage is that separate lemma experts have to be learned for

all words in the training data – much like SVM-based systems – and thus the

model is much less flexible in terms of both training and application.

Raganato, Bovi, & Navigli (2017) propose several neural architectures in

order to overcome this problem. They present a Bi-LSTM tagger that learns to

disambiguate an input sequence of words {w1, w2, ..., wn} drawn from vocabulary

V into a sequence of words and senses {y1, y2, ..., yn} drawn from vocabulary

O = S∪V , where S is the pool of known senses. Two versions of the tagger are put

forward – a vanilla Bi-LSTM one and another that adds an attention layer, i.e. a

mechanism that learns to pay attention to different parts of the context depending

on the current situation (Bahdanau et al., 2014). The attention mechanism leads

to good improvements on a number of evaluation datasets. Another model is

proposed, this time an encoder-decoder architecture, whereby the input sequence

is first read by a Bi-LSTM encoder and then a Bi-LSTM decoder takes the encoded

representation and ”translates” it to the output sequence (Sutskever et al., 2014).

The encoder-decoder alternatives do somewhat worse than the Bi-LSTM taggers,

indicating that this type of architecture, even though computationally more

complex, is less optimal for WSD. This work also introduces two auxiliary loss

functions, i.e. a multi-task learning setting – POS tagging and coarse-grained

semantic tagging (or supersense tagging). Of the two, only the latter one is

shown to benefit WSD. Overall, the attentive Bi-LSTM variants are able to attain

state-of-the-art or comparable results.

The other popular and successful strategy for neural WSD, very broadly speak-

ing, aims to represent the context of the target word as a vector in an embedding

space and then compare that representation to precomputed embeddings for the

set of possible senses that apply to the lemma of the target word. LSTM models

offer a powerful tool for representing context in the above-stated way, due to

their ability to handle variable-length sequences and to learn both local and long

distance dependencies. Such context representations are useful in a variety of

NLP tasks, not merely in WSD. For instance, Kiros et al. (2015) describe a model

that learns a generic sentence encoder that provides distributed representations

45

which can be used in different settings. The architecture consists of an encoder

that encodes the input sentence and of two decoders which try to reproduce the

preceding and following sentences respectively. Melamud et al. (2016) present

another neural model for context representation learning, in which a Bi-LSTM

layer obtains representations of the left and right-adjacent contexts of the target

word; their concatenation is passed to a multi-layer perceptron and the resultant

context embedding is used, together with precomputed word embeddings, to

obtain the negative sampling loss from Mikolov, Sutskever, et al. (2013), on which

the model is trained. It is evaluated on several tasks, including WSD, and the

system – called context2vec – is actually the second-best one in the comprehensive

evaluation by Raganato, Camacho-Collados, & Navigli (2017). Other neural

approaches to learning context representation are: Kenter et al. (2016), which

learns word embeddings optimized for context representation through simple

linear combination; Socher et al. (2011), which combines the word vectors in the

context according to the structure of its parse tree; Q. Le & Mikolov (2014), which

learns to embed words and paragraphs in parallel. Systems of this kind usually

also compute sense representations on the basis of example sentences found in

dictionary definitions, so that they can calculate a distance measure between those

and the context representation.

Yuan et al. (2016) take a similar approach, in that they first train a large

LSTM model to encode contexts with respect to a hidden target word and then

use that model to compute the representations of example sentences per word

sense. New cases for disambiguation are situated in the embedding space and

categorized according to their proximity to known instances. The study finds

that extending the number of available examples per word and propagating sense

labels to them from the gold data (again, via a similarity metric computed over

the context representations) leads to improvements in the accuracy scores. In

fact, this work reports the highest results in WSD on several popular evaluation

datasets. M. Le et al. (2017) note that the above study is difficult to replicate,

since neither the data (a large 100-billion-words corpus) nor the code are made

available. Theirs is a replication study that tries to reimplement the same system

and train it, albeit on a much smaller corpus (1.8 billion words). Despite this

limitation and not being able as of yet to replicate all steps of the algorithm

in Yuan et al. (2016), they show that their system achieves competitive results.

However, even with this much reduced amount of data, training can easily take

46

months on a powerful machine, so at this point it remains dubious as to how easy

it would be for researchers to retrain this system.

3.3.4 Multi-task Learning with Neural Networks

On several occasions in this chapter I have mentioned in passing instances of

multi-task learning, mostly in relation to NN learning setups (Collobert & Weston,

2008; Plank et al., 2016; Raganato, Bovi, & Navigli, 2017). By this is meant the

combination of two or more training signals, against which an NN optimizes its

parameters. Different tasks can be combined, e.g. POS tagging and syntactic

parsing, or syntactic parsing and token frequency estimation in the context of

NLP. Typically, the part of the NN that attempts to answer a particular sub-task

is implemented as a separate output layer (or a number of layers) on top of which

classification can be carried out. The separate sub-task computational paths

in the NN graph may diverge at the same place (e.g. after an LSTM layer) or

the task-specific layers may be connected at different places (e.g. having a POS

tagging layer after the fist LSTM layer, then having the syntactic parser pathway

diverge after the second LSTM layer, etc.); the two training signals can be fed

simultaneously at each step, or they may take turns. The network thus shares a

number of parameters in the hidden layers that are on the main computational

pathway and updates them separately in relation to the training signals.

The main motivation for multi-task learning stems from the hypothesis that

different kinds of analyses rely on different kinds of structures in language. There-

fore utilizing more than one training signal can force the network to encode in

its hidden layers a representation that reflects the separate types of structures.

Since the levels of analysis in natural languages are heavily interdependent, such

shared representations may in some cases turn out to be useful across tasks.

Thus, the lexical representation of a word may be an indicator of what kinds of

syntactic patterns it enters into and vice versa (e.g. knowing whether a particular

verb is used in a transitive or intransitive sense is important for carrying out a

correct syntactic analysis, just as a correct syntactic analysis can disambiguate the

usage of a verb with multiple senses). Usually one of the tasks is conceptualized

as the main task in the setup and the other(s) is thought of as auxiliary, i.e.

improvements are expected in the first one, whereas the supporting task(s) serves

as a source of stabilization – in order to constrain the noise in the first training

signal and to help handle the skewedness of the data.

47

Alonso & Plank (2017) present a study of different combinations of NLP

tasks – primary (frame detection and classification, supersense tagging, NER, etc.)

and auxiliary (chunking, dependency label classification, POS tagging, frequency

estimation). They conclude that multi-task learning is not always effective and

the interactions between the different tasks needs to be considered carefully from

an information-theoretic point of view. The present thesis offers some preliminary

explorations in combining different NLP tasks that all depend on the lexical

representation of words. The motivation for these experiments comes mostly from

linguistic theory, but the information-theoretic angle demands a serious treatment

in any future work.

3.4 Summary and Motivation

The overview of background and related work in this chapter provides a broad

picture of some of the approaches to representing the lexicon of natural languages

– for computational purposes. This framework of relevant research is used to

position the current work with regards to what has already been accomplished

and also to identify areas that are under-researched. Especially important for

the dissertation is the overarching goal of bridging sub-fields of work, so that

hybrid representations of the lexicon can be obtained and explored in terms of

the advantages that they can offer.

The literature survey has introduced WordNet as a chief knowledge resource, as

well as its most important characteristics in terms of how it models lexical meaning.

As indicated in the chapter, there is a significant number of additional linguistic

resources that can be used for the enrichment of the symbolic representations of

WordNet. This line of work has been explored by some researchers, but is far

from exhausted. The approaches to KBWSD introduced provide a convenient and

powerful tool for testing such expanded representations of knowledge from different

sources. Furthermore, the chapter has touched upon methods for combining

this type of symbolic encoding of lexical knowledge with knowledge derived

through statistical methods from naturally occurring data, i.e. obtaining hybrid

representations that marry theoretical and data-derived models. The probabilistic

representation of linguistic units such as words, senses, synsets, etc. is a fast

evolving research area, but as evidenced in the survey, there is still abundant space

for the exploration of various methods for data representation. This feeds into

48

the dissertation’s focus on transforming the structure of semantic networks into

probabilistic models and on deriving such representations not just of words, but

also of word senses and contexts. Such novel representations can have multiple

applications. One of them is in the field of WSD, and more specifically in

WSD with neural networks. In the thesis I offer two approaches to NN-based

WSD, which address some of the issues identified in this chapter: solving the

all-words WSD task with a single model; enabling an NN to make decisions on

all encountered words, not just on such seen in training; obtaining richer input

features via accessing different kinds of sources; representing contexts in a richer

semantic space; combining aspects of lexical learning in order to improve the

robustness of representation. Another application of probabilistic models for

lexical representation is as a tool for the analysis of knowledge graphs and the

(potentially new) relations that obtain within such graph models. This line of

work is also incorporated in the dissertation.

49

Chapter 4

Recurrent Neural Networks for

Part-of-Speech Tagging

This chapter presents a neural network solution to the task of POS tagging, as

evaluated on a Bulgarian corpus (Popov, 2016a)1. The architecture demonstrates

that recurrent neural networks are suitable for sequence-to-sequence tasks in NLP

and also serves as a basis for the architectures for WSD developed later on in

the thesis. The chapter also describes the process of gathering data for training

distributed representations of words and suffixes in Bulgarian. The morphological

representations are shown to complement the word representations in a significant

way and therefore to encode a significant amount of important information for

the modeling of morphosyntactic information in the lexicon.

4.1 Word and Suffix Embeddings for Bulgarian

In order to obtain distributed word representations for Bulgarian, a relatively

balanced corpus was gathered, large enough for the training of a shallow NN model.

It contains approximately 220 million words. The sources for it include: most of

the Bulgarian Wikipedia, a selection of news articles and fiction texts. The total

number of unique words is 1.6 million, but only ”frequent” ones are considered for

the training, i.e. those with at least 5 occurrences in the corpus, which gives a final

vocabulary size of about 457,000 words (by words here are meant lowercased word

1Popov, A. (2016). Deep Learning Architecture for Part-of-speech Tagging with Word and
Suffix Embeddings. In International Conference on Artificial Intelligence: Methodology, Systems,
and Applications (pp. 68-77).

50

forms, as the corpus is not lemmatized). The Skip-Gram Word2Vec architecture

was used to train the word embedding vectors. Preliminarily experimentation

confirmed the intuition that the relatively small size of the corpus obviates the

need for larger vector dimensionality, so the final size of the vectors was set at

200 (e.g. using vectors of size 600 did not result in any gains with respect to

the task at hand). Additional manual experimentation was carried out, in which

the word embeddings were used to generate answers for the word analogy task

(after Mikolov, Chen, et al. (2013)): the system is provided with a pair of words

among which obtains some kind of semantic relation and with a single word, to

which it is expected to find a partner that stands in the same kind of relation.

For instance: the query ”Athens is to Greece, as Norway is to—” should result

in ”Oslo”; ”mouse is to mice, as dollar is to—” should yield ”dollars”; etc. No

such set of word pairs exists for Bulgarian, so the embeddings set has not been

comprehensively testes on this task, but impromptu experimentation has shown

that the VSM is able to identify correctly many semantic relations and to retrieve

the relevant words in the pairs.

Having the word embeddings at place, another procedure for training dis-

tributed linguistic representations was devised. This type of representation at-

tempts to capture information about morphological segments, which could be

complementary to the syntactico-semantic meaning encoded in the word vectors.

A smaller subcorpus of 10 million words was extracted for the purpose (solely

from the Bulgarian Wikipedia), which was then preprocessed so that it encodes

morphological information only. The words in the running text were replaced

with parts of them, here called ”suffixes” and meant to roughly correspond to

meaningful morphological units occurring at the end of word forms. The suffixes

are produced by normalizing the original words, i.e. no actual morphological

preprocessing is used. Then the Skip-Gram model was once again used to train

on the suffix corpus.

The normalization procedure is done as follows. Words are first converted

to lowercase, though information about the original case if preserved through

a special encoding. In cases where the word length is more than 3 characters,

the last three symbols are kept and the preceding segment is replaced with an

underscore character. Tokens with three or fewer characters are kept as they are.

Case information is preserved according to the following convention: capital case

tokens get the ”@” symbol concatenated to their beginning; tokens whose letters

are all in uppercase (except one-letter words) get the ”$” symbol prepended;

51

mixed case tokens (i.e. lower and upper case letters) are marked with the ”#”

symbol. Here are some examples of applying the schema just described:

По = @по
по = по
държава = _ава
Държава = @_ава
АП = $ап
БГНЕС = $_нес
вик = вик
Вик = @вик
ВиК = #вик

The thus-obtained training corpus contains about 20,000 unique frequent

suffixes. About 17,000 more are excluded from the vocabulary on the basis of

frequency filtering – many of those are probably derived from proper names with

non-typical endings, rare words with two or three characters, etc. The reasoning

behind this procedure is that as Bulgarian is a morphologically rich language that

encodes grammatical information on the word level primarily in its suffixes, these

representations can capture information not accessible by merely observing word

form co-occurrence patterns. In addition to that the suffix embeddings capture

information about text cases and word capitalization, which is often crucial for

determining whether a word starts a new sentence, is part of a named entity, is

an adjective formed from a proper noun, etc. The dimensionality of the suffix

embeddings is set to just 50 positions, to reflect the fact that they are much fewer

in number and a smaller corpus should suffice for the training process.

4.2 Deep Learning Architecture for Part-of-speech

Tagging

For the reasons already outlined in the subsection on sequence tagging with

NNs, POS tagging is here approached via an RNN supervised model. The RNN

hidden layers utilize the LSTM mechanism in order to dynamically handle long

sequences. The architecture is made bidirectional, so that it can incorporate

forward and backward contexts into word representations. The states of the two

52

LSTM layers are concatenated for each time step, resized through a separate

linear transformation and the resulting vector is fed into a softmax classification

layer that outputs a probability distribution over the POS tagset. During training

this distribution is compared against a one-hot gold label, while in testing mode

the highest probability tag is selected as final output.

Figure 4.1: Recurrent neural network for sequence-to-sequence tagging: The
dotted lines mean that a component or a connection is optional (in the case
of concatenating embeddings from two different sources – e.g. word and suffix
embeddings). Taken from Popov (2017).

The architecture allows for the concatenation of different inputs – word em-

beddings and suffix embeddings in this case (see Fig. 4.1). Whenever using larger

inputs, it makes sense to use a larger hidden layer in order to handle the increased

number of parameters.

4.3 Experiments and Results

The training and evaluation data used in the following experiments come from

the BulTreeBank POS tagged corpus (Simov et al., 2002). The corpus contains

approximately 38000 sentences, tagged with POS labels. 3500 sentences were

used as a validation set, 3500 as a test set and the rest of the sentences were

used as training data. The POS tag set used has a medium-level granularity – it

comprises of 153 labels. Its labels are more general than those of the full tag set,

which number 680, but the tag set, nevertheless, expresses far more morphological

53

distinctions than tag sets for morphologically poorer languages. For instance,

the popular Penn Treebank tag set for English has only 48 labels (Marcus et al.,

1993).

A vanilla parametrization of the RNN architecture was used to train the

presented models: just one hidden Bi-LSTM layer; learning rate set to 0.3 for all

experiments; cross entropy as an objective function; gradient descent as a training

algorithm; no regularization techniques. The size of the hidden layer varies slightly

in the different experiments. Next, I will briefly describe some of the preliminary

experiments and then report the main results of the research.

4.3.1 Setting the Size of the Word Embeddings

Some initial experimentation was done in order to settle on a dimensionality size

for the word embeddings used in the main POS tagging experiments. Two sets of

embeddings were trained on the corpus – one with vector size 200 and one with

size 600. Then the sets were used to provide input representations during the

training of a POS classifier. The models trained for only 10000 iterations (per

batches of 100 sentences) and had hidden layers of 100 units. Table 4.1 shows the

results.

Word Embedding Size Accuracy
200 77.67%
600 71.89%

Table 4.1: POS tagging accuracy depending on the dimensionality
of the input word embeddings (after 10000 training iterations)

The results are not sufficient to conclusively prove the superiority of one

dimensionality size over the other. For instance, the network could need more

time in order to learn all dependencies between the greater number of parameters

for the 600-sized set, or it might need a larger hidden layer to do so. Cursory

experimentation with a larger hidden layer did not reveal such a pattern, but

certainly more empirical data is needed to determine the best parametrization

– for the network and the embeddings with regards to the POS tagging task.

However, bearing in mind that the training corpus used to learn the embeddings

is relatively small (compared for instance to the 100-billion-words corpus used to

learn the embeddings in Mikolov, Chen, et al. (2013)), a smaller dimensionality

size being a better solution is an intuitively plausible hypothesis.

54

4.3.2 Suffix Embeddings – Expressive Power and Size

One additional small-scale experiment was carried out to test in advance how

viable the suffix embeddings model is. The network architecture was trained for

10000 iterations with only suffix representations per word as input, i.e. no word

representations were fed to it.

An additional small experiment is presented here that demonstrates the viabil-

ity of the approach involving suffix embeddings. The neural network is fed only

with vectors from the distributed representations obtained for the suffixes, not

making any use at all of the word embeddings. Table 4.2 shows that the suffix

embeddings model learns very quickly in the initial stages of training, in fact

it performs about as well in comparison to the one with word embeddings only

(4.1). This result is not surprising, as morphological units encode more abstract

and high-level, grammaticalized information than lexical units. Suffix vectors of

two different sizes are used in the experiment: of size 50 and of size 200. The

hidden layers are again of size 100 and the experiments are run for 10000 training

iterations. The larger embeddings do lead to a slightly better accuracy for this

duration of training, but the gap is not large, which more or less matches the

intuition that suffix information can be encoded in fewer positions. The smaller

vectors were used in the rest of the experiments for the sake of efficiency.

Suffix Embedding Size Accuracy
50 77.11%
200 78.16%

Table 4.2: POS tagging accuracy depending on the dimensionality
of the input suffix embeddings (after 10000 training iterations)

4.3.3 POS Tagging with Word and Suffix Embeddings

The main experimental results from this line of research are presented here. Table

4.3 shows the accuracy scores for three different configurations of the neural

network. The first model uses only word embeddings as input (of size 200). The

second one combines word and suffix embeddings at the input (via concatenation);

due to the larger input, it has also a larger hidden layer (125 units per LSTM sub-

module, compared to 100 in the first model). In order to obtain a fair comparison,

a third experiment was done with a model that again uses only word embeddings,

but also has a larger hidden layer. All models were trained for 100000 iterations.

55

Model Accuracy
Word Embeddings (100 neurons) 91.45%
Word + Suffix Embeddings (125 neurons) 94.47%
Word Embeddings (125 neurons) 91.13%

Table 4.3: POS tagging accuracy when using word embeddings only, and when
complementing them with suffix embeddings (after 100000 training iterations)

The addition of the suffix embeddings clearly increases the power of the POS

tagger, thus confirming the hypothesis that morphological information can be

captured as efficiently as syntactico-semantic information about words. There is, of

course, the possibility that a more fine-tuned configuration of the NN architecture

could achieve similar results without using the suffix embeddings (or that the

same information from the suffixes could be captured by word embeddings trained

on a larger corpus), but much more intensive experimentation is needed in order

to test out the various possible combinations. It is also unclear how much useful

information in the suffix embeddings comes from the encoding of the word endings

and how much from encoding the case of words. However, the results are conclusive

enough as a validation step for the usage of RNN architectures as a solution to

sequence-to-sequence NLP tasks. The same architecture will be adapted to the

more complex task of WSD in a later chapter, and in the final chapter a multi-task

model will be presented that attempts to solve the two problems in parallel.

56

Chapter 5

Graph-based Modeling of Lexical

Semantics

The following chapter explores a knowledge-based method for word sense disam-

biguation that relies on a graph model of the lexicon, as well as strategies for

improving its accuracy on the basis of enriching the knowledge graph. The results

of several experiments are presented, starting with work tested on a Bulgarian

sensed corpus (BulTreeBank), then moving on to experiments with English text

as well (the SemCor corpus) and to further elaborations of the strategies for

enriching the knowledge graph. The word presented was originally described on

the following papers: Simov et al. (2015)1, Simov, Popov, & Osenova (2016b)2,

Simov, Popov, & Osenova (2016a)3, Simov, Osenova, & Popov (2016b)4.

1Simov, K., Popov, A., & Osenova, P. (2015). Improving Word Sense Disambiguation with
Linguistic Knowledge from a Sense Annotated Treebank. In Proceedings of the International
Conference Recent Advances in Natural Language Processing (pp. 596-603).

2Simov, K., Popov, A., & Osenova, P. (2016). The Role of the WordNet Relations in the
Knowledge-based Word Sense Disambiguation Task. In Proceedings of Eighth Global WordNet
Conference (pp. 391-398).

3Simov, K., Popov, A., & Osenova, P. (2016). Knowledge Graph Extension for Word Sense
Annotation. In Innovative Approaches and Solutions in Advanced Intelligent Systems (pp.
151-166). Springer.

4Simov, K., Osenova, P., & Popov, A. (2016). Using Context Information for Knowledge-
based Word Sense Disambiguation. In International Conference on Articial Intelligence: Method-
ology, Systems, and Applications (pp. 130-139).

57

5.1 Improving KBWSD on Bulgarian Data

As already discussed in the subsection on KBWSD in chapter 3 (background and

related work), knowledge-based approaches have enjoyed relative popularity in the

research community, due to their limited reliance on annotated data. Typically,

however, the knowledge bases used by such algorithms tend to encode mainly

lexical and world knowledge: lexical-semantic relations between senses, ontological

constraints, etc. Other types of knowledge, more dynamic and determined by

experience, are underrepresented in such KBs, even though they contribute crucial

bits of information to the representation of meaning in language: collocation of

concepts, selectional restriction of words, prototypical arguments of verbs, domain

membership, etc. In addition to this, it is an open question whether the existing

relations in KBs like WordNet form conceptual networks which are dense enough

to capture the paradigmatic knowledge about the world.

This work hypothesizes that such information – additional paradigmatic rela-

tions and syntagmatic ones – can be learned from textual resources, as well as

from other structured or semi-structured resources that are not explicitly defined

in formats such as that of WordNet, or by explicating information contained in

WordNet itself. Several such sets of additional knowledge were compiled at the

first stage of work and their impact on KBWSD accuracy was tested against a

sense-tagged Bulgarian corpus. In the rest of this section I first briefly describe

the corpus we used and then the various sets of inferred knowledge and the results

obtained with them.

5.1.1 Gold Data and the Inference of New Relations

BulTreeBank is a corpus of texts in Bulgarian annotated with POS and syntactic

information (originally in the HPSG framework, a conversion to a dependency

format is also available). Sense annotation was carried out after that, including

annotation of verb valency frames, senses of verbs, nouns, adjectives and adverbs

and entity linking to DBpedia URIs. At the moment when this work was done,

part of the sense annotations were mapped to the WordNet 3.0 synset hierarchy

and the rest were still in the process of being mapped. The mapping to the

Princeton WordNet hierarchy is important because it allows for the reusing of

the relations defined over that specific semantic network, whereas the Bulgarian

58

WordNet still has no associated hierarchy and semantic network defined with

the particular language in mind. For a more detailed description of the mapping

process, see Popov et al. (2014). Regarding the amount of available data, at that

particular point in time about 69,000 word forms in the corpus had mappings to

WordNet synsets.

The first set of new relations extracted for KBWSD is not derived from the

Bulgarian corpus but rather from WordNet itself. In order to increase the density

of the semantic network, the transitive closure of the hypernym hierarchy was

computed and made explicit in the conventional format for representing relations

in the KB. For example: the WN sense doctor#1 (doctor%1:18:00::) is a hyponym

of medical practitioner#1 (medical practitioner%1:18:00::) and a hypernym of sur-

geon#1 (surgeon%1:18:00::), therefore a direct relation is added between surgeon#1

(surgeon%1:18:00::) and medical practitioner#1 (medical practitioner%1:18:00::).

The hyponyms of the surgeon sense (and their own) will also be connected

to the general sense of medical practitioner, e.g. cosmetic surgeon#1 (cos-

metic surgeon%1:18:00::) gets linked to medical practitioner%1:18:00::. This

kind of inference is done for all hypernym-hyponym pairs encoded as explicit

relations in the WN network and containing synset-IDs found in the Bulgarian

WordNet. As a result of this procedure, 590,272 new relations have been added to

the semantic network, increasing significantly its density.

The second set of new relations between synsets is syntagmatic in nature. In

order to create it, the synactic annotations in BulTreeBank are used in conjuntion

with the sense annotations, where such are available. This means in practice

that mostly relations between nouns and verbs are extracted, as the rest of the

POS categories (adjectives and adverbs) were not yet annotated with word senses

at that point (some adjectives did have sense annotations, however). Using the

syntactic annotations transformed into dependency format makes the extraction

process easy, as words are directly connected via the dependency arcs. This work

targets the following dependency relations: nsubj, nmod, amod, iobj, dobj. The

numbers of the relations from these categories that are found in BulTreeBank and

both of whose arguments are annotated with WN senses are as follows: 1,844 nsubj,

3,875 nmod, 1,025 amod, 716 iobj, and 1,312 dobj token occurrences, extracted

out of 15,675 dependency relations of these types in total. These relations are

transformed to the WN format and added thus to the semantic network.

59

The relations extracted from BulTreeBank are then generalized to new ones

in much the same way as the hypernymy inference is done. The noun nodes in

the original relations each provide N hyponyms, which are then inserted in the

same relation, in place of their hypernym. This produces N new relations from

the original one. Thus, for instance, the relation {u:00118523-v v:00510189-n}
is derived from an attested nsubj relation, where 00118523-v is a WN sense

annotation of the Bulgarian verb ”prodalzha” (continue) and is also the head node

in the dependency relation (the predicate in nsubj), and 00510189-n, standing

for a word sense of ”veselba” (revelry), is the dependent node (the subject). The

dependent node yields a set of hyponyms which are all (the procedure is recursive,

until the whole sub-hierarchy is exhausted) added into a relation with the node

00118523-v. For instance, 00510723-n (a synset bringing together particular word

senses of the words ”binge”, ”bout” and ”tear”) has been entered by analogy in

the same slot as 00510189-n.

The outlined procedure relies on a interpretation of the syntactic relations as

connecting entities and events (i.e. a general conception of events that includes

states as well). If an entity can be related to an event in a particular way, its

hyponyms should also be relatable to it in the same way, as they inherit the

characteristics of the original entity. Such a strategy suffers from a number of

problems: inaccuracies in the original relations (especially when an automatically

constructed parsebank is used), non-representative relations (i.e. perhaps the text

is very tightly specialized and/or non-standard), the fact that although logically

permissible some inferred relations might be highly unlikely. Nevertheless, this

approach provides a straightforward means to increase the semantic network

density and to add syntagmatic knowledge to the KB. The approximately nine

thousand original relations are extended to a new set that contains: 372,247 nsubj,

1,125,823 nmod, 377,577 amod, 114,760 iobj, and 292,202 dobj relations. Bear

in mind that since nmod relations involve two entities, they are extended in two

steps – one run of the algorithm replaces the head sense with hyponyms and the

other does the same for the dependent node.

It is important to make a note that the method outlined above assumes that

the relations attested in the treebank do not constitute the most general possible

ones. This means that the participants in the events can be generalized upward in

the hierarchy. Such an inference mechanism would be inevitably noisy, as it needs

to make inductive leaps rather than rely on strict deductive rules. Nevertheless,

this work attempted to test naively the utility of such generalization. This further

60

enrichment is done in the following way. When a particular dependency relation

is processed, the entity that will be used to infer new arguments is generalized

one level up the hierarchy (i.e. the algorithm climbs up to the hypernym of

the selected entity). Then the same procedure as before is applied and all hy-

ponyms of that entity are inserted into the respective slot in the relation. To

reuse the earlier example, in the case of the relation {u:00118523-v v:00510189-n}
the n-node will first be generalized to the synset 00509846-n: merrymaking#1

(merrymaking%1:04:00::), conviviality#2 (conviviality%1:04:00::), jollification#1

(jollification%1:04:00::) (a boisterous celebration; a merry festivity). This synset

is then included as a participant in the new relation, and its own hyponym

synsets are included as well, i.e. not only the revelry sense but also its other sub-

class: 00510050-n: jinks#1 (jinks%1:04:00::), high jinks#1 (high jinks%1:04:00::),

hijinks#1 (hijinks%1:04:00::), high jinx#1 (high jinx%1:04:00::) (noisy and mis-

chievous merrymaking).

The last set of new relations obtained in the work currently discussed is built

on top of the WordNet Domains Hierarchy (Bentivogli et al., 2004). This hierarchy

provides domain labels for the WN synsets. Each synset has at least one associated

domain, and the domains are specified either by a specific discipline for organizing

knowledge (e.g. ”linguistics”) or by a particular object of interest (e.g. ”chess”).

First a naive strategy was used under which all synsets related to a domain were

connected to a special ID created for the domain. As this did not yield good

results, another strategy was employed under which all synsets in a domain were

connected to one another. In order to restrict the explosion of new relations, only

synsets attested in the Bulgarian data were connected with each other. 132,596

domain relations were obtained in this way.

5.1.2 Experimental Setup and Results

The newly inferred relation sets are used to generate new knowledge graphs to be

used with the PageRank algorithm. Since some of the new relations are obtained

from the actual gold data, a portion of the BulTreeBank corpus was set aside for

testing purposes: out of the 40 files in the corpus, 37 are used to extract the new

relations and 3 – purely for evaluation purposes. Those graphs that do not use

syntactically-derived relations from the gold data can be tested on the whole of

it. Below are given the descriptions and codes for the different combinations of

relation sets used to construct the knowledge graphs:

61

• WN: WordNet relations

• WNG: WordNet relations + relations from the glosses

• WNI: WordNet relations + inferred hypernymy relations

• WNGI: WordNet relations + relations from the glosses + inferred hypernymy

relations

• WNGID1: WordNet relations + relations from the glosses + inferred hyper-

nymy relations + domain relations of the kind synset-to-domain and domain

hierarchy relations

• WNGID2: WordNet relations + relations from the glosses + inferred hyper-

nymy relations + domain relations of the kind synset-to-synset and domain

hierarchy relations

• WNGIS: WordNet relations + relations from the glosses + inferred hyper-

nymy relations + dependency relations from the gold corpus

• WNGISE: WordNet relations + relations from the glosses + inferred hyper-

nymy relations + dependency relations from the gold corpus + extended

dependency relations

• WNGISED1: WordNet relations + relations from the glosses + inferred

hypernymy relations + dependency relations from the gold corpus + extended

dependency relations + domain relations of the kind synset-to-domain and

domain hierarchy relations

• WNGISED2: WordNet relations + relations from the glosses + inferred

hypernymy relations + dependency relations from the gold corpus + extended

dependency relations + domain relations of the kind synset-to-synset and

domain hierarchy relations

• WNGISEUD2: WordNet relations + relations from the glosses + inferred

hypernymy relations + dependency relations from the gold corpus + extended

dependency relations starting from one level up + domain relations of the

kind synset-to-synset and domain hierarchy relations

Table 5.1 shows the results for the relation sets that are tested on the full

dataset5. They suggest, for this particular dataset, that the addition of the

transitive closure of the hypernymy relations does improve KBWSD, especially

when the new set is added in addition to just the baseline relations from the WN

ontology. The domain relations do help only in the case of one-to-one connections

between synsets in the same domain.

5Page Rank was applied via the UKB tool, which was run with its default settings: a context
window of 20 words disambiguated together, after 30 iterations of the algorithm

62

Combination Accuracy
WN 51.6%
WNG 54.2%
WNI 53.7%
WNGI 54.9%
WNGID1 54.9%
WNGID2 55.1%

Table 5.1: Results on the full gold corpus

Table 5.2 shows the results on the 3 files from BulTreeBank that are not used to

extract new relations. This data provide counter-evidence to the hypothesis that

hypernymy inference complements the relations from the WN glosses (however,

the improvement with respect to the WN baseline is consistent with the previous

results). The table demonstrates that syntactically-derived relations improve the

accuracy significantly. The extended syntactic relations are especially beneficial,

giving about a 5% improvement over the original syntactic relations. The more

general strategy for extending the relations (going one level up the hierarchy and

then down) also accounts for a big improvement (about 3%), indicating that even

though this method is certainly quite noisy, the huge increase in relation density

in the semantic network offsets this and provides a powerful boost to the KBWSD

algorithm. The relations inferred from syntagmatic (i.e. contextual) knowledge

account for about a 10% improvement in these results, which means that a dense

enough knowledge graph made out of relevant relational information can improve

dramatically KBWSD accuracy. Additionally, it indicates that this kind of lexical

modeling can capture a lot of information about lexical items. The following

subsections provide further investigations of this hypothesis.

Combination Accuracy
WN 51.7%
WNG 53.8%
WNI 53.5%
WNGI 53.7%
WNGID1 53.8%
WNGID2 55.0%
WNGIS 56.5%
WNGISE 61.6%
WNGISED1 61.7%
WNGISED2 62.4%
WNGISEUD2 65.6%

Table 5.2: Results on the test portion of the corpus (3 files)

63

5.2 KBWSD with Inferred Relations on English

Data. Analysis of the WN Relation Types

Next, I provide some further details on the application of the ideas outlined above,

only this time tested against English and Bulgarian data. This research is a natural

extension of the work presented in the previous section and as such attempts to

provide a somewhat deeper analytical insight into this way of modeling the lexicon.

First I turn to the work presented in Simov, Popov, & Osenova (2016b) and

Simov, Popov, & Osenova (2016a), which analyzes in greater depth the principles

and sources of new semantic relations introduced in the previous section. Then

I examine the results in Simov, Osenova, & Popov (2016b), which complements

further the relation enrichment with two new methods for relation extraction,

obtaining additional improvements on WSD accuracy.

Simov, Popov, & Osenova (2016b) and Simov, Popov, & Osenova (2016a) seek

to perform a more in-depth analysis of the contributions to the KG quality of

various relation sets. To this purpose, the original relations of the WN semantic

network are taken per their types and the subgraph of each type set is added to

a baseline graph, so that its contribution can be evaluated. A similar method

is applied to the relation inference process introduced in the previous section,

whereby existing relations are expanded to new ones based on the WN hierarchy;

only in this case relation types other than the hypernym-hyponym type are

expanded and evaluated. The papers also analyze the separate contributions of

the types of relations in the set derived from the WordNet gloss (WNG) corpus

and of syntax-based relations.

The baseline KGs used for the evaluation of separate relation types from WN

are the following: WN (the original relations), GL (the relations derived from the

gloss corpus) and WNG (the combination of the two). In this case the baselines

serve not as a lower bound that new accuracies scores should improve upon, but

as an upper bound – so that it becomes possible to evaluate the extent to which

separate relation sets exhaust the overall contribution of the KG. Both SemCor

(English data) and BTB (Bulgarian data) are used for the evaluation (Table 5.3).

The same baselines are then used to evaluate the contribution of relations that go

beyond the original sets and therefore can overcome them.

64

KG SemCor BTB
WN 49.37 52.97
GL 51.66 51.15
WNG 58.97 55.90

Table 5.3: Accuracy scores on the two evaluation corpora, when using the original
knowledge graphs (Simov, Popov, & Osenova, 2016a).

5.2.1 Evaluating the Original WordNet Relations

For the purposes of the evaluation, the original WN relations are grouped in the

following sets, which correspond to the relation types in WN. The nature of the

relation is given in parenthesis, the numbers indicate how many such relations

are found in the network and the letters in the final parentheses indicate relation

subtypes according to what POS combinations are attested in the whole relation

set (A – adjective, N – noun, R – adverb, and V – verb).

1. WN-Hyp (hypernymy) 89089. (N-N), (V-V).

2. WN-Ant (antonymy) 8689. (A-A), (N-N), (R-R), (V-V).

3. WN-At (attribute relation between noun and adjective) 886. (N-A), (A-N).

4. WN-Cls (a member of a class) 9420. (A-N), (N-N), (R-N), (V-N).

5. WN-Cs (cause) 192. (V-V).

6. WN-Der (derivational morphology) 74644. (A-N), (N-A), (N-N), (N-V).

7. WN-Ent (entailment) 408. (V-V).

8. WN-Ins (instance) 8576. (N-N).

9. WN-Mm (member meronym) 12293. (N-N).

10. WN-Mp (part meronym) 9097. (N-N).

11. WN-Ms (substance meronym) 797. (N-N).

12. WN-Per (pertains/derived from) 8505. (A-N), (R-A).

13. WN-Ppl (participle of the verb) 79. (A-V).

14. WN-Sa (additional information about the first word) 3269. (A-A), (V-V).

15. WN-Sim (similar in meaning) 21386. (A-A).

16. WN-Vgp (similar in meaning verb synsets) 1725. (V-V).

The following experiments provide some indication of the usefulness of these

different sets for KBWSD; this is done by measuring the accuracy derived from

KGs that employ each of these sets in isolation. These various relation types

express different kinds of information and connect different types of nodes in the

semantic graph. Here the last property is indicated via the POS combinations, but

65

in principle other semantic distinctions could be drawn. Therefore, some of the

relation types will naturally be useful in isolation only for disambiguating words

of certain POS categories. Nevertheless, the relation subset WN-Hyp, which

concerns only nouns and verbs, is assumed as the most basic relation type and is

used in all combinations – because it is much larger than the rest and because it

provides a great amount of connectivity, which in a sense makes it a ”skeleton”

for the KG. Thus, it alone serves as another lower-bound baseline KG and it is

always combined with one other relation type in the rest of the KGs in Table 5.4.

KG SemCor BTB KG SemCor BTB
WN-Hyp 33.52 45.03 WN-Hyp+WN-Mm 33.70 44.81
WN-Hyp+WN-Ant 38.63 48.41 WN-Hyp+WN-Mp 35.67 45.22
WN-Hyp+WN-At 36.97 47.91 WN-Hyp+WN-Ms 33.57 45.31
WN-Hyp+WN-Cls 34.23 46.11 WN-Hyp+WN-Per 39.57 48.19
WN-Hyp+WN-Cs 33.54 44.99 WN-Hyp+WN-Ppl 33.53 45.11
WN-Hyp+WN-Der 39.03 50.63 WN-Hyp+WN-Sa 38.29 48.31
WN-Hyp+WN-Ent 33.30 44.65 WN-Hyp+WN-Sim 42.89 49.28
WN-Hyp+WN-Ins 34.18 45.13 WN-Hyp+WN-Vgp 34.22 46.07

Table 5.4: Results for the separate subsets of relations in WN, tested against
SemCor and BTB (Simov, Popov, & Osenova, 2016a).

These results demonstrate that not all relation types contribute to the quality

of the KGs, as measured for the purpose of KBWSD. There is a number of relation

sets that either decrease the accuracy score (WN-Ent) or improve it only negligibly

(e.g. WN-Cs, WN-Ms, WN-Ppl). Some of these might be just too small (the

WN-Ppl relations number only 79), but this reasoning cannot provide an overall

explanation of the differences in the table (e.g. WN-Ms relations are 797 and

yield a 0.05% improvement, while WN-At relations are 886 and yet they yield a

3.45% improvement). The greatest improvement is achieved by the WN-Hyp+WN-

Sim combination (+9.47%), which is not surprising, as the similarity relation

links adjectival synsets – precisely the kind of information that is missing in the

hypernymy relations, which do not connect adjectives at all in the KG.

Thus, it is suggested that some of the original relations might in principle be

excluded from the KG without hurting the accuracy of the KBWSD algorithm.

Some additional experiments have to an extent confirmed this hypothesis. For

instance, the combination WN-Hyp + WN-Ant + WN-Der + WN-Per +

WN-Sa + WN-Sim + WN-Mp + WN-Cls results in an accuracy score of

49.34% on SemCor, only 0.04% lower than the baseline result with the full graph.

The same KG performs with only 0.61% lower accuracy on the BTB data. Thus,

66

almost 25,000 relations are excluded from the KG with relatively small negative

effect on the WSD process.

The influence of the various relations sets is also different on WSD as performed

on the two corpora. One reason for this might be that the Bulgarian data is much

more homogeneous in terms of the domains it covers, in contrast to SemCor; also,

BTB is annotated mainly with noun and verb senses.

5.2.2 Inference over WordNet Relations

Similarly, an evaluation is performed of the impact obtained by adding inferred

relations to the baseline WN and WNG graphs. The inference is done via the

same strategy as was presented in the previous section, but modified per relation

type. Thus, WN-Hyp is extended via inferring its transitive closure, but for the

WN-Ant type, for instance, only N-N relations are extended, as adjectives and

adverbs are not hierarchically organized in WN. The different relation sets require

their own inference logic; for instance: WN-At (attribute) relations allow for all

hyponyms of a noun to inherit its attributes; in the case of WN-Der (derivational)

relations, which cover a diversity of word-pairs of different POS categories, nouns

can be substituted with their hyponyms and verbs can be substituted with their

hypernyms; WN-Mp (meronymy relation) and WN-Ppl (participle relation) are

not extended in this work; etc. For more details on the specific ways relations are

extended, see Simov, Popov, & Osenova (2016a).

Table 5.5 shows that improvements based on additional relations inferred from

the original WN semantic network are minimal, if present. The most significant

gains are observed with respect to the BTB data, when the inferred relations are

added to the base WN relations – all extensions have a significant positive effect

in that case; with SemCor, improvement is registered only with WN-HypInfer

and WN-Cs2ndVInfer, the second being only a negligible one. The inferred

relations, together with the WN set, do indeed boost accuracy on BTB markedly,

so much that these sets achieve better results compared to the WNG baseline.

The combination of WNG + inferred sets does not yield a great improvement.

Results on SemCor rise only modestly, if at all, and the same can be said about

results on BTB as well. This suggests that perhaps many of the inferred relations

provide overlapping information with those from the gloss corpus and therefore

they either do not contribute positively or in fact hurt performance.

67

KG SemCor BTB KG SemCor BTB
WN+WN-HypInfer 53.40 53.70 WNG+WN-HypInfer 58.59 55.20
WN+WN-AntInfer 48.57 53.05 WNG+WN-AntInfer 59.14 55.93
WN+WN-ClsInfer 48.43 54.62 WNG+WN-ClsInfer 57.84 56.14
WN+WN-Cs1stVInfer 49.32 56.02 WNG+WN-Cs1stVInfer 59.06 55.93
WN+WN-Cs2ndVInfer 49.39 57.28 WNG+WN-Cs2ndVInfer 58.95 56.17
WN+WN-DerNAInfer 48.76 57.19 WNG+WN-DerNAInfer 58.49 52.13
WN+WN-DerNNInfer 47.79 56.74 WNG+WN-DerNNInfer 58.80 52.86
WN+WN-DerNVInfer 47.73 55.84 WNG+WN-DerNVInfer 55.87 52.77
WN+WN-DerVNInfer 48.72 55.99 WNG+WN-DerVNInfer 59.00 53.56
WN+WN-Ent1stVInfer 49.34 56.08 WNG+WN-Ent1stVInfer 58.98 52.55
WN+WN-Ent2ndVInfer 49.36 56.60 WNG+WN-Ent2ndVInfer 58.92 52.70
WN+WN-InsInfer 49.03 56.76 WNG+WN-InsInfer 58.38 52.89

Table 5.5: Accuracy scores on SemCor and BTB. The left part of the table
presents results for KGs combining the original WN relations and one inferred set
of relations (denoted by the ”Infer”-suffix); the right part presents a combination
of the original and gloss relations together with one extended set. Aditional
specifiers like ”1stV” indicate which part of the original relation is extended (first
verb in this case); specifiers like ”NN”, ”NV”, ”VN” indicate which subsets of the
relation set are extended. The results that are higher than the baselines for WN
and WNG are bolded (Simov, Popov, & Osenova, 2016a).

5.2.3 Analysis of the Semantic Relations from eXtended

WordNet

A similar analysis is offered here of the relations derived from the eXtended

WordNet (XWN) corpus (Mihalcea & Moldovan, 2001). Those relations make

the GL set. They are composed according to the following simple procedure:

the synset annotations of the open class words in the WN glosses are connected

to the synset corresponding to the particular gloss. This produces a number of

relations per gloss (as many as there are annotated open class words in it; relations

derived across glosses can be duplicated). For the purposes of this evaluation, the

gloss-derived relations are divided into groups depending on the POS category

of the synset from whose gloss the relation is constructed. Thus, the GL set is

decomposed into GL-A, GL-N, GL-R and GL-V.

Table 5.6 shows the impact of the separate subsets on the WSD accuracy. All

combinations improve the WN baseline against the SemCor data, but with regards

to BTB, there is an increase only with WN+GL-A and WN+GL-V, the first

68

KG SemCor BTB KG SemCor BTB
WN+GL-A 52.94 53.08 WN+GL-R 51.76 52.85
WN+GL-N 57.04 52.92 WN+GL-V 53.01 56.01

Table 5.6: Accuracy scores for the combinations of the base WN relations and
a POS-determined subset of the GL relations. The highest results for the two
corpora are bolded (Simov, Popov, & Osenova, 2016a).

being a very slight one and the second – giving a result that is higher even than

the full WNG baseline.

5.2.4 Analysis of the Syntax-derived Relations

As in the previous section, syntactic annotation is used to generate new semantic

relations that are then added to the KG. For the purpose of generating the new

relations, SemCor was dependency-parsed with the IXA pipeline6. 49 of the

documents of the corpus annotated with all types of open class words were set

aside as a test partition and the rest were used as a source for new relations.

These documents served to extract dependency relations between words annotated

with synset information; for instance: s1-subj-s2, where s1 is a noun synset and

s2 is a verb synset; s1-mod-s2, where s1 is an adjective synset and s2 is a verb

synset; etc. Again, the extracted relations are organized into subsets defined

by the combination of different POS categories. Thus, the following subsets

are formed: SC-AA, SC-AN, SC-AV, SC-NN, SC-NV, SC-RA, SC-RN,

SC-RR, SC-RV, SC-VN, SC-VV.

KG SemCor BTB KG SemCor BTB
WNG+SC-AA 59.20 55.93 WNG+SC-RN 58.94 55.89
WNG+SC-AN 59.30 55.89 WNG+SC-RR 59.07 55.93
WNG+SC-AV 59.46 55.78 WNG+SC-RV 59.43 52.71
WNG+SC-NN 58.81 56.21 WNG+SC-VN 59.05 55.55
WNG+SC-NV 59.31 56.21 WNG+SC-VV 59.26 53.78
WNG+SC-RA 59.52 56.18

Table 5.7: Accuracy scores for the combinations of WNG and syntactically-derived
relations from SemCor.

Table 5.7 demonstrates that most of the syntactically-derived subsets improve

the accuracy scores beyond the WNG baseline, which is consistent with the

observations from the previous section on Bulgarian data. The improvement is

6http://ixa.si.ehu.es/Ixa

69

more consistent on the SemCor test portion than it is on the BTB data, which is

not surprising, considering that syntax-based relations are more language-specific

than lexico-semantic relations. Using the syntax-based relations derived from

the BTB data (as discussed in the previous section) was tried for the purposes

of WSD on SemCor, but this did not lead to any improvements over the WNG

baseline, rather it diminishes accuracy. The BTB data is more domain-focused,

which, in combination with syntactic difference across the languages, possibly

explains the vanishing effect of the inferred relations across corpora.

The combination of the syntactically-derived subsets and the baseline rela-

tions that yields the highest results on SemCor is as follows: WNG, SC-AA,

SC-AN, SC-AV, SC-NN, SC-NV, SC-RA, SC-RN, SC-RR, SC-RV, SC-

VN, SC-VV. This KG results in 60.34% accuracy on SemCor and 53.05% on

BTB. This result on SemCor can be further improved by adding some of the

inferred relations from the WN semantic network. The best combination – WNG,

SC-AA, SC-AN, SC-AV, SC-NV, SC-RA, SC-RR, SC-RV, SC-VN, SC-

VV, WN-HypInfer, WN-AntInfer, WN-DerVNInfer, WN-Ent1stVIn-

fer, WN-Ent2ndVInfer – yields 60.70% accuracy on SemCor, which is 1.73%

better than the WNG baseline, and 56.39% accuracy on BTB.

5.2.5 Further Explorations of Relation Construction

In this final subsection I describe several additional methods for creating new

relations between nodes in the KG and their impact on WSD accuracy. This work

is published in Simov, Osenova, & Popov (2016b).

Deriving Knowledge from the Logic Form of Statements

The eXtended WordNet resource, in addition to word sense annotations of the

open class words in the WN glosses, provides also parse-trees and logic forms

(i.e. first-order logic representation) of the same sentences. If we analyze verbal,

adjectival, adverbial and prepositional predicates (i.e. predicates in the logic

form that are derived from lemmas of the corresponding POS category), then

the arguments of the same predicates are in an ”event” relation both with the

predicates and among themselves, if more than one argument is present. Separate

predicates can also be linked together via a relation, provided they are associated

with the same argument in a logic form.

70

For instance, the logic form of the concept {ice-cream cone}, defined as “ice

cream in a crisp conical wafer”, can be expressed thus:

ice-cream_cone:NN(x1) ->

ice_cream:NN(x1) in:IN(x1, x2)

crisp:JJ(x2) conical:JJ(x2)

wafer:NN(x2)

From this formula, it is possible to extract semantic relations between ”ice cream”

and ”wafer” (via the ”in” predicate), between ”crisp” and ”wafer”, ”conical” and

”wafer”, and between ”crisp” and ”conical”. The arguments of the relations are

translated via the word sense annotations to WN synset IDs and in this way the

logic form is translated to the relation format used for KBWSD. The new graph

is called WNGL.

Building Knowledge Subgraphs from Context

This approach to creating new relations aims at extracting contextual information

about word senses. It utilizes the information in SemCor and eXtended WordNet

– sense annotations over natural language that are performed by human experts

and are thus highly precise. Two different strategies for creating relation-encoded

contexts are explored: making use of word order or of syntactic structure as the

”connective tissue” of the context graph.

The first strategy is used to extract contexts from XWN. The extraction

procedure is a simple one. All tokens in the gloss that are annotated with synset

IDs are integrated in a tree-like structure that represents the context. First, the

IDs are converted from the WN 2.0 version to the corresponding WN 3.0 encoding.

For each of the tokens that are to be connected in the tree, a special artificial

node is created. Then each such node, following the word order of the gloss, is

connected via relations to the corresponding synset ID in the annotation of the

token and to the artificial node of the preceding annotated token (the first token

of the gloss has no connection to a preceding element, it is the root of the tree).

Figure 5.1 provides a visualization of the resulting context. This new graph made

out of the contexts generated from XWN is called here WN30glCon.

The second strategy for context creation extracts relations from the syntactic

parses of SemCor sentences. The method is similar to what has already been

71

n03461356-1-gl

n03461356-2-gl

n03461356-3-gl

. . .

05839024-n

03593862-n

Figure 5.1: A tree structure that represents graphically part of one constructed
context. Terminal nodes are represented only by WN synset IDs (Simov, Osenova,
& Popov, 2016b).

presented with regards to syntactically-derived relations. However, under this

approach synset nodes are not directly connected in the KG based on dependency

relations found in the corpus. Rather, artificial nodes are created for the words

that bear the synset annotations and these are used to create the parse tree

(derived by an automatic parser, therefore at least somewhat noisy). This method

preserves information about words that are not annotated with synset IDs by

inserting their nodes in the tree; synset IDs, as in the previous strategies, are

attached as terminal nodes to the artificial ones; and finally, the top node of

each sentence is connected via an arc to the root of the preceding sentence in the

current text fragment in SemCor. Thus, each fragment is transformed into a graph

which corresponds to one larger context, which itself forms connections between

synset nodes within the original WN network. Figure 5.2 provides a graphical

view of one part of such a context. The resultant graph is named GraphRelSC.

Table 5.8 displays the WSD accuracy scores after running the UKB system

with different combinations of the KGs. Two different configurations of the UKB

system are used: the Static interpretation of the PageRank algorithm and its

”personalized” variant – PPRw2w. The results demonstrate that adding relational

information from different knowledge sources can significantly improve KBWSD

results. It is also clear that there is significant overlap between the subgraphs –

for instance, the last two lines in the table suggest that the WNG set of relations

does not contain a very significant amount of new information that is not already

present in the rest of the sets.

In keeping with the previously discussed findings, figuring out ways to cut down

the size of the KG and of simplifying its topology, while preserving information-

rich relations, can lead not merely to faster execution time, but also to higher

72

019-042-t1144-wo

019-043-t1153-wo

019-043-t1145-wn

019-043-t1146-wp

. . .

05823932-n

019-043-t1154-wv

. . .

019-043-t1156-wo

. . .

Figure 5.2: The top part of a dependency parse of one sentence, also connected
to the previous sentence via a link to a preceding top node (Simov, Osenova, &
Popov, 2016b). The numbers in the artificial nodes are simply indices to the file,
sentence and token positions within SemCor.

accuracy. Another potential challenge would be to provide additional relations

that are able to explicate distinctions between word senses that tend to appear

together in common contexts – as this will often mean that they co-occur in the

constructed contexts and are thus indistinguishable solely on the basis of this

knowledge source.

73

KG Static PPRw2w
WN 56.60 56.35
WNG 56.00 57.33
WN + WNG 59.55 62.24
WNGL 60.46 60.35
WN + WNGL 66.61 67.19
WN + WN30glCon 67.00 66.42
WN + GraphRelSC 67.04 65.97
WN + GraphRelSC + WNGL 68.41 68.51
WN + WN30glCon + GraphRelSC 68.74 68.15
WN + WN30glCon + GraphRelSC + WNGL 68.77 68.48
WN + WNG + WN30glCon + GraphRelSC + WNGL 68.39 68.59

Table 5.8: WSD accuracy scores for different combinations of the already existing
and newly created knowledge graphs.

74

Chapter 6

Distributed Representation of

Words, Lemmas and Senses

Based on Lexical Resources

In the next chapter I introduce some work on generating distributed represen-

tations of lexical units: words, lemmas and senses. The generated vector-space

models (VSMs) are of interest because they are trained on data that is artificially

constructed rather than extracted from natural texts. This approach, as also

discussed in the chapter on the related work, allows for wider coverage and for

encoding somewhat different semantic information in the lexical models. The

chapter is based on two papers written together with Kiril Simov, Petya Osenova

and Iliana Simova: Simov et al. (2017)1 and Simov et al. (2018)2. In the first

paper, different knowledge graphs – extensions of the WN semantic network in

the spirit of what was presented in the previous chapter – are used to generate

artificial corpora on which lemma embedding models are trained and then com-

pared to VSMs trained on natural language text. The second paper outlines an

approach to learning distributed representations of grammatical arguments, which

are subsequently used as filters to constrain in a meaningful way the already

familiar procedures for relation expansion.

1Simov, K., Osenova, P., & Popov, A. (2017). Comparison of Word Embeddings from
Different Knowledge Graphs. In International Conference on Language, Data and Knowledge
(pp. 213-221).

2Simov, K., Popov, A., Simova, I., & Osenova, P. (2018). Grammatical Role Embeddings
for Enhancements of Relation Density in the Princeton Wordnet. In Proceedings of the 9th
Global Wordnet Conference.

75

6.1 Learning and Evaluating Embeddings from

Different Knowledge Graphs

Chapter 3 has already introduced the idea of generating artificial data for the

purpose of training embedding models over them (Goikoetxea et al., 2015). The

currently presented line of research attempts to build on that previous work and to

explore different knowledge graph configurations for obtaining better distributed

representations, which can then serve as input features for various NLP tasks,

including WSD.

As established in chapter 5, enriching the knowledge graph through the addition

of new relations can lead to an increase in the accuracy of the KBWSD algorithm.

This is especially true when the new relations are complementary to those already

available – in the case of WordNet as KG, syntagmatic relations extracted from

contexts of actual linguistic usage have a pronounced effect when added to the

largely paradigmatic relations encoded in the semantic network. Syntagmatic

relations like co-occurrence of words and syntactic dependencies, on the other

hand, are relatively easy to learn using modern methods for learning distributed

representations, while the paradigmatic information in KGs like WordNet remains

implicit in natural texts. Therefore, one promising line of research is to attempt

to improve VSMs as lexical models by combining the two types of knowledge. To

do that, we have adopted the strategy presented in Goikoetxea et al. (2015) – of

producing artificial sequences of lexical units via the KG and then training VSMs

on that data.

The procedure for generating the corpora, training the VSMs and evaluating

them is as follows:

1. The knowledge graph is assembled from various sets of relations

2. The UKB tool is used in its ”walkandprint” regime in order to produce

random walks of variable lengths along the structure of the KG. The tool

can be configured to output, with certain probability, synset IDs or the first

lemma per synset. When training lemma embeddings, the probability for

outputting a lemma is set to 1. Each random walk constitutes one training

sentence.

3. The word2vec tool is used to train a VSM on the artificially produced corpus.

We have used the Skip-Gram architecture.

76

4. The resulting VSM is evaluated on the task of calculating relatedness and

similarity scores between pairs of words. The Word-353 Similarity, WordSim-

353 Relatedness (WS353) and SimLex-999 (SL999) datasets are used for

the evaluation (see chapter 2 for more detailed information). The VSM

is used to get the embeddings for the word pairs, then those are used to

calculate their cosine distance. The distance metrics for all pairs of words

are then used to calculate Spearman’s rank correlation with respect to the

gold corpus numbers provided by human annotators.

In this work, the experimental comparison is done against three VSMs, all of

which have a dimensionality of 300:

• The GoogleNews vectors, trained on a 100 billion newswire corpus, using

the word2vec tool3.

• The Wikipedia dependency vectors described in Levy & Goldberg (2014),

also trained with word2vec4

• The lemma embeddings based on the WN graph and described in Goikoetxea

et al. (2015)5.

The graphs that we have used to produce the new training corpora – in addition

to WN and WNG – are the ones described in chapter 5:

• WNGL – relations extracted from the logic form of the annotated glosses in

XWN.

• GraphRelSC – relations constructed from the dependency trees of SemCor

sentences analyzed with an automatic syntactic parser. Subsequent sentences

are connected to each other via their root nodes.

• WN30glCon – relations built from the XWN glosses, wherein each content

word receives an artificial node, which is also connected to the corresponding

WN synset ID and to the artificial node of the previous word.

• HypInf – the transitive closure of the hypernymy relations in WN.

We have explored a range of options when configuring the word2vec Skip-

Gram architecture. In the experiments the context window around the input

3The first two models are downloaded from this url: https://github.com/3Top/word2vec-api.
The Google vectors are also available here: https://code.google.com/archive/p/word2vec.

4Also available for download here: https://levyomer.wordpress.com/2014/04/25/dependency-
based-word-embeddings/.

5http://ixa2.si.ehu.es/ukb/

77

word was varied between 1 and 19 words; the best results were obtained with

context windows of 5 and 15 words, which are reported here. Different numbers

of training iterations over the corpus were also tried out, the best results were

achieved with 7 iterations. The number of noise/negative words was set to 5 and

the threshold for the downsampling of frequent words was fixed to 1e-7 after some

experimentation.

Vector Space Model WordSim353 WordSim353 SimLex999
Similarity Relatedness

GoogleNewsMikolov, Sutskever, et al. (2013) 0.77145 0.61988 0.44196
DependencyLevy & Goldberg (2014) 0.76699 0.46764 0.44730
WN + WNGGoikoetxea et al. (2015) 0.78670 0.61316 0.52479

WN + WNG + HypInf C5 0.77730 0.54419 0.55192
WN + WNG + HypInf C15 0.77205 0.55955 0.55868
WN + WNglConOne C5 0.77761 0.64747 0.53242
WN + WNglConOne C15 0.79659 0.65548 0.52632
WN + WNG + WNGL + 0.79847 0.63587 0.51974
GrRelSC C5
WN + WNG + WNGL + 0.81862 0.61455 0.52350
GrRelSC C15
WN + WNglConOne C15 + 0.82684 0.70972 0.54675
GoogleNews
WN + WNglConOne C15 + 0.80428 0.66570 0.54041
Dependency

Table 6.1: Comparing results from different VSMs on the similarity and relatedness
tasks. C5 and C15 are used to indicate the size of the context window for the
Skip-Gram model. The best results on the different data sets, using a single
VSM as source, are marked in bold. The final lines give the correlation scores
for combinations of VSMs: a graph-based one and the GoogleNews/Dependency
vectors; the first combination achieves the best overall results on two of the data
sets and comes close to the best result on the third one.

Table 6.1 shows the Spearman’s rank correlations for the different VSMs,

compared with the gold annotations. It is important to note that because the

VSMs produced from WN only contain lemma representations and no word form

representations, some words in the evaluation data sets have been excluded in

order to ensure a fair comparison between the models. 11 pairs out of 203 were

excluded from WordSim353 Similarity; 19 pairs out of 252 were excluded from

WordSim 353 Relatedness.

Different combinations of subgraphs are shown to be useful with respect to

the different data sets. The transitive closure over the hypernymy relations

in WN, for instance, leads to a significant increase on the SimLex999 data

78

set. This could be due to the greater correlation between word similarity and

paradigmatic, hierarchical lexical knowledge. Conversely, adding syntagmatic

information (WNglConOne) mostly benefits the results on the relatedness dataset,

indicating that relatedness is indeed mostly correlated with relations in context.

Adding GrRelSC and WNGL to the original subgraphs leads to the best results

on the WordSim353 dataset, suggesting that this VSM is based on the densest

knowledge graph representation of the lexicon. A final experiment combines

two VSMs via concatenation: WN+WNglConOne-C15, which is among the best

graph-based models considered, and the GoogleNews and the Dependency vectors.

The combinations surpass the correlation scores of all single VSMs that comprise

them, and furthermore the first combination achieves the best results on the

WordSim data sets, also coming close to the best result on the SimLex data set.

This provides evidence that the two sources of information are complementary to

some extent and provide access to different aspects of lexical knowledge.

The experimental evaluation shows that the improved performance of KBWSD

is mirrored in improved VSMs, when using an enriched KG. In the next section

I will discuss one approach to using VSMs generated in this way in order to

improve the graph enrichment procedure itself. The next chapter in turn will

investigate whether such distributed representations can be useful for improving

the performance of supervised methods for WSD.

6.2 Increasing the Density of the Knowledge Graph

Through Filtering with Grammatical Role

Embeddings

In this section I present an approach to enriching the KG that depends on work

described in the first part of the chapter and in the previous one. The idea is to

try and increase the density of syntagmatic relations in the KG, which tends to

help increase the quality of KBWSD, as already demonstrated (and could serve

other, maybe even non-computational purposes). The syntactic relations that can

be extracted from a corpus with human-annotated word senses such as SemCor,

however, are just a fraction of the possible relations that can be meaningful with

respect to world and linguistic knowledge. Performing logical inference over such

”gold” relations can be an effective strategy, as shown in Simov et al. (2015) and

79

Simov, Osenova, & Popov (2016b). In those articles, the dependency relations

subj, dobj, iobj and nmod that involve two WN-annotated words are extracted

and the WN hypernymy relations are used in order to infer analogous relations

for the hyponyms of the noun arguments in the ”gold” relations.

However, the word sense hierarchy of WN does not guarantee monotonicity in

the inheritance of semantic and syntactic features, therefore the outlined method

is inherently noisy. For instance, the relation ”doctor-operates” extracted from

the sentence ”A doctor operates on a patient”, when extended along the noun’s

hyponym chain, will result in new relations, some of which false – not all kinds of

doctors can operate. In addition to this problem, it has been shown already that

the generalization of syntagmatic relations can be broader in scope – this was

shown by first generalizing the noun argument to its hypernym and then taking

all of the upper node’s hyponyms as arguments of new, inferred relations. Such an

approach can also improve the quality of WSD (thus indirectly suggesting that the

KG has been meaningfully expanded), but the noisiness only becomes greater and

there is no good rule that says how high in the hierarchy exactly the method should

go in order to achieve maximum generalization. Even if this problem is somehow

overcome, there remains the issue that only so many predicates are attested in

corpora such as SemCor, whose creation remains prohibitively expensive.

For these reasons, we introduce a new approach to adding relations to the

KG. It is based on the idea that all predicates in the dictionary that can have

arguments are potential nodes from which to extend new relations. Thus, one

could try to combine all predicate nodes with all possible argument nodes in the

dictionary, as long as there is available a reliable filter to separate semantically

meaningful relations from nonsensical or trivial ones.

6.2.1 Learning Grammatical Role Embeddings from Parsed

Corpora

General Procedure

Obtaining such a general filter that is able to rank all kinds of binary predicate-

argument relations is apparently not feasible in terms of a rule-based approach.

Instead, we have attempted to create a filter based on distributed representations

of meaning, so that we can obtain, essentially, probabilistic interpretations over the

80

relevance of constructed relations. This filter must be able to give us information

about what constitutes a prototypical argument of a specific type for a specific

predicate, so that we can decide which arguments from the dictionary are good

candidates. This also implies that we need comparable representations of argument

prototypes and regular word senses, or synsets (the nodes in the KG). We have

called the abstract representations of predicate arguments ”grammatical role

embeddings”. In this work we have explored working only with grammatical

roles of type subj, dobj, iobj (following the Universal Dependencies schema), but

in principle such relations and roles can be defined and learned using a more

comprehensive set of dependency relations or some other representation formalism

(see Simov et al. (2018) for a discussion of Minimal Recursion Semantics as one

such type of analysis that is compatible with the approach).

The following steps provide a description of the procedure for extending the

KG:

1. Generate a large enough corpus that encodes grammatical roles together

with representations of individual words (and potentially their sense IDs).

2. Train a VSM on the corpus, so that distributed representations are made

available for both grammatical roles and regular lemmas and synsets. In

the case when synset IDs are not directly available in the corpus, obtain

the relevant embedding by averaging the vectors for the lemmas within the

synset. Do the analogous thing for calculating grammatical roles for synsets

– average the individual grammatical role vectors per all lemmas in the verb

synset.

3. Use the dictionary for the KG to identify all predicates of interest which

have associated arguments (grammatical role labels) in the generated corpus.

4. For each predicate and for each grammatical role type, put the predicate in

a pair with all argument candidates from the dictionary. Then evaluate how

close each argument is to the prototypical grammatical role for the predicate.

Keep all pairs where the argument is within a predetermined distance from

the protypical argument in the VSM space.

Here is a short example. Let us assume that for the first sense of ”arrive”, linked

in WN with synset ID ”02005948-v”, there are attested examples in the parsed

corpus of relations of type subj between this predicate and syntactically connected

arguments. This prompts the algorithm to generate all possible combinations

between the predicate and noun synsets found in the WN dictionary. Each such

81

generated combination is a relation between the predicate synset and a noun

synset. The procedure then iterates over this list of relations. When it encounters

a specific noun synset, for instance one of the senses of ”group” (00031264-n),

it takes the synset embedding learned from the corpus and compares it to the

grammatical role embedding for that particular combination of predicate and role,

in this case ”SUBJ arrive”. If the cosine similarity between the two vectors is

higher than a pre-specified threshold, the relation passes through the filter and is

added to the list of new relations in the KG.

Training Data and Learning

The simultaneous learning of both grammatical role and lemma embeddings is

made possible by the preprocessing of the training corpus. In the work cited, the

WaCkypedia EN corpus (Baroni et al., 2009) was used as a source of implicit

syntactic knowledge, after it was parsed with the Stanford CoreNLP dependency

parser. The parser was configured to use dependencies of type ”collapsed-cc”,

so that dependencies between content words are obtained directly, collapsing

any intermediary functional links. In addition to this, the option ensures that

dependency relations are propagated to coordinated words across conjuncts. There-

fore, the analysis of the sentence ”The doctor operated on the patient and ate

lunch” would result in the extraction of two nsubj relations: ”doctor-operate”

and ”doctor-eat”. All words are replaced with their lemmas and whenever a word

is analyzed as an argument to a verbal predicate, it is replaced with a special

token: 〈argument type〉 〈verb lemma〉. The example sentence would be processed

into ”The SUBJ operate operate on the patient and eat lunch” and also ”The

SUBJ eat operate on the patient and eat lunch” with regards to the subject argu-

ment; additional sentences would be generated per each of the grammatical roles

found in the sentence, namely IOBJ operate and DOBJ eat. The preprocessing

phase thus produces a larger number of sentences compared to the original ones.

In addition to the real text corpus (RTC), a pseudo corpus (PCWN) was

generated via the method outlined in the previous section, so that the relations

encoded into WN can be learned as well. All nodes referenced in the random

walks produced by the generation procedure are converted to lemmas from the

selected synsets. The RTC was used to learn embeddings on its own and also

in conjunction with PCWN (through concatenation), the latter combination

being denoted as RTCPCWN. PCWN cannot be used on its own, because it

82

supplies no information about syntactic dependencies and therefore the two types

of embeddings (of lemmas and grammatical roles) cannot be situated in the

same space. As in the previously reported experiments, the Word2Vec tool was

used with the same settings (context window size set to 5 word, 7 iterations, 5

negative samples, threshold for the downsampling of frequent words fixed to 1e-7).

The models that performed best on the similarity task were further selected for

evaluation via KBWSD.

Initial experimentation with the outlined setup did not yield sizable improve-

ments. A possible reason for this was identified in the fact that generating synset

embeddings via the averaging of attendant lemma embeddings is very noisy, espe-

cially when the lemmas in question are ambiguous in terms of their POS category.

In order to deal with this problem, two modifications to the training data were

adopted. Firstly, the KBWSD approach described earlier was used to annotate the

RTC corpus, so that the VSM could be trained directly on synset ID annotations;

also, the nodes in the PCWN random walks were not converted to lemmas, but

left as synset IDs. In this way, synset embeddings are obtained directly via

training. However, this approach did not lead to improvements either, which is

not surprising, if one bears in mind that even the best results with KBWSD on

SemCor have accuracy of less than 70%; thus, one type of noise is replaced by

another.

The second attempt to deal with the problem involves narrowing down lemma

representation. By using the POS annotations in the RTC data, the lemmas for

individual tokens were substituted with lemma-POS strings. In this way, the

lemma embeddings are focused per POS type and therefore averaging over the

lemma vectors in a synset should be somewhat more informative. The same

thing was done for the PCWN data. This modification did result in an increase

of WSD accuracy and therefore all results reported here are based on this type

POS-sensitive representation.

Experiments and Results

Tables 6.2 and 6.3 present the central experiments of this line of research. The

first table reports on KBWSD when using only the RTC for leaning a VSM;

the second one is based on VSMs that utilize both the RTC and the PCWN

data. WSD accuracy is measured against the test part of SemCor used in the

previous chapter and a smaller data set named M13 SemeVal – originally used

83

for the Multilingual Word Sense Disambiguation task at SemEval 20136. Each

table reports a baseline accuracy for the KG that includes only the original WN

relations (called here wn30) and accuracy scores for enriched KGs, where each

one of those includes new relations obtained with different thresholds for the

similarity filter. For instance, the graph wn30RTC40 is composed of the original

WN relations and of the relations extended on the basis of the RTC corpus. Only

relations with noun arguments related to the relevant grammatical roles via a

cosine similarity measure of 0.4 or more are allowed in the extension.

Knowledge Graph SemCor M13 SemeVal
wn30 51.56 48.41
wn30RTC40 50.32 49.51
wn30RTC45 52.60 49.57
wn30RTC47 50.20 48.47
wn30RTC50 50.34 49.63
wn30RTC52 50.58 51.88
wn30RTC55 51.05 51.70
wn30RTC57 51.60 51.52

Table 6.2: Results on KBWSD with relations ranked by embeddings from a POS
tagged real text corpus. The maximum improvement for SemCor is 1.04 and for
M13 SemeVal is 3.47.

Knowledge Graph SemCor M13 SemeVal
wn30 51.56 48.41
wn30RTCPCWN35 51.88 49.27
wn30RTCPCWN38 53.68 51.39
wn30RTCPCWN40 53.91 51.45
wn30RTCPCWN42 54.33 50.42
wn30RTCPCWN43 54.08 50.18
wn30RTCPCWN44 52.56 49.93

Table 6.3: Results on KBWSD with relations ranked by embeddings from a POS
tagged real text corpus and pseudo corpus. The maximum improvement for
SemCor is 2.77 and for M13 SemeVal is 3.04.

The results show that accuracy varies depending on the corpus used for testing.

SemCor, a more balanced resource, benefits from specific parametrizations of

the threshold, while the smaller and less heterogeneous M13 SemeVal points to

another optimal configuration. Similar differences can be observed with regards

to the training corpus that is used. As is suggested by the tables, too permissive

(i.e. low) a threshold results in noisy KGs that do not improve on the baseline,

6https://www.cs.york.ac.uk/semeval-2013/task12/

84

while setting it too narrowly could preclude enough meaningful information from

being added to the KG.

Table 6.4 shows results for KGs constructed via reduced VSMs that reflect only

more frequent syntagmatic relations. Verb arguments that occur fewer than ten

times in the corpus are not considered when learning grammatical role embeddings

and are therefore excluded from the procedure for relation generation. This

modification leads to a significant increase in the results on the M13 SemeVal data

set, while the results on SemCor decrease. Possibly, the smaller data set contains

predominantly more popular word senses, which would explain the difference in

accuracy with respect to the two corpora.

Knowledge Graph SemCor M13 SemeVal
wn30 51.56 48.41
wn30RTCPCWN10-34 52.35 51.39
wn30RTCPCWN10-35 50.64 53.04
wn30RTCPCWN10-36 50.25 50.72
wn30RTCPCWN10-40 50.49 49.45
wn30RTCPCWN10-45 51.15 49.27
wn30RTCPCWN10-50 51.45 48.29

Table 6.4: Results on KBWSD with relations extracted after less frequent gram-
matical role embeddings were removed from the VSM. The improvement for
SemCor is 0.79 and for M13 SemeVal is 4.62.

Curiously, varying the similarity threshold has somewhat different overall

effects in the different cases. With some combinations of training and testing

corpora the results follow a hump shape, i.e. there is a peak in accuracy somewhere

in the middle ranges of threshold parametrization and results to the left and

right decline. But in other cases (table 6.2 and the first column in table 6.4)

the shape is more wave-like. This suggests that the new relations interact with

the original semantic network (and among themselves) in complex ways. More

work is necessary in order to establish an analytical approach of reasoning about

these effects. However, the results presented here strongly suggest that such an

approach to identifying meaningful new knowledge can be used productively to

model the lexicon.

85

Chapter 7

Recurrent Neural Networks for

Word Sense Disambiguation

This chapter presents supervised neural network architectures for WSD. This

research builds on previous related work (introduced in detail in chapter 3), while

offering several novel modifications. It also depends heavily on many of the ideas

introduced in the previous chapters: the core of the NN architecture is adapted

from the one described in the chapter on POS tagging with NNs; the additional

input features that are used are obtained via the methods described in chapters

5 and 6; one of the NN architectures also relies crucially on the methods for

embedding information from KGs. The chapter is based mostly on Popov (2017)1;

however, the results presented here include reports of newer experiments as well.

It is organized in three sections; the first one describes the two NN architectures

used for WSD, the second one reports on the experimental evaluation and the

last one provides a discussion.

7.1 Neural Network Architectures for WSD

Below I describe two architectures for doing supervised WSD. Both use recurrent

neural networks with bi-directional LSTM layers. While the first one produces

more traditional classifier-based models, the second, albeit mostly the same, takes

a somewhat different approach, similar to context representation with RNNs. For

1Popov, A. (2017). Word Sense Disambiguation with Recurrent Neural Networks. In
Proceedings of the Student Research Workshop Associated with RANLP 2017 (pp. 25-34).

86

easy referencing, I will call the first architecture – Architecture A, and the second

one – Architecture B.

7.1.1 Direct Classification of Word Senses

Architecture A – Description

The first supervised NN architecture presented here is essentially the same as

that outlined in chapter 4 and used for POS tagging. Figure 7.1 presents again

in diagrammatic form the high-level description of the architecture. As with the

POS tagging task, the input words are fed one at a time into the RNN. At that

point they are already converted to integers so that embedding lookup can be

performed within the network. The networks allows two embedding lookups to be

performed per the same input; in such cases the obtained vectors are concatenated

(following the observations of Goikoetxea et al. (2016) that this simple method

gives surprisingly competitive results). The recurrent part of the network can have

a varying amount of Bi-LSTM layers, which can be parametrized with regards

to their size, initialization and amount of dropout regularization (Srivastava et

al., 2014). For each input sequence, those states of the hidden layer are selected

which correspond in the time series to the words that must be disambiguated (i.e.

they have an entry in the lexicon). The forward and backward hidden states per

word are concatenated and the output layer then performs linear transformations

on the hidden representations. In this way the representations, which are of size

2 * hidden layer size, are ”stretched” to the size of the number of synsets for all

lemmas attested in the training data (WordNet contains over 100,000 synsets but

many of those are associated with lemmas that never appear in SemCor). Finally,

a softmax layer calculates a probability distribution over the lexicon vector.

The final disambiguation decision is taken with respect to the probability mass

concentrated in the positions of the vector dedicated to those synsets associated

with the lemma under consideration. Lemmas with only one associated synset are

directly disambiguated to that sense. The final decision-taking phase outside of

the NN also has access to POS information about the input words, which is used

to filter out some of the irrelevant synsets in advance. Whenever it encounters a

lemma that is unfamiliar from the training data, the architecture falls back to the

WN 1st sense heuristic.

87

Figure 7.1: Recurrent neural network for word sense disambiguation: The dotted
lines mean that a component or a connection is optional (in the case of concatenat-
ing embeddings from two different sources – e.g. word embeddings from natural
text and lemma embeddings from a KG).

Input Features

The models trained with Architecture A do not use any hand-crafted features

(though in principle nothing precludes that). Instead, all the information used

to train on comes from the embeddings to which the input tokens are translated.

The current work uses as principle features the word embeddings by Pennington

et al. (2014) – GloVe. More specifically, it uses the set of embeddings trained on

Wikipedia and the Gigaword corpus, or approximately 6 billion tokens of text,

with a vocabulary of 400,000 uncased words and with dimensionality of 300. In the

preliminary experimentation with popular freely-accessible embedding vectors this

one gave the best performance and was therefore selected for further experiments.

Exploring different VSMs and their parameters (e.g. what data they are trained

on, the size of their vocabulary, method of training, dimensionality, etc.) remains

an open task.

In addition to word embeddings, the network allows for concatenating a

second embedding vector to the first one. This option was implemented so

that the combination of word embeddings learned from natural text and lemma

embeddings learned from KGs might be explored. In the section on results, some

experiments are presented that test the effect of such combinations. The lemma

embeddings are produced according to the procedures described in the previous

88

chapter. In particular, the VSM that, in combination with GloVe, consistently

achieved the highest accuracy score on the development set is based on the already

familiar KG combination WN30WN30glConOne. This model, when trained

to predict contexts of 15 words, achieves some of the highest and best-balanced

results on the two similarity and one relatedness datasets, which is why it was

chosen for the experiments. It should be kept in mind that the lemma-centered

VSMs supply meaningful information only with regards to content words and

they are, naturally, unable to distinguish between word forms (this part of the

architecture relies on input that has already been lemmatized).

7.1.2 Learning Lemma, Synset and Context Embeddings

in a Shared Space

Architecture B – Description

The second proposed architecture is similar to the first one – except for the final

stage where the representation of context is carried out and optimized and also

with respect to how the input features are modeled with relation to the lexicon.

Referring once again to figure 7.1, the formal differences between Architectures

A and B are to be found above the Bi-LSTM layer box. They are two: 1) the

output layer no longer maps the hidden contextualized representation of words to

a lexicon-sized vector; here it maps the hidden layer output to a vector that is

equal in size to the input embeddings of individual words, e.g. 300 dimensions; 2)

the loss function that is being optimized is no longer cross entropy, but a least

squares comparison between the context representation and a synset embedding

for the gold label in the training data. For a visual representation, see 7.2

As outlined, the models trained by Architecture B are essentially doing the

following:

1. A sequence of vectors, one per word/lemma in the input sequence, are fed

into the hidden layer.

2. The Bi-LSTM layers produce a context representation per each word/lemma.

3. The context representations that correspond to open class words are selected.

4. Each context representation is resized to match the dimensionality of the

input vectors.

89

Figure 7.2: Diagrammatic representation of Architecture B. The same principles
apply as with Architecture A, but the output layer produces a vector of the size
of the VSM, which is then compared to the embedding vector for the gold synset;
a mean of the least squares error is back-propagated as a learning signal. Crucial
to the architecture is the availability of a VSM where both lemmas/words and
synsets are represented as vectors of the same dimensionality.

5. The resized context representation is compared with a distributed represen-

tation of the corresponding gold label synset.

6. The network is optimized on the mismatch between the two vectors.

This approach relies on a VSM that can provide representations both for

the input words/lemmas and for the gold label synsets, so that in effect the

network learns to situate particular contexts in the embedding space. This

permits the system to take the resultant context representation and to find the

closest distributed representation of a synset linked to the word/lemma that is

being considered for disambiguation.

Architecture A tries to pick just one position in the large lexicon vector at its

end and to depress probability mass in all other dimensions. This means that it is

exploring a single source of information from the gold data – ”this is the correct

90

answer and everything else is wrong”. Architecture B meanwhile aims at learning

from a richer representation – by embedding the gold synset in a VSM, at least

hypothetically it should have access to a range of semantic features that describe

the correct answer, therefore it is a much more detailed model of the lexicon

that provides an interpretation of the meaning of a word sense. Naturally, this

method depends very much on the quality of the VSM used – in terms of the input

representations (of words/lemmas), but also on that of the gold labels (synsets).

As discussed in chapter 3, obtaining such mixed distributed representation models

is an open task with no easy solution. One of the motivations for developing

Architecture B is to demonstrate the potential utility of such resources. This

approach has a distinct advantage, in that it can make decisions even for words it

has never seen in the sense-labeled data – it only needs the relevant word/lemma

and synset representations to be available in the VSM.

Input Features

Several ”mixed” VSMs are used in the experiments with Architecture B. The

methods outlined in chapter 6 are once again used in order to train distributed

representation models that here combine information about lemmas and synsets

in a shared embedding space. Producing such models involves a trivial change in

the procedure for generating pseudo corpora – the algorithm is set to emit synset

IDs in some cases (in this case, 50% of the time), and lemmas in all the rest. An

additional method for combining lemmas and synsets is used as well – picking

randomly a lemma from each referenced synset and inserting it next to the synset

ID in the random walk (i.e. instead of substituting the synset).

More sophisticated methods of corpus construction are certainly possible –

for instance, using the WN glosses in order to inject natural language patterns

in between the nodes in the random walks – but this is left for future research.

A naive strategy is attempted for enlarging the coverage of lemmas and thus

including functional words, as well as to add more syntagmatic knowledge – a

Wikipedia dump is lemmatized and concatenated to the pseudo corpus. In this

way, some of the lemmas in WN occur both in the KG-generated random walks,

together with synset IDs, and in natural language sentences, which allows the

NN model to explore both types of knowledge, as well as to learn representations

of words absent from WN (mostly function words) and to relate them to the

synsets. The results demonstrate that even such a simple approach can lead to

91

big improvements, suggesting that models based on something like Architecture B

could compete with more traditional classifier-like models.

7.2 Experiments and Results

7.2.1 Training and Evaluation Data

The training and evaluation of the proposed models was carried out within the

Unified Evaluation Framework (UEF) by Raganato, Camacho-Collados, & Navigli

(2017), so that the experimental results can be compared with those reported

there2. All data in SemCor, as processed within the UEF3, was used for training.

The Senseval-2 data set was used for development and the rest of the evaluation

data sets within the UEF – for the final evaluation. The differences between some

of the models are evaluated solely on the development set at the intermediate

stages, while the best models are evaluated on all data sets made available in the

UEF.

7.2.2 Experimental Results

Table 7.1 presents the parameters for the model that achieved the highest accuracy

on the Senseval-2 data set (called Model A1). The embedding size denotes

the number of dimensions in a single VSM, so that the concatenation of word

and lemma embeddings is double that size. The VSM from which the lemma

embeddings are derived is based on the WN30WN30glConOne KG that has

been described in the previous chapter. The training of the embeddings was

done with the word2vec tool with the following parameters: number of training

iterations = 7; number of negative samples = 5; window size = 15; threshold for

the occurrence of words = 1e-7; algorithm = Skip-Gram. The training corpus is

comprised of 500 million random walks on the KG, output by the UKB tool. The

architecture trains for a fixed number of epochs, after which the best saved state

on the development set is selected as final output of the training process.

2The data, results and descriptions of systems in the UEF are available at http://lcl

.uniroma1.it/wsdeval/
3The data sets are POS-tagged and lemmatized with the Stanford CoreNLP tookit, available

at https://stanfordnlp.github.io/CoreNLP/. Word senses are mapped to the WordNet 3.0
sense inventory.

92

Parameter Value
Embedding size 300
Word embeddings GloVe
Lemma embeddings WN30WN30glConOne
Bi-LSTM hidden units 2 * 200
Bi-LSTM layers 1
Dropout 20%
Optimizer SGD
Learning rate 0.2
Initialization of LSTMs random uniform [-1;1]
Maximum training batch size 100
Training epochs 100000
Best result at training epoch № 58100

Table 7.1: Parameters for the Architecture A model with the highest accuracy on
the development set.

Table 7.2 gives the parametrization of the most accurate model trained with

Architecture B (Model B1). Unlike the model described in the previous table, this

one does not use word embeddings as input, its hidden layers are two times larger,

it has no dropout applied during training and its best result is produced much

later (all models are stopped at 100,000 iterations).

Parameter Value
Embedding size 300
Lemma embeddings WN30WN30glConOne + WikiLemmatized
Bi-LSTM hidden units 2 * 400
Bi-LSTM layers 1
Dropout 0%
Optimizer SGD
Learning rate 0.2
Initialization of LSTMs random uniform [-1;1]
Training batch size 100
Maximum training epochs 100000
Best result at training epoch № 94200

Table 7.2: Parameters for the Architecture B model with the highest accuracy on
the development set.

Table 7.3 presents a comparison of Model A1 and Model B1 with some of the

systems evaluated in the UEF. It also gives the results achieved with two other

models that are identical with Model A1, except for: Model A2 uses only the

GloVe word embeddings; ModelA3 uses another set of lemma embeddings. The

93

VSM in Model A3 is based on the WN30WN30glConOne KG as well, but also

on the Wackypedia corpus discussed in the previous chapter with relation to the

grammatical role embeddings. It is in practice the same corpus used to train the

embeddings for grammatical roles and lemmas in the same space.

System SNE-2 SNE-3 SME-07 SME-13 SME-15 ALL
IMS-s+emb 72.2 70.4 62.6 65.9 71.5 69.6
Context2Vec 71.8 69.1 61.3 65.6 71.9 69.0
Model A1 70.4 68.2 57.8 65.3 69.1 67.7
Model A2 69.6 69.4 59.3 65.0 69.4 67.8
Model A3 70.1 68.8 56.3 64.2 69.6 67.4
UKB-g* 68.8 66.1 53.0 68.8 70.3 67.3
IMS-2010 68.2 67.6 59.1 - - -
MFS 65.6 66.0 54.5 63.8 67.1 64.8
IMS-2016 63.4 68.2 57.8 - - -
Model B1 64.7 57.9 47.9 61.9 64.8 61.3
UKB-g 60.6 54.1 42.0 59.0 61.2 57.5

Table 7.3: Comparison of the models trained with Architecture A & B with other
systems trained on SemCor and evaluated on several data sets (”SNE” stands for
”Senseval”, ”SME” stands for ”SemEval”). IMS-s+emb, Context2Vec, UKB-g*.
UKB-g and MFS are reported in Raganato, Camacho-Collados, & Navigli (2017);
IMS-2010 is reported in Zhong & Ng (2010); IMS-2016 (this is the configuration
IMS + Word2Vec (SemCor)) is reported in Iacobacci et al. (2016). The results
from the UEF stand for the F-1 score, but since all systems there either use a
back-off strategy or are knowledge-based, this is equivalent to accuracy, just as in
the present work.

Models A1-3 are below the state of the art, but not by a large margin. They are

comfortably ahead of the Most frequent sense (MFS) baseline, which is typically

hard to beat; on some of the data sets the models perform better than the UKB-

g* configuration of the popular knowledge-based tool, beating it on the overall

evaluation as well. UKB-g* is itself much better than previous configurations of

UKB, as shown in the table. Previous evaluations of the It-makes-sense system

also perform below the three models.

Models A1 and A3 perform somewhat better than Model A2 on some of the

data sets, suggesting that the lemma embeddings do contribute relevant new

knowledge, but they also fare worse on others, therefore the evidence is not

unambiguous. A different model, identical to Model A3 but trained at an earlier

stage of experimentation, achieved 71.6% accuracy on the SNE-2 data set. Since

the result could not be reliably replicated subsequently, it is not reported in the

table. This does suggest, however, that with a better parametrization of the

94

learning algorithm, which is more stable with regards to learning, the combination

of Architecture A and a WN-based VSM could achieve much higher accuracy that

is almost equal to state-of-the-art results.

Finally, I present some results from experiments with different VSMs as

sources of input features to Architecture B. The evaluation is done only with

respect to the development set, Senseval-2, and the goal is to demonstrate how

different approaches to distributed representation lead to different quality of the

embedding. This is particularly important in the case of Architecture B, as the

network effectively learns how to navigate within the same VSM – it takes as

input word/lemma embeddings, calculates via recurrences the contexts for the

input tokens and tries to match those to the corresponding synset representations

within the same space. This means that the more meaningfully words/lemmas

and synsets are related spatially (and therefore semantically), the easier it is for

the network to establish how to map actual input to expected output.

Vector Space Model Accuracy (SNE-2)
WN30WN30glConOne-C3 + WikiLemmatized 64.7
WN30WN30glConOne-C3 63.1
SW2V (600 hidden units) 62.1
WN30WN30glConOne-C1 61.7
SW2V (400 hidden units) 60.2
WN30WN30glConOne-C2 57.4
AutoExtend 53.2

Table 7.4: Comparison of the models trained with Architecture B on the Senseval-
2 data. The parametrization of the models is the same (except for one of the
SW2V models which has more hidden layer neurons). The SW2V embeddings are
associated with mixed case strings of word forms as described in Mancini et al.
(2016); the AutoExtend vectors are described in Rothe & Schütze (2015).

Table 7.4 shows that simply concatenating the lemmatized Wikipedia dump to

the pseudo corpus leads to a big improvement – probably due both to the ability

of the model to represent words missing in WN (mostly functional ones) and to

having access to syntagmatic knowledge from natural language text. There is

also difference in the performance of the models depending on how the pseudo

corpus was constructed. Corpus1 (C1) was built by generating 100 million random

walks from the graph and then adding next to each synset ID in the random

walks a randomly chosen lemma from that synset; Corpus2 (C2) was built by

generating 200 million random walks and directly substituting synset IDs with

representative lemmas. Thus, C1 and C2 are roughly of the same size, but C1 is

95

much more effective in this evaluation. Corpus3 (C3) was built in the same way as

C1, but the number of random walks in it is 200 million, i.e. twice bigger; it is the

best-performing model based on pseudo sentences only. VSMs that also represent

words/lemmas and synsets in a shared space, but are constructed differently (see

chapter 3), like SW2V and AutoExtend, do not seem to be better than the simple

approach proposed here. The SW2V embeddings, which are directly trained on

natural language text (non-lemmatized at that), do perform a little better than

some of the pseudo-copus-only-based embeddings (C1 and C2, bot not C3), if the

hidden layer of the RNN is enlarged (which is not the case with the pseudo-text

vectors); however, the combination of WN and Wikipedia beats all other VSMs,

indicating that the KG is crucial for representing the relation between lemmas

and synsets.

7.3 Discussion and Further Work

The results presented show that neural sequence architectures are a viable option

for training supervised models for WSD. Architecture A – a recurrent neural

network with a classifier on top – is able to achieve results which are relatively

close to the state of the art compared to other approaches, without the need for

heavy feature engineering (IMS) or complex pre-training procedures (Context2Vec).

The results are not fully comparable with those in the UEF, as this work does

not use the same VSMs (e.g. the size of the vectors used there is 400, compared

to the 300-position vectors I use in this thesis), but the rough comparison shows

that RNNs can compete with the best systems, especially if more effort is put into

optimizing the parameters through heavy experimentation. Some initial results

indicate that even with the currently identified optimal parameters, much higher

results are possible, even though difficult to replicate. Therefore, further work is

necessary to find more stable learning configurations. Additional improvements,

like for instance adding a CRF layer on top, so that decisions are taken with

respect to the global well-formedness of the semantic analysis, could potentially

make the architectures even more competitive.

Architecture B, while not as accurate in the experimental evaluation, shows

potential for an alternative approach to WSD with RNNs. Under this approach,

the system attempts to learn how to navigate the dynamics of meaning – how

to start from representations of individual words/lemmas and to combine them

96

in contextual representations that are close to pre-learned representations of

concepts/synsets. Such a resource, i.e. a mixed VSM of lemmas, words and synsets,

could be useful in other applications, not merely in WSD and sequence-to-sequence

tagging tasks, e.g. as a means to identify semantic axes of variation between

senses, between senses and words, etc. The experimental results indicate strongly

that there is a lot of space for improving such VSMs, since even straightforward

modifications produce big gains in accuracy.

In the next chapter I show how the combination of the two approaches (Ar-

chitecture A & B) can also have useful effects, therefore suggesting that the two

methods learn slightly different kinds of linguistic meaning and can complement

each other.

97

Chapter 8

Multi-task Learning with

Recurrent Neural Networks

The final chapter in the thesis presenting original research seeks to explore the

possibilities of doing WSD in parallel with other NLP tasks. This line of work

is important in order to motivate further research in WSD, which has not been

definitively shown to benefit downstream applications. This big detriment in the

field of WSD is due partly to the fact that proper sense-annotated data is very

expensive to produce and consequently no large-scale projects have attempted to

exhaustively explore the value WSD can bring into general NLP. From a theoretical

point of view, however, lexical semantics is of tremendous interest, as, according

to many theories and formalisms, it is in the lexicon where much of the structural

patterning in language is encoded: from syntactic valency frames and semantic

frames of various kinds to morphological characteristics, selectional restrictions

and discourse information.

RNNs offer a good opportunity to explore this hypothesis (that the lexicon

is an interface between different types of linguistic knowledge) – especially via

multi-task learning. This term denotes the process of training a system to solve two

or more tasks in parallel, so that the separate classifiers (or other kinds of decision

modules) make independent decisions but also share hidden parameters and all

contribute collectively to their optimization in training. This approach is very

different from the standard pipeline solutions, where each processing module works

on its own and then feeds its annotations to the following one in the chain. Errors

propagate rapidly along complex pipeline architectures and consequently modern

research is moving more and more towards a multi-task learning orientation

98

where the separate tasks are solved in parallel and the relevant modules share

the same constraints. This sharing of parameters has the potential to harmonize

the different kinds of analyses and to exploit information from various levels of

linguistic structure, in a more holistic manner.

The chapter outlines two examples of multi-task learning. The first one

combines Architectures A and B from chapter 7 and the second one seeks to

solve in parallel WSD and POS tagging. Positive results in these preliminary

studies should provide incentive to pursue further the serious development of

WSD models and their integration in larger systems that seek to model language

more extensively. In such an endeavor, modeling the lexicon should be a central

task that provides firm foundation to almost everything else.

8.1 Combining a WSD Classier and a Learner

of Context Embeddings

The first idea for multi-task learning that is explored here combines Architectures A

and B from the previous chapter. The two methods share the same hidden layer(s),

but have their own, parallel output layers where the training signal is obtained.

The motivation to do this kind of parameter sharing is that even though both

Architectures A and B are used to perform WSD, they actually solve tasks which

differ significantly. Architecture A aims to directly pick the most relevant word

sense out of the full vocabulary of available senses and therefore uses a large lexicon

vector to represent its beliefs about the most probable choices. Rather than doing

direct classification, Architecture B attempts to represent the sentential context

with regards to the word to be disambiguated – as a vector within the original

embedding space that provides the input features. The working hypothesis is that

even though the two methods use a lot of common information, their different

objectives force them into learning different kinds of lexical knowledge as well –

perhaps more targeted with respect to Architecture A, and a more detailed but

also multi-purpose representation in the case of Architecture B.

Therefore the changes to the implementation are minimal. In fact, there are

none except that both types of hidden-to-output layer connections are present

(one giving a vocabulary-sized vector, the other an embedding-sized one) and

that the results of the two cost functions (cross entropy and least squares) are

99

summed to give a final number to the optimizer. The same parameters for the

RNN are used as those in table 7.2 from the previous chapter, as well as the

same embeddings (WN30WN30glConOne-C3 + WikiLemmatized). Table

8.1 provides results on all evaluation data sets, compared with the results for the

single-task architectures trained with the analogous parameters.

System SNE-2 SNE-3 SME-07 SME-13 SME-15 ALL

si
m

il
ar

it
y

Model B1 (single) 64.7 57.9 47.9 61.9 64.8 61.3
Model B1 (multi) 66.8 60.1 49.2 63.4 67.7 63.3

cl
as

si
fi
ca

ti
on

Model A1 (single) 70.4 68.2 57.8 65.3 69.1 67.7
Model A2 (single) 69.6 69.4 59.3 65.0 69.4 67.8
Model A3 (single) 70.1 68.8 56.3 64.2 69.6 67.4
Model A4 (single-200) 67.7 66.9 55.8 63.6 68.3 65.9
Model A4 (single-400) 68.5 67.1 58.2 63.6 67.0 66.2
Model A4 (multi) 68.9 67.8 58.0 63.7 68.4 66.7
Model A4 (multi+dropout) 69.6 68.0 59.1 64.5 70.2 67.5
MFS 65.6 66.0 54.5 63.8 67.1 64.8

Table 8.1: Comparison of single-task and multi-task models. The first section of
the table presents accuracy results on all evaluation data sets for two similarity
(Architecture B) models that are initialized with the same parameters and embed-
ding vectors (see chapter 7 for details); the only difference is that one has been
trained only on the similarity task and the other one has been trained together
with an Architecture A type classification model.
The second section presents accuracy results for classification models. The results
for Models A1-A3 are repeated from chapter 7. The Model A4 variations have
the same parametrizations and inputs as Model B1 (multi) with regards to their
shared components; the only exception is Model A4 (single-200), which has half
the number of hidden units. This is motivated by the better performance of
Architecture A-type models with smaller hidden layers – when the GloVe vectors
are used. Model A4 (multi) shares the same principles and parameters with B1
(multi) and is in fact trained together with a B-type model, i.e. A4 (multi) and
B1 (multi) are just the two separate pathways of one and the same model.

The results demonstrate that multi-task learning does help in this case. The

multi-task models (A & B) are both more accurate than their single-task counter-

parts. In the similarity-style WSD (Architecture B type models) the difference is

greater: it ranges between 1.3% and 2.9% accuracy on the different data sets, with

a 2% overall difference. Model B1 (multi) is able to overcome the MFS baseline

on two data sets (SNE-2 and SME-15) and is only 1.5% below it on the overall

evaluation.

100

The classification model (Architecture A type) that shares parameters with

a similarity-based module also performs better than its purely classifier-based

analogous versions (A4 (multi) as opposed to A4 (single)), especially when dropout

on the hidden layer is added (the amount of regularization used in the model

referenced in the table is 0.5). Note that in addition to a 400-hidden-units

single-task model, one with 200 units was trained as well, since in the case when

using the GloVe embeddings this parameter setting gives higher accuracy for

this type of architecture. Moreover, Model A4 (multi) is able to score relatively

closely (the dropout model actually does better on some data sets) to Models

A1-3, which all use the GloVe vectors, i.e. they have access to a VSM with

much more accurate representations of the input words. It is noteworthy that

the GloVe vectors represent word forms, whereas the VSM used by Models A4

encodes representations of lemmas, i.e. it doesn’t make any use of morphological

information.

These results are encouraging because they suggest that: 1) there is a significant

amount of mutual support between the two tasks; 2) the poverty of the graph-

induced vectors (compared to the GloVe vectors) can be somewhat mitigated in

such multi-task learning settings.

8.1.1 Analysis of the Results

Here I offer an analysis of the behavior of the two subsystems in the multi-task

learning model, in order to demonstrate that the A and B branches learn different

types of information and it is not the case that they give the same answers, with

one of them being just a little more accurate. To this purpose, three subsets of

the gold annotations were excerpted from the ALL evaluation data set, together

with the corresponding answers given by: the classification module (here called A),

the similarity module (here called B) and the WordNet 1st sense heuristic (here

called C). The excerpted annotations all correspond to three types of situations.

For obvious reasons, we are not interested in the cases where A and B provide the

same answer, so this leaves the following: 1) A, B and C all give different answers;

2) B and C give the same answer, which is different from that provided by A; 3)

A and C give the same answer, which is different from that provided by B. Table

8.2 provides an overview of how often one or the other model is correct.

If it were the case that the type B modules (similarity) are merely learning

the same information as type A modules (classification), one would expect to find

101

Combination A!=C!=B B=C!=A A=C!=B Total
A correct 46 256 452 754
B correct 79 598 257 934
C correct 78 598 452 1128
Neither correct 82 229 241 552
Both (A&B) correct 3 12 15 30

Table 8.2: Comparison of different models. The first column gives information
about cases where neither of the three models agrees with any of the rest; in the
second column the similarity module picks the same answer as the WN 1st sense
heuristic; and in the third one the classification module conforms to the WNFS
heuristic. ”A” stands for ”classification module”; ”B” – for ”similarity module”;
”C” – for ”WN 1st sense”. The ”Both correct” line means that the two modules
(A and B) chose different synsets which are both listed in the gold annotation.

almost no examples where the similarity module, and not the classification one,

provides a correct answer, especially when its answers deviate from the WN 1st

sense heuristic, which in a way corresponds to the MFS heuristic and is something

that can be learned from the training data fairly well. On the contrary, the

similarity architecture knows better than the classifier in many cases. In fact, it

is more often correct in its predictions, by a wide margin. This does not belie the

higher accuracy score of the classifier approach in general, as the latter uses a

backoff heuristic to the WN 1st sense whenever it encounters a word it has not

trained on. But if such cases are counted as errors on the part of the A models,

then the similarity module is clearly more powerful than the softmax-based part

of the architecture. Model B is also leading the board in the case where all three

models give different answers (albeit it is in practice tied with model C). And

when the classifier and the 1st sense heuristic are in agreement, the similarity

module is correct in about a quarter of all cases. This short analysis is of course

far from sufficient for any final conclusions, but it nevertheless strongly suggests

that the two pathways in the multi-task learning architecture indeed pick on

different kinds of data. Therefore figuring out how to integrate them even better

and how to build ensemble models for combining their answers might lead to

further improvements with respect to WSD.

102

8.2 Combining POS Tagging and WSD

Secondly, another multi-task learning setup is explored briefly. This scenario

brings together two tasks I have discussed in different chapters of the thesis: WSD

disambiguation and POS tagging. Whereas the previous example of multi-task

learning combines modeling objectives that are, at least conceptually, relatively

close to one another, here two very different (albeit related) aspects of the lexicon

are modeled in parallel: morphological and lexico-semantic knowledge. Again,

the same basic architecture is used; this time the two diverging hidden-to-output

paths are analogous to one another – they map the context representation to

the size of the tag set and calculate a probability distribution using a softmax

function. Thus, there are two such parallel pathways: one for WSD and one for

POS tagging.

The training data for the models is again SemCor, but this time the original

POS annotations are used1. The POS tag set is converted to the same coarse-

grained labels (Petrov et al., 2011)2 used in the Universal Evaluation Framework:

it comprises of just 12 broad categories (e.g. NOUN, VERB, ADVERB, etc.),

which is useful for this experiment, since its purpose is not to achieve state-of-

the-art results, but to investigate the potential interaction between the two types

of tasks. The development corpus, Senseval-2, is used for evaluation purposes.

The original Senseval-2 corpus does not include POS annotations, but the UEF

version is manually corrected with respect to POS tags for all content words; this,

in combination with the coarse-grained nature of the tag set, should result in a

relatively low degree of errors, so that the corpus can be thought of at least as

a kind of ”silver” resource. Note that the results for WSD reported below are

somewhat higher that those in the previous chapter. This probably has to do

with differences in the training data, but since I am using this different version

only for the sake of the gold POS annotations, I will not be analyzing possible

divergences between the files (the main motivation for using the UEF corpora

in the first place is so that a comparison with other WSD systems can be easily

carried out).

Table 8.3 presents the exploratory results of this first foray into combining

WSD and POS tagging in an RNN setup. The parametrization used is in practice

1Downloaded from https://github.com/rubenIzquierdo/wsd corpora/tree/master/

semcor3.0
2https://github.com/slavpetrov/universal-pos-tags

103

System WSD (SNE-2) POS (SNE-2)
Model A2 (single-WSD) 70.6 -
Model A2 (single-POS) - 90.9
Model A2 (multi) 71.1 92.1

Table 8.3: Comparison of single-task models that learn to solve only either WSD
or POS tagging, and a multi-task model that learns to solve both in parallel.
”SNE-2” stands for ”Senseval-2”.

the same as that for Model A2 from the previous chapter, including the embedding

layer for which the GloVe vectors are used. Therefore Model A2 (single-WSD) is

in practice the same model, while the other two differ from it with respect to their

changed objective functions. For the sake of simplicity, I designate all three as

some version of Model A2. The accuracies in the table show that the multi-task

model does indeed fare better both with respect to WSD and POS tagging, more

significantly in the latter task.

8.3 Discussion and Further Explorations

The two experiments discussed in the chapter suggest that multi-task learning can

indeed be used to push current results forward. In the first example, the capability

to select one single correct word sense is shown to work in complementary ways

with the capability to translate the context of a word into a meaning representation

within the same VSM used for the representation of the inputs and the gold labels.

The second experiment shows that there is some interaction between morphological

and lexico-semantic patterns.

Further explorations of multi-task learning setups are certainly necessary in

order to determine which tasks benefit most from co-training with WSD models,

and which tasks help WSD in turn. POS tagging, for instance, does not seem like

an ideal candidate from this point of view, as morphological patterning seems

to be much more co-dependent with syntactic structure. Syntactic and semantic

valency analysis should, however, be very good sources of complementary data

that is nevertheless crucially dependent on knowledge of the lexicon. The only

reason POS tagging was selected for this demonstration is that the implementation

of the system is much easier. Other, auxiliary tasks could also help drive accuracy

upward. Several such tasks were tried out before writing the thesis, such as

104

attempting to guess the hypernyms of words and learning the distinction between

frequent and rare words, but none of them produced interesting results. However,

more experimental work is necessary in order to determine which auxiliary tasks

do and do not help with WSD (or other problems). A unified solution that is able

to model language in many different ways, while sharing most of its parameters

amongst the kinds of analyses it produces, would be a serious step towards building

multi-purpose and complexly structured linguistic and conceptual representations

that resemble human thought, rather than task-specific machinery.

105

Chapter 9

Summary and Outlook

This chapter serves as a summary to the thesis and provides a conclusion to it as

well. It also discusses the outlook for further work related to the lexical modeling

approaches presented here.

9.1 Summary

Representing lexical information has been an important task in the fields of

NLP and computational linguistics from their inception. Early work in machine

translation was especially focused on identifying the correct lexical senses of words

in order to provide precise lexical mappings between languages. The lexicon was

given a central role in formalisms like Head-driven phrase structure grammar and

Lexical functional grammar, which have been used in computational modeling of

language – in that it controls the syntactic and semantic patters lexical items can

combine into and command. The lexicon can also include information about the

discourse usages of its member items, stylistic and socio-linguistic information,

etc.

However, a number of obstacles have impeded substantial progress in the area

of computational lexical modeling. First of all, the sheer difficulty involved in

doing work at a number of levels related to lexical modeling turned out to be

a significant barrier. These difficulties include: organizing the lexicon in a way

that provides sufficient information but does not partition linguistic concepts far

too granularly; representing meaning in terms either of features or of relations

between the lexical items (i.e. constructing a semantic network); performing

106

word sense disambiguation in order to identify specific lexical items in text. The

enumerated quandaries are not separate from each other, they are all significantly

interconnected, so that, for instance, a particular level of granularity of the lexicon

implies a different way of representing meaning and will make WSD more or less

difficult. Further difficulties are connected with the more directly practical side of

things: constructing lexicons is very slow and expensive and specific to different

languages; training accurate WSD models requires a lot of data, since each lexical

item in practice presents a separate classification task, and it is difficult to provide

corpora with exhaustive coverage of the lexicon; the annotation process itself is

very slow and expensive, much more so than doing POS tagging, for instance.

Last but not least, the benefits of lexical modeling in relation to other NLP tasks

remain uncertain. There has been little confirmation of the positive effects that

WSD can bring to downstream tasks – be they in terms of additional features for

supervised models, as a source for rule-based decisions, etc.

All reasons listed above contribute to some extent to this lack of experimental

confirmation of the value of performing WSD and related lexical analyses, with

regards to computational tasks. The poverty of training data (where WSD

annotations are combined with data that can be used for other NLP tasks) is

central among these, since it makes testing the hypothesis (”WSD is important

for downstream NLP tasks”) almost impossible. This precludes constructing

easily interpretable scenarios with gold data that can directly show whether WSD

can help other tasks or not. This will probably remain true at least until high

enough accuracy scores are achieved with respect to WSD, so that such modules

can provide reliable information to related language processors. But even more

fundamental questions remain open-ended with respect to lexical modeling. For

instance, if the lexicon potentially stores information that connects together various

levels of linguistic analysis, how should that wealth of meaning be organized so

that it can be used to structure analyses that go beyond merely identifying a

relevant word sense? Even if accurate enough WSD is achieved, how should

other NLP modules interpret this kind of information, what kinds of interfaces

should be used between the modules? In general, what should be meant by lexical

modeling in the context of NLP – does it include only the lexical-semantic aspect

of meaning, or does it also include more abstract things, such as morphological and

syntactic information, sentential semantics, etc? And last but not least, should

that information be encoded in the form of symbolic structures or as probabilistic

preferences, or should there be a hybridized approach that combines the two kinds

107

of encoding? What kinds of computational models are then most suitable to doing

lexical analysis and can the strengths of different computational approaches be

combined?

In this thesis I have attempted to address several of these questions and their

interactions. It has taken up the most popular natural language lexicon in use in

NLP (WordNet) and explored it from several points of view. In addition to using

WN as an enumerative resource for word senses in the context of WSD, it has

attempted to enrich it with additional information about lexical items. The kinds

of enrichment proposed here are derived from the structure of WN itself, but

also from related resources like annotated corpora (eXtended WordNet, SemCor,

BulTreeBank) and the logic forms of WN glosses. The thesis has demonstrated

that making the semantic network denser in terms of information-rich relations

helps improve knowledge-based methods for WSD (on Bulgarian and English

data). Continuing this line of thinking, it has explored a method for generating

artificial corpora out of the enriched knowledge graph and consequently encoding

this information in distributed representations of words, lemmas and synsets. This

in some sense is conceptualized as a step toward encoding the symbolic information

in WordNet (understood as the grouping together of senses, the symbolic nature

of the relations between synsets and senses, the gloss definition in the synsets)

into numerical data upon which computational operations can be performed. Such

representations are shown to be highly-competitive on tasks that tap into lexical-

semantic knowledge (word similarity and relatedness). Embedding methods are

also used to generate distributed representations of a somewhat different kinds –

of prototypical grammatical arguments of predicates. The latter are used as filters

for the well-formedness (or plausibility) of relations in an experimental setup that

attempts to enrich the WN network by exhaustive combination of noun and verb

senses that have not been connected via syntagmatic links. This method is shown

to yield improvements on the WSD task, which suggests that it could be worth

the effort to explore it more comprehensively and apply it to uncover all kinds of

possible new relations in the network. Together these approaches provide one way

to combat the lack of enough training data, since they offer a way to infer lexical

information that has not been attested in annotated corpora, and they also allow

for enriching the lexical representation itself.

The thesis has also explored supervised methods for lexical analysis, more

specifically such based on recurrent neural networks. The basis for the RNN

architecture used throughout is first introduced in the context of POS tagging –

108

a task that is traditionally not thought of as a kind of lexical analysis, but that

nevertheless relies on information that could be part of a lexicon representation

(namely morphological information and knowledge about co-occurrence patterns

and syntactic dependencies). That work has also been used to train distributed

representations of words and morphological suffixes for the Bulgarian language,

which were used as input features to the recurrent network. The architecture

has been validated through relatively good evaluation results on the BulTree-

Bank corpus, and the suffix embeddings have also been shown to contribute new

information to the tagging process.

In the final part the thesis I have combined the separate strands of work in

the preceding chapters in order to offer an increasingly integrated view on lexical

modeling. First, the RNN architecture has been adapted to the task of WSD.

A more traditional interpretation of the task (called Architecture A) has been

implemented that directly classifies words into senses, based on a probability

distribution on the output of the network and on a filtering outside the network

that relies on the WordNet dictionary. Several models trained with Architecture

A have been evaluated on a number of popular data sets for the English language;

the models achieve results that are close to, even though not yet on par, with

state-of-the-art results. Some of the models combine popular word embeddings

(GloVe) with lemma embeddings generated via the previously introduced WN-

based methods and in some cases these additional features do contribute to more

accurate WSD. Additionally, a second architecture is implemented that, instead

of directly attempting to choose the correct word sense, learns to represent the

context of a word usage in a distributed manner. Architecture B thus is able to

situate contexts in the same vector space model which also contains representations

of lemmas and synsets (the VSM is again obtained via the method outlined earlier

in the thesis). The best such model achieves lower results that the more traditional

classifier-based method, and is not able to beat the most frequent sense baseline

either, but it nevertheless comes close to that challenging threshold. It is important

to note that models produced by Architecture B have the advantage of practically

always being able to make a guess regarding the disambiguation of a word, while

Architecture A models and other state-of-the-art systems necessarily rely on a

powerful WN-based heuristic (choosing the first sense for a lemma, since it is

carefully chosen by professional lexicographers as the most popular one).

Finally, the thesis attempts to combine the different kinds of analyses and

representations that have been explored toward more unified models of lexical

109

representation. This is done within the paradigm of multi-task learning, i.e. by

combining several different tasks that share common parameters but produce

different training signals, which in the case of neural networks are backpropagated

to the shared hidden layer. Such a shared representation should be learning to

model linguistic input by paying attention to different aspects of lexical infor-

mation, which may hold different degrees of relevance for separate tasks, but

are nevertheless connected in ways that are perhaps not directly observable by

single-task methods. Two cases are presented. The first one combines Architecture

A and Architecture B in a single system that can perform both procedures in

parallel. The evaluation results point to very significant increases of accuracy in

both types of modeling – making Architecture-A-style modeling based purely on

lemma embeddings almost on par with the model using the powerful GloVe em-

beddings, and boosting the Architecture-B -style module beyond the MFS baseline

on some data sets. The analysis of the choices taken by the two computational

pathways suggests that the they do in fact learn different disambiguation and

representation strategies and as such are a good fit for a multi-task scenario. The

second cases combines an Architecture-A-style module with a POS tagger like the

one developed earlier in the thesis. The evaluation results strongly suggest that

multi-task learning benefits both WSD and POS tagging, which would mean that

these two aspects of modeling words do indeed interact and it makes sense to

interface such representations in a computational lexicon.

9.1.1 List of Publications Related to the Thesis

This section provides a summary of the publications the author has worked on

and of their relation to the parts of the thesis. With the exception of the final

chapter on multi-task learning, all original work described in the thesis has been

presented at international conferences and workshops and subsequently published

in conference proceedings or journals. Combining these strands of work here is

meant to provide a more global perspective to the connections that can be found

in the separate approaches to modeling lexical knowledge.

110

No. Publication Summary Ref.

to

Thesis

Chap-

ter

1 Popov, A. ”Neural Network Mod-

els for Word Sense Disambigua-

tion: An Overview.” Cybernet-

ics and Information Technologies

18.1 (2018): 139-151.

This journal paper provides an overview of different

neural network models used to perform word sense

disambiguation. It summarizes various neural archi-

tectures used for training language models, for repre-

senting linguistics units and contexts in a distributed

manner, and for direct word sense classification.

3

2 Simov, K., Popov, A., Simova,

I., & Osenova, P. (2018). Gram-

matical Role Embeddings for En-

hancements of Relation Density

in the Princeton Wordnet. In Pro-

ceedings of the 9th Global Word-

net Conference.

This paper, accepted to the global conference on

WordNet and its versions and applications, presents

a new approach to enriching the semantic network of

the lexical resource by iteratively trying out poten-

tial combinations of noun-verb relations and selecting

those that are automatically evaluated as plausible

from a syntactic point of view. The method for filter-

ing out implausible relations is based on a distributed

representation model that can provide vector inter-

pretations of lemmas, synsets and, what is new here,

grammatical role embeddings, i.e. this work is able

to provide a prediction of what good candidates for

predicate arguments are like. In this way a semantic

network like WordNet can be made much denser and

indicative of world knowledge encoded in real text.

6

111

3 Popov, A. (2017). Word Sense

Disambiguation with Recurrent

Neural Networks. In Proceedings

of the Student Research Work-

shop Associated with RANLP

2017 (pp. 25-34).

This paper presents two architectures for word sense

disambiguation. Both architectures are recurrent neu-

ral networks (more specifically, LSTM cells are used

for the recurrence). One architecture does more tra-

ditional, direct classification of the word senses and

is able to achieve results approaching the state of

the art; it also utilizes additional distributed repre-

sentations based on the structure of the WordNet

semantic network, which are shown to increase ac-

curacy on the particular evaluation data set that is

used. The second type of architecture attempts to

represent word usage contexts in terms of a vector

space model that is being used also for representing

input lemmas and gold label synsets as numerical

features; this system achieves lower scores, but the

initial results are deemed enough to encourage further

research.

7

4 Simov, K., Osenova, P., &

Popov, A. (2017). Comparison of

Word Embeddings from Different

Knowledge Graphs. In Interna-

tional Conference on Language,

Data and Knowledge (pp. 213-

221).

This work compares the performance of different vec-

tor space models, when evaluated on the word sim-

ilarity and relatedness tasks. Its main contribution

lies in demonstrating that models produced on the

basis of WordNet, and especially on enriched versions

of WordNet, can be very competitive and actually

better than models trained on data that does not ex-

plicitly encode lexical-semantic information. Popular

word embedding models trained on large amounts

of regular natural language text or on sequences de-

rived from syntactic dependency trees are used as a

baseline, as well as another model generated on the

basis of the original WordNet network. The models

presented in the paper are able to outperform the

baselines, in some cases by a wide margin.

6

5 Popov, A. (2016). Neural

Network Language Models–an

Overview. In The Workshop

on Deep Language Processing

for Quality Machine Translation

(DeepLP4QMT) (p. 20-26).

This workshop paper is an overview of various lan-

guage models learned with neural networks: ranging

from complex recurrent ones, through feedforward

networks, to simple shallow models which allow for

training on large amounts of natural language text

and consequently for extracting high-quality word

embedding models from the networks.

3

112

6 Simov, K., Popov, A., Zlatkov,

L., & Kotuzov, N. (2016). Trans-

fer of Deep Linguistic Knowl-

edge in a Hybrid Machine Trans-

lation System. In The Work-

shop on Deep Language Process-

ing for Quality Machine Transla-

tion (DeepLP4QMT) (p. 27-33).

This work explores a hybrid architecture for machine

translation that combines a standard probabilistic

model with post-processing rules for the transfer of

information from source to target language. The

transfer is carried via the Robust Minimal Recur-

sion Semantics formalism, but the general approach

presents general support for using lexical-semantic

representations in machine translation, as the latter

is shown to improve the score of the probabilistic

translator.

3

7 Simov, K., Osenova, P., & Popov,

A. (2016b). Using Context In-

formation for Knowledge-based

Word Sense Disambiguation. In

International Conference on Ar-

ticial Intelligence: Methodology,

Systems, and Applications (pp.

130-139).

This paper outlines different strategies for enriching

the WordNet semantic network, using other linguistic

resources. The various combinations of new relation

sets are evaluated via a knowledge-based word sense

disambiguation method and against a baseline graph –

on the SemCor data for English that uses the original

WordNet relations and those derived from the Word-

Net annotated gloss corpus. The different strategies

include extracting relations from the logical form of

the WordNet glosses (included in the eXtended Word-

Net corpus) and from semantically annotated corpora

(SemCor), following two different approaches to rep-

resenting sentence structure. The best performing

new graphs beat the baseline with more than 6% in

terms of accuracy.

5

8 Popov, A. (2016). Deep Learning

Architecture for Part-of-speech

Tagging with Word and Suffix

Embeddings. In International

Conference on Artificial Intelli-

gence: Methodology, Systems,

and Applications (pp. 68-77).

The paper describes the implementation of a recur-

rent neural network architecture for part-of-speech

tagging, trained and evaluated on data for the Bul-

garian language (using a medium-grained tag set of

153 labels). It also describes the process of training

vector space models for Bulgarian word forms and

for quasi-morphological suffixes. The trained models

all achieve accuracy above 90%, while the addition of

the suffix embeddings as features leads to an increase

of about 3%.

4

113

9 Simov, K., Osenova, P., & Popov,

A. (2016a). Towards Semantic-

based Hybrid Machine Transla-

tion Between Bulgarian and En-

glish. In Proceedings of the 2nd

Workshop on Semantics-Driven

Machine Translation (SedMT

2016).

This work describes a hybrid approach to machine

translation, wherein a statistical machine translation

system (Moses) is provided with lemma suggestions

for word-level translation on the side of the target

language and in the form of factors (features). The

factors are generated via mapping the disambiguated

senses of the source language words to their target lan-

guage correspondences in a parallel WordNet. Some

rules are used in the generation as well. The empirical

results suggest that such a usage of word sense disam-

biguation might be able to boost statistical machine

translation results.

3

10 Simov, K., Popov, A., & Osenova,

P. (2016a). Knowledge Graph Ex-

tension for Word Sense Annota-

tion. In Innovative Approaches

and Solutions in Advanced In-

telligent Systems (pp. 151-166).

Springer.

In this paper a detailed analysis is carried out with

regards the subsets of relations in the WordNet se-

mantic network (including the gloss-derived relations

from eXtended WordNet) and their influence over a

popular graph algorithm for knowledge-based word

sense disambiguation. It is argued that via such an

analysis some of the relation sets that do not con-

tribute meaningfully to the accuracy of the algorithm

can be excluded from the graph. Such an analysis

is also carried out with regards to new relation sets

that are generated either via inference of the already

present relations, or from syntactic parses in sense-

annotated corpora for Bulgarian and English. The

best graphs based on combinations of old and new

relations significantly outperform the baselines which

use the original WordNet network and gloss-derived

network.

5

11 Simov, K., Popov, A., & Osenova,

P. (2016b). The Role of the Word-

Net Relations in the Knowledge-

based Word Sense Disambigua-

tion Task. In Proceedings of

Eighth Global WordNet Confer-

ence (pp. 391-398).

Another study that presents an in-depth analysis of

the impact of the various subsets of relations within

WordNet and eXtended WordNet, as well as of subsets

of inferred relation sets, also analyzed by morpho-

syntactic types.

5

114

12 Simov, K., Popov, A., & Osenova,

P. (2015). Improving Word Sense

Disambiguation with Linguistic

Knowledge from a Sense Anno-

tated Treebank. In Proceedings

of the International Conference

Recent Advances in Natural Lan-

guage Processing (pp. 596-603).

This is the first paper in a sequence of studies that

explore how a semantic network like WordNet can be

expanded for the sake of improving knowledge-based

word sense disambiguation. It deals exclusively with

data for the Bulgarian language (using the BulTree-

Bank corpus for relation extraction and evaluation of

the disambiguation algorithm) and relies on a partial

mapping of the Princeton WordNet for English to

Bulgarian word senses, preserving the English hier-

archy and semantic and lexical relations. Different

strategies for relation enrichment are explored, in-

cluding various kinds of hypernymy inference, domain

information inference and syntactic relation inference

via an annotated corpus. The study reports a big

improvement of knowledge-based word sense disam-

biguation accuracy on the available Bulgarian data.

5

13 Popov, A., Kancheva, S., Manova,

S., Radev, I., Simov, K., & Osen-

ova, P. (2014). The Sense Anno-

tation of Bultreebank. Proceed-

ings of TLT13, 127-136.

This paper describes the process of annotating the

BulTreeBank corpus with word sense information and

motivates the specific decisions taken with respect to

the annotation schema and to the mapping between

English and Bulgarian concepts, so that the synset

hierarchy of the original WordNet can be preserved

and reused.

2

14 Simova, I., Vasilev, D., Popov,

A., Simov, K., & Osenova, P.

(2014). Joint Ensemble Model

for POS Tagging and Dependency

Parsing. In Proceedings of the

First Joint Workshop on Statis-

tical Parsing of Morphologically

Rich Languages and Syntactic

Analysis of Non-canonical Lan-

guages (pp. 15-25).

The work presented here combines several syntactic

parsers and part-of-speech taggers in an ensemble

system that is optimized to select the best decisions

from the alternative modules, thus producing a solu-

tion that is globally optimal. The results from the

separate systems are combined via a voting mecha-

nism, which leads to improvements in terms of labeled

and unlabeled attachment scores and part-of-speech

tagging. It can be interpreted as a kind of motivation

for doing multi-task learning – the system does not

in fact optimize the separate modules based on joint-

learning, but the improved results demonstrate that

different systems learn different data dependencies,

which can be explored in a multi-task setup.

3

Here I offer a list of citations from other researchers of the works described in

the table.

115

• Simov, K., Popov, A., & Osenova, P. (2015). Improving Word Sense Dis-

ambiguation with Linguistic Knowledge from a Sense Annotated Treebank. In

Proceedings of the International Conference Recent Advances in Natural Language

Processing (pp. 596-603).

Cited by:

Hládek, Daniel, et al. ”Survey of the word sense disambiguation and challenges

for the Slovak language.” Computational Intelligence and Informatics (CINTI),

2016 IEEE 17th International Symposium on. IEEE, 2016.

• Simov, K., Popov, A., & Osenova, P. (2016b). The Role of the WordNet Re-

lations in the Knowledge-based Word Sense Disambiguation Task. In Proceedings

of Eighth Global WordNet Conference (pp. 391–398).

Cited by:

Singh, Kuldeep, et al. ”Why Reinvent the Wheel: Let’s Build Question

Answering Systems Together.” Proceedings of the 2018 World Wide Web Confer-

ence on World Wide Web. International World Wide Web Conferences Steering

Committee, 2018.

• Simov, K., Osenova, P., & Popov, A. (2016a). Towards Semantic-based

Hybrid Machine Translation Between Bulgarian and English. In Proceedings of

the 2nd Workshop on Semantics-Driven Machine Translation (SedMT 2016) (pp.

22–26).

Cited by:

Moussallem, Diego, Matthias Wauer, and Axel-Cyrille Ngonga Ngomo. ”Ma-

chine Translation Using Semantic Web Technologies: A Survey.” arXiv preprint

arXiv:1711.09476 (2017).

• Simov, K., Osenova, P., & Popov, A. (2016b). Using Context Information

for Knowledge-based Word Sense Disambiguation. In International Conference on

Articial Intelligence: Methodology, Systems, and Applications (pp. 130-139).

Cited by:

116

Jelai, Lilyana, et al. ”Textual Analysis by using Knowledge-based Word

Sense Disambiguation Approach.” Journal of Telecommunication, Electronic and

Computer Engineering (JTEC) 9.3-3 (2017): 159-162.

Song, Xuebo, ”Ontology-based Domain-specific Semantic Similarity Analy-

sis and Applications” (2018). All Dissertations. 2105. https://tigerprints

.clemson.edu/all dissertations/2105

• Popov, A. (2016). Deep Learning Architecture for Part-of-speech Tagging

with Word and Suffix Embeddings. In International Conference on Artificial

Intelligence: Methodology, Systems, and Applications (pp. 68-77).

Cited by:

Bhargava, Rupal, Anushka Baoni and Yashvardhan Sharma. ”Composite

Sequential Modeling for Identifying Fake Reviews” Journal of Intelligent Systems,

0.0 (2018): -. Retrieved 12 Jul. 2018, from doi:10.1515/jisys-2017-0501

Farrah, Soufiane, Hanane El Manssouri, and Mohammed Ouzzif. ”An hybrid

approach to improve part of speech tagging system.” Intelligent Systems and

Computer Vision (ISCV), 2018 International Conference on. IEEE, 2018.

Wagner, Martin. Target Factors for Neural Machine Translation. Diss. Infor-

matics Institute, 2017.

9.1.2 Approbation of the Results

Research Papers. The list of publications above describes works to which the

author of the thesis has contributed. That work was done predominantly during

the course of working on the PhD thesis, with two exceptions from 2014. All papers

published as part of conference proceedings were presented at the conference by

one of the authors. New work added by thesis to the body of published research

is concentrated in chapters 7 (in terms of new models and experimental results)

and 8 (where all presented material has not yet been published). Future work

on new research papers on the same topics is also planned: developing further

the results in the chapter on multi-task learning, producing better corpora for

training distributed representations to be used by the Architecture B system in

chapter 7, additional and better filtering techniques in the line of those presented

in chapter 6.

117

Research Projects & Funding. Various parts of the work done in the context

of this thesis have been funded by several research projects. Namely:

• The European Commission’s FP7 project: QTLeap: Quality Translation by

Deep Language Engineering Approaches (2014-2016)

• The European Commission’s FP7 project: EUCases - EUropean and Na-

tional CASE Law and Legislation Linked in Open Data Stack (2014-2015)

• Deep Models of Semantic Knowledge (DemoSem), funded by the Bulgarian

National Science Fund in 2017–2019

Paper, Poster and Research Seminar Presentations. This is a list of

presentations related to the thesis that the author has delivered in person:

1. 09/2015:

Improving Word Sense Disambiguation with Linguistic Knowledge from a

Sense Annotated Treebank. Conference presentation: Recent Advances in

Natural Language Processing (RANLP). Hissar, Bulgaria 2015.

2. 06/2016:

Towards Semantic-based Hybrid Machine Translation between Bulgarian

and English. Semantics-Driven Machine Translation Workshop, collocated

with the 16th Annual Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies

(NAACL: HLT). San Diego, USA 2016.

3. 09/2016:

Deep Learning Architecture for Part-of-Speech Tagging with Word and Suffix

Embeddings. Conference presentation: Artificial Intelligence: Methodology,

Systems, Applications (AIMSA). Varna, Bulgaria 2016.

4. 09/2016:

Neural Network Language Models for Lexical Translation Suggestion. Work-

shop on Deep Language Processing for Quality Machine Translation, collo-

cated with the AIMSA conference. Varna, Bulgaria 2016.

118

5. 09/2017:

Word Sense Disambiguation with Recurrent Neural Networks. Poster: Stu-

dent Workshop at RANLP. Varna, Bulgaria 2017.

6. 09/2017:

Word Sense Disambiguation with Recurrent Neural Networks. Poster: Sec-

ond International Summer School on Data Science 2017. Split, Croatia

(2017).

7. 2017:

Various presentations. DemoSem project internal research seminar at IICT,

BAS. Sofia, Bulgaria.

9.1.3 Key Scientific and Applied Scientific Contributions

In this conclusion to the thesis it can be said that all tasks set out in the

introductory chapter have been successfully accomplished. Many of the methods

developed and results obtained can be further improved, but each task has been

meaningfully engaged with and said engagement has led to concrete evaluation

results. The tasks are once again listed and related to the chapters in the thesis

in Table 9.2.

Work on these tasks has led to the following scientific contributions:

1. A detailed survey of the literature relevant to lexical modeling in NLP has

been compiled, specifically aimed at bridging the gap between symbolic and

probabilistic methods for encoding meaning. It includes a detailed overview

of deep learning methods for lexical modeling, which constitute one of the

most prominent foreseeable directions for future research.

2. It has been exhaustively demonstrated that modeling the lexicon through

relational knowledge is a viable strategy. It has been shown that depending

on the purpose of the modeling, various enrichments of the graph providing

the relational knowledge will help in different ways. Paradigmatic relations

tend to improve the modeling of lexical similarity, while syntagmatic rela-

tions tend to help for detecting relatedness of lexical items. Both kinds of

relations are important in terms of the comprehensive modeling necessary

to carry out complex lexical analyses such as word sense disambiguation.

119

Table 9.2: Successfully Conducted Tasks

Number Task Ref. to Thesis Chapter

1 Enhancing the WordNet semantic network for the
purpose of knowledge-based word sense disambigua-
tion.

5, 6

2 Designing and implementing a neural network ar-
chitecture for sequence-to-sequence annotation.

4, 7

3 Applying the neural architecture to the task of
part-of-speech tagging; experimenting with distri-
butional morphosyntactic models as a source of
features for learning.

4

4 Adapting the neural architecture for word sense
disambiguation.

7

5 Deriving different distributional lexical models
based on enrichments of the WordNet semantic
network; testing the models on tasks such as
knowledge-based and supervised WSD and sim-
ilarity/relatedness calculation.

6, 7

6 Implementing neural systems for multi-task learn-
ing in order to test whether and to what extent
different aspects of lexical knowledge interact with
each other.

8

These observations have been motivated via numerous experiments that

test the quality of different knowledge graphs with respect to various tasks:

knowledge-based and supervised WSD, word similarity/relatedness calcu-

lation. A comparative analysis of the relation sets in WordNet, its glosses

and such extracted from a syntactically annotated corpus has been carried

out – demonstrating that different relations contribute differently to lexi-

cal modeling and motivating further research into how KG quality can be

improved.

3. The thesis contributes strong evidence that encoding relational lexical knowl-

edge in probabilistic distributed models is a powerful tool for lexical repre-

sentation. It shows that improving the density and expressiveness of a KG

can be successfully translated to vector space models, which can in turn be

used as a representation source for supervised approaches to various tasks.

Generating training data for such VSMs can be accomplished via simple

algorithms for random walks on graph.

4. Several novel contributions in terms of representing the lexicon via vec-

tor space models are put forward. The first one is generating distributed

120

representations (embeddings) for a new kind of abstract constituent – gram-

matical roles, i.e. prototypical syntactic arguments of verbal predicates. The

method allows for deriving theoretical knowledge from data; it can answer

an important modeling question: what constitutes a good argument for a

specific predicate (the approach can be extended to non-verbal predicates as

well). Experimental results confirm its viability. The second contribution is

a particular strategy for training distributed representations of lemmas and

word senses/synsets in a shared space – by reusing the technique for the

generation of pseudo-corpora. Experimental results show that the method

is at least as successful as other popular approaches to the same problem.

In addition to these two contributions, the thesis has also proposed a novel

approach to encoding morphological information: the so-called suffix embed-

ding, which is a simple method for capturing morphological dependencies.

This kind of modeling has also produced positive results – on the task of

POS tagging of Bulgarian text; to my knowledge, this is the first instance

of applying a morphological analysis of this kind to the task at hand.

5. A new approach to supervised WSD has been proposed – one that employs

recurrent neural networks, but instead of performing direct classification

of senses at its output layer, learns to embed contextual representations of

words in a mixed VSM that describes both words/lemmas and senses/synsets.

The thesis has shown that improved mixed VSMs can make the models

produced by the architecture competitive with top-performing systems,

even though its main purpose is now WSD per se. A comparative analysis

shows that classifier-based RNN architectures and context-embedding RNN

architectures, such as those developed here, learn different representations

and can be complementary to each other. The context-embedding approach

has the advantage of always being able to produce a decision on its own,

without having to rely on back-off strategies in the case of unknown words.

In fact, without such a back-off strategy, the classifier-based system often is

less accurate that the context-embedding one.

6. Multi-task learning is explored in the context of training jointly an RNN

model on two different combinations of tasks: 1) sense classification and

context embedding; 2) sense classification and POS tagging. In both cases

the experimental results make a case for the strong interaction between

the different aspects of lexical knowledge. This should serve as further

motivation to explore this theoretical issue in closer detail.

121

There are number of applied scientific contributions as well:

1. Several RNN architectures for sequence-to-sequence tagging have been de-

signed and implemented. More specifically, these solve the following tasks,

which all engage with various aspects of lexical modeling: POS tagging,

WSD and context representation. The results are close to the state of the

art and indicate that further improvements and optimization might allow

these systems to achieve it.

2. Multiple sets of new relations between word senses (synsets) have been

generated, in the established format of WordNet. The new relation sets have

been evaluated against different data sets, on two languages – Bulgarian

and English. Significant gains in KBWSD have been achieved through the

addition of the new resources to the KG. Different strategies for extracting

relational knowledge from existing resources have been developed, including

a filter-based approach that uses grammatical role embeddings in order to

attempt an exhaustive automatic search for new relations in the graph.

3. Various vector space models have been trained and evaluated. Among

them: VSMs for representing lemmas on the basis of semantic networks;

mixed VSMs combining lemma, synset and in some cases grammatical

role representations; word form and suffix embeddings for the Bulgarian

language – the first such models trained for this language, as far as I am

aware. The lemma embeddings achieve state-of-the-art results on word

similarity/relatedness calculation, beating popular word embedding models;

they also contribute significant features to the task of supervised WSD. The

mixed lemma-synset models perform better than two popular such models,

against which they are evaluated on the task of context embedding.

9.2 Outlook

The work described in the thesis has opened up many potential pathways for

research into lexical modeling and associated fields. With the exception of POS

tagging (where high accuracy scores have been achieved cross-linguistically and no

great advancement can be expected at this point), all strands of research explored

here can be followed further with an eye toward achieving still better experimental

results. Moreover, advances in most of the tasks can be expected to have a positive

122

influence on the rest – as has been demonstrated, lexical representations encode

multifarious kinds of information that serve as interfaces between different levels of

linguistic analysis. For instance, further enriching the WordNet semantic network

would potentially lead to better distributed representations of lemmas and synsets,

which could in turn be used in conjunction with supervised WSD models. Below

are listed some ideas for future development which have been considered by the

author and colleagues.

Adapting information from additional resources to WordNet. There is

an abundance of rich lexical resources that can be used to further enrich WordNet.

As demonstrated in the thesis, this could lead to higher KBWSD scores and to

VSMs that better capture lexical meaning. Some such resources that are worth

considering and researching are: VerbNet (Schuler, 2005), PropBank (Kingsbury

& Palmer, 2002), FrameNet (Baker et al., 1998), BabelNet (Navigli & Ponzetto,

2012). For instance, VerbNet contains a rich set of relations for most of the

verb senses attested in English, including syntactic patterns, semantic valency

frames and logic forms licensed by the verbs. The SemLink project1 can be used

to provide mappings between VerbNet and WordNet senses; the same resource

also provides mappings to FrameNet, from where much more specific semantic

relations can be extracted, and to PropBank, which is a real text corpus annotated

with semantic arguments of verbs. Multilingual resources can also be explored for

relevant relations.

Exhaustive inference of relations over WordNet using grammatical role

embeddings. The experiments described in chapter 6 have shown that using

distributed representations of prototypical syntactic arguments as filters for gener-

ating new relations can be a successful strategy. Much more work needs to be

done, however. First of all, a more elaborate schema for the preprocessing of the

training corpora would probably be very useful, since currently the encoding of

the predicate arguments is very naive and does not discriminate very well between

the different types of arguments; a different way to represent the corpus (e.g. via

dependency paths) could lead to better distributed representations. Higher preci-

sion in parsing would also improve the resultant embeddings. Chapter 6 presented

grammatical role embeddings only for a limited number of syntactic arguments,

but in principle nothing stands in the way of generating such representations

1ttps://verbs.colorado.edu/semlink/

123

for all open word relations. Other types of relations (i.e. other than syntactic

dependencies) could also serve as the basis for enriching WordNet (e.g. some kind

of semantic relations, as long as a gold resource or an accurate enough parser is

available).

Improving both architectures for WSD and the resulting models. Apart

from further optimizations of the parameters of the networks, there are a number

of possible options that present a somewhat natural path for their improvement.

With regards to the classifier-based network (A), a CRF layer could be added on

top, so that all choices would be globally optimal; another improvement would

be to add an attention layer, which has been shown to boost results (Raganato,

Bovi, & Navigli, 2017). Experimenting further with various VSMs is also an

open task. With regards to the context-representation architecture (B), the most

straightforward and promising pathway would be to continue improving the mixed

VSM used for input features and gold label representations of synsets. Chapter 7

has shown that the VSM already performs better than other such mixed models.

Improving it would depend on generating denser and better filtered semantic

networks, as well as on post-processing of the generated artificial corpora, so that

natural language text fragments can be intermixed with data from the knowledge

graph. The last modification would improve the representation of function words

and would also inject knowledge from real texts.

Further explorations of multi-task learning. Chapter 8 has demonstrated

that multi-task learning can help improve accuracy on different kinds of tasks

when those are combined. However, combinations that should be even more

powerful from a theoretical point of view are available, such as WSD and syntactic

parsing, WSD and semantic role labeling, etc. Even multi-modal learning could

be explored, since information from other modalities (e.g. images) can provide

rich information concerning lexical modeling.

Ensemble systems. The analysis of the results from the multi-task setup in

chapter 8 has shown that Architectures A and B learn to make different choices

in many cases. Figuring out how to combine the output of several such systems

in a meaningful way could lead to going beyond the current state of the art.

124

Simplifying the WordNet dictionary. It has been pointed out numerous

times in the research community (including in this thesis) that WordNet senses

might be far too granular for some purposes. One such task that might benefit from

coarser-grained sense distinctions is WSD, the state of the art on which is currently

far behind a 90%-level accuracy that would make it viable for use in applications.

This has been tried before (Navigli et al., 2007), but the task is inherently difficult

in that a fine balance must be struck between making the lexicon coarse-grained

enough for systems to achieve high accuracy scores and fine-grained enough for

the annotations to actually be of any worth. Other difficulties exist as well. The

OntoNotes corpus, for instance, is annotated with WordNet word senses that

were clustered in such a way to ensure at least 90% inter-annotator agreement;

however, clustering was done on the level of individual lemmas, not in terms of the

synset hiearchy itself, which makes the WordNet semantic network more or less

unusable in the ways described in this thesis. Clustering the synsets themselves

would be a difficult task because solutions must be found to at least two difficult

problems: how to identify useful clusters at the right level of granularity and

how to transform the WordNet relations in a way that loses the least amount of

information. VSMs like the ones described in the thesis could probably be used

to solve the first problem; the second one remains an open task.

125

Declaration of Originality

Hereby, I declare that I have composed the presented thesis independently on my

own and without any other resources than the ones indicated. All thoughts taken

directly or indirectly from external sources are properly denoted as such.

This work has neither been previously submitted to another authority nor has

it been published yet.

Place, Date, Signature

(Name Family)

126

Acknowledgments

Work on this dissertation has allowed me to focus on many exciting problems

related to language analysis and requiring competence both in theoretical linguis-

tics and in natural language processing. I want to thank first and foremost my

scientific supervisor Kiril Simov for the many valuable ideas and for the guidance

he has provided me with over the last four years. Without his patience, knowledge

and keen mind, my own work would have been much poorer. It is thanks to him

and to Petya Osenova that I have had the chance to work on various projects,

attend valuable training programs and maintain some sort of continuity in my work

reflecting my interests in lexical semantics and semantics in general. Several of the

research papers that have provided the foundation for this thesis are collaborations

with both of them and other colleagues to whom I also express my gratitude. The

individual papers by myself also would not have been possible without support

from our research group here at the Institute for Information and Communication

Technologies in Sofia.

I am also grateful for the financial support without which this work would not

have happened:

• The European Commission’s FP7 project: QTLeap:Quality Translation by

Deep Language Engineering Approaches. This project has funded some of

the thesis-related work in the period 2014-2016.

• The European Commission’s FP7 project: EUCases - EUropean and Na-

tional CASE Law and Legislation Linked in Open Data Stack. The project

has funded some of the thesis-related work in the period 2014-2015.

• Deep Models of Semantic Knowledge (DemoSem), funded by the Bulgarian

National Science Fund. It has supported some of our group’s work in 2017

and partly in 2018.

127

Bibliography

Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M., & Soroa, A. (2009). A

Study on Similarity and Relatedness Using Distributional and WordNet-based

Approaches. In Proceedings of Human Language Technologies: The 2009 Annual

Conference of the North American Chapter of the Association for Computational

Linguistics (pp. 19–27).

Agirre, E., Barrena, A., & Soroa, A. (2015). Studying the Wikipedia Hyperlink

Graph for Relatedness and Disambiguation. arXiv preprint arXiv:1503.01655 .

Agirre, E., Bengoetxea, K., Gojenola, K., & Nivre, J. (2011). Improving De-

pendency Parsing with Semantic Classes. In Proceedings of the 49th Annual

Meeting of the Association for Computational Linguistics: Human Language

Technologies: short papers-Volume 2 (pp. 699–703).

Agirre, E., de Lacalle, O. L., & Soroa, A. (2014). Random Walks for Knowledge-

based Word Sense Disambiguation. Computational Linguistics , 40 (1), 57–84.

Agirre, E., De Lacalle, O. L., Soroa, A., & Fakultatea, I. (2009). Knowledge-Based

WSD and Specific Domains: Performing Better than Generic Supervised WSD.

In Ijcai (pp. 1501–1506).

Agirre, E., & Rigau, G. (1996). Word Sense Disambiguation Using Conceptual

Density. In Proceedings of the 16th conference on Computational linguistics-

Volume 1 (pp. 16–22).

Agirre, E., & Soroa, A. (2009). Personalizing PageRank for Word Sense Disam-

biguation. In Proceedings of the 12th Conference of the European Chapter of

the Association for Computational Linguistics (pp. 33–41).

Alonso, H. M., & Plank, B. (2017). When is Multitask Learning Efective? Semantic

Sequence Prediction Under Varying Data Conditions. In 15th Conference of

the European Chapter of the Association for Computational Linguistics.

128

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by

Jointly Learning to Align and Translate. arXiv preprint arXiv:1409.0473 .

Baker, C. F., Fillmore, C. J., & Lowe, J. B. (1998). The Berkeley FrameNet

Project. In Proceedings of the 36th Annual Meeting of the Association for

Computational Linguistics and 17th International Conference on Computational

Linguistics-Volume 1 (pp. 86–90).

Banerjee, S., & Pedersen, T. (2003). Extended Gloss Overlaps as a Measure of

Semantic Relatedness. In Ijcai (Vol. 3, pp. 805–810).

Baroni, M., Bernardini, S., Ferraresi, A., & Zanchetta, E. (2009). The WaCky

Wide Web: a Collection of Very Large Linguistically PRocessed Web-crawled

Corpora. Language Resources and Evaluation, 43 (3), 209–226.

Bentivogli, L., Forner, P., Magnini, B., & Pianta, E. (2004). Revising the WordNet

Domains Hierarchy: Semantics, Coverage and Balancing. In Proceedings of the

Workshop on Multilingual Linguistic Ressources (pp. 101–108).

Bergen, B. K. (2012). Louder Than Words: The New Science of How the Mind

Makes Meaning. Basic Books (AZ).

Bond, F., Vossen, P., McCrae, J. P., & Fellbaum, C. (2016). CILI: The Collabora-

tive Interlingual Index. In Proceedings of the Global WordNet Conference (Vol.

2016).

Borin, L., Forsberg, M., & Lönngren, L. (2013). SALDO: a Touch of Yin to

WordNet’s Yang. Language Resources and Evaluation, 47 (4), 1191–1211.

Brin, S., & Page, L. (1998). The Anatomy of a Large-scale Hypertextual Web

Search Engine. Computer Networks and ISDN Systems , 30 (1-7), 107–117.

Brown, S. W., Dligach, D., & Palmer, M. (2014). VerbNet Class Assignment as a

WSD Task. In Computing Meaning (pp. 203–216). Springer.

Cabezas, C., & Resnik, P. (2005). Using WSD Techniques for Lexical Selection in

Statistical Machine (Tech. Rep.). Translation Technical report CS-TR-4736.

Camacho-Collados, J., Pilehvar, M. T., & Navigli, R. (2015). NASARI: a Novel

Approach to a Semantically-aware Representation of Items. In Proceedings of

the 2015 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies (pp. 567–577).

129

Carpuat, M., & Wu, D. (2005). Word Sense Disambiguation vs. Statistical

Machine Translation. In Proceedings of the 43rd Annual Meeting on Association

for Computational Linguistics (pp. 387–394).

Carpuat, M., & Wu, D. (2007). Improving Statistical Machine Translation Using

Word Sense Disambiguation. In EMNLP-CoNLL (Vol. 7, pp. 61–72).

Chan, Y. S., Ng, H. T., & Chiang, D. (2007). Word Sense Disambiguation

Improves Statistical Machine Translation. In Annual Meeting-Association for

Computational Linguistics (Vol. 45, p. 33).

Chen, X., Liu, Z., & Sun, M. (2014). A Unified Model for Word Sense Representa-

tion and Disambiguation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP) (pp. 1025–1035).

Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the

Properties of Neural Machine Translation: Encoder-decoder Approaches. arXiv

preprint arXiv:1409.1259 .

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation

of Gated Recurrent Neural Networks on Sequence Modeling. arXiv preprint

arXiv:1412.3555 .

Ciaramita, M., & Altun, Y. (2006). Broad-coverage Sense Disambiguation and

Information Extraction with a Supersense Sequence Tagger. In Proceedings of

the 2006 Conference on Empirical Methods in Natural Language Processing (pp.

594–602).

Collins, M. (2003). Head-driven Statistical Models for Natural Language Parsing.

Computational linguistics , 29 (4), 589–637.

Collobert, R., & Weston, J. (2008). A Unified Architecture for Natural Language

Processing: Deep Neural Networks with Multitask Learning. In Proceedings of

the 25th International Conference on Machine learning (pp. 160–167).

Copestake, A., Flickinger, D., Pollard, C., & Sag, I. A. (2005). Minimal Recursion

Semantics: An Introduction. Research on Language and Computation, 3 (2-3),

281–332.

Dalrymple, M. (2001). Lexical Functional Grammar. Brill.

130

Edmonds, P., & Cotton, S. (2001). SENSEVAL-2: Overview. In The Proceedings of

the Second International Workshop on Evaluating Word Sense Disambiguation

Systems (pp. 1–5).

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008).

LIBLINEAR: A Library for Large Linear Classification. Journal of Machine

Learning Research, 9 (Aug), 1871–1874.

Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E., & Smith, N. A.

(2014). Retrofitting Word Vectors to Semantic Lexicons. arXiv preprint

arXiv:1411.4166 .

Fellbaum, Christiane. (1998). Wordnet. Wiley Online Library.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G.,

& Ruppin, E. (2001). Placing Search in Context: The Concept Revisited.

In Proceedings of the 10th International Conference on World Wide Web (pp.

406–414).

Galley, M., & McKeown, K. (2003). Improving Word Sense Disambiguation in

Lexical Chaining. In IJCAI (Vol. 3, pp. 1486–1488).

Giuglea, A.-M., & Moschitti, A. (2006). Semantic Role Labeling via FrameNet,

VerbNet and PropBank. In Proceedings of the 21st International Conference on

Computational Linguistics and the 44th annual meeting of the Association for

Computational Linguistics (pp. 929–936).

Goikoetxea, J., Agirre, E., & Soroa, A. (2016). Single or Multiple? Combining

Word Representations Independently Learned from Text and WordNet. In

AAAI (pp. 2608–2614).

Goikoetxea, J., Soroa, A., Agirre, E., & Donostia, B. C. (2015). Random Walks

and Neural Network Language Models on Knowledge Bases. In HLT-NAACL

(pp. 1434–1439).

Graves, A. (2012). Supervised Sequence Labelling. In Supervised Sequence

Labelling with Recurrent Neural Networks (pp. 5–13). Springer.

Graves, A., Mohamed, A.-r., & Hinton, G. (2013). Speech Recognition with

Deep Recurrent Neural Networks. In Acoustics, Speech and Signal Processing

(ICASSP), 2013 IEEE international conference on (pp. 6645–6649).

131

Halliday, M. A., & Hasan, R. (1976). Cohesion in English. English, Longman,

London.

Hendrickx, I., Kim, S. N., Kozareva, Z., Nakov, P., Ó Séaghdha, D., Padó, S.,

. . . Szpakowicz, S. (2009). Semeval-2010 Task 8: Multi-way Classification of

Semantic Relations Between Pairs of Nominals. In Proceedings of the Workshop

on Semantic Evaluations: Recent Achievements and Future Directions (pp.

94–99).

Hill, F., Reichart, R., & Korhonen, A. (2015). Simlex-999: Evaluating Semantic

Models with (Genuine) Similarity Estimation. Computational Linguistics , 41 (4),

665–695.

Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional LSTM-CRF Models for

Sequence Tagging. arXiv preprint arXiv:1508.01991 .

Iacobacci, I., Pilehvar, M. T., & Navigli, R. (2015). SensEmbed: Learning Sense

Embeddings for Word and Relational Similarity. In ACL (1) (pp. 95–105).

Iacobacci, I., Pilehvar, M. T., & Navigli, R. (2016). Embeddings for Word Sense

Disambiguation: An Evaluation Study. In ACL (1).

Jackendoff, R. (1992). Semantic Structures (Vol. 18). MIT press.

Johansson, R., & Pina, L. N. (2015). Embedding a Semantic Network in a Word

Space. In Proceedings of the 2015 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies

(pp. 1428–1433).

K̊agebäck, M., & Salomonsson, H. (2016). Word Sense Disambiguation Using a

Bidirectional LSTM. arXiv preprint arXiv:1606.03568 .

Kenter, T., Borisov, A., & de Rijke, M. (2016). Siamese CBOW: Optimizing Word

Embeddings for Sentence Representations. arXiv preprint arXiv:1606.04640 .

Kilgarriff, A. (2001). English Lexical Sample Task Description. In The Proceedings

of the Second International Workshop on Evaluating Word Sense Disambiguation

Systems (pp. 17–20).

Kingsbury, P., & Palmer, M. (2002). From TreeBank to PropBank. In LREC

(pp. 1989–1993).

132

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A., &

Fidler, S. (2015). Skip-thought Vectors. In Advances in Neural Information

Processing Systems (pp. 3294–3302).

Kučera, H., & Francis, W. N. (1967). Computational Analysis of Present-day

American English. Dartmouth Publishing Group.

Kucera, H., & Francis, W. N. (1982). Frequency Analysis of English Usage:

Lexicon and Grammar. Boston: Houghton Mifflin.

Le, M., Postma, M., & Urbani, J. (2017). Word Sense Disambiguation with LSTM:

Do We Really Need 100 Billion Words? arXiv preprint arXiv:1712.03376 .

Le, Q., & Mikolov, T. (2014). Distributed Representations of Sentences and

Documents. In International Conference on Machine Learning (pp. 1188–1196).

Lesk, M. (1986). Automatic Sense Disambiguation Using Machine Readable

Dictionaries: How to Tell a Pine Cone from an Ice Cream Cone. In Proceedings

of the 5th Annual International Conference on Systems Documentation (pp.

24–26).

Levin, B. (1993). English Verb Classes and Alternations: A Preliminary Investi-

gation. University of Chicago press.

Levy, O., & Goldberg, Y. (2014). Dependency-based Word Embeddings. In

Proceedings of the 52nd Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers) (Vol. 2, pp. 302–308).

Ling, W., Lúıs, T., Marujo, L., Astudillo, R. F., Amir, S., Dyer, C., . . . Trancoso,

I. (2015). Finding Function in Form: Compositional Character Models for

Open Vocabulary Word Representation. arXiv preprint arXiv:1508.02096 .

MacKinlay, A., Dridan, R., McCarthy, D., & Baldwin, T. (2012). The Effects of

Semantic Annotations on Precision Parse Ranking. In Proceedings of the First

Joint Conference on Lexical and Computational Semantics-Volume 1: Proceed-

ings of the Main Conference and the Shared Task, and Volume 2: Proceedings

of the Sixth International Workshop on Semantic Evaluation (pp. 228–236).

Mancini, M., Camacho-Collados, J., Iacobacci, I., & Navigli, R. (2016). Embedding

Words and Senses Together via Joint Knowledge-Enhanced Training. arXiv

preprint arXiv:1612.02703 .

133

Marcus, M. P., Marcinkiewicz, M. A., & Santorini, B. (1993). Building a Large

Annotated Corpus of English: The Penn Treebank. Computational Linguistics ,

19 (2), 313–330.

Melamud, O., Goldberger, J., & Dagan, I. (2016). context2vec: Learning Generic

Context Embedding with Bidirectional LSTM. In Proceedings of The 20th

SIGNLL Conference on Computational Natural Language Learning (pp. 51–

61).

Mihalcea, R. (2005). Unsupervised Large-vocabulary Word Sense Disambiguation

with Graph-based Algorithms for Sequence Data Labeling. In Proceedings of the

Conference on Human Language Technology and Empirical Methods in Natural

Language Processing (pp. 411–418).

Mihalcea, R., Chklovski, T., & Kilgarriff, A. (2004). The Senseval-3 English

Lexical Sample Task. In Proceedings of SENSEVAL-3, the Third International

Workshop on the Evaluation of Systems for the Semantic Analysis of Text.

Mihalcea, R., & Moldovan, D. I. (2001). eXtended WordNet: Progress Report. In

in Proceedings of NAACL Workshop on WordNet and Other Lexical Resources.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of

Word Representations in Vector Space. arXiv preprint arXiv:1301.3781 .

Mikolov, T., Deoras, A., Kombrink, S., Burget, L., & Černockỳ, J. (2011). Empir-

ical Evaluation and Combination of Advanced Language Modeling Techniques.

In Twelfth Annual Conference of the International Speech Communication

Association.

Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., & Khudanpur, S. (2010).

Recurrent Neural Network Based Language Model. In Interspeech (Vol. 2, p. 3).

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed

Representations of Words and Phrases and Their Compositionality. In Advances

in Neural Information Processing Systems (pp. 3111–3119).

Miller, G. A., Leacock, C., Tengi, R., & Bunker, R. T. (1993). A Semantic

Concordance. In Proceedings of the Workshop on Human Language Technology

(pp. 303–308).

Minsky, M., & Papert, S. A. (2017). Perceptrons: an Introduction to Computational

Geometry. MIT press.

134

Moldovan, D. I., & Rus, V. (2001). Logic Form Transformation of WordNet and

its Applicability to Question Answering. In Proceedings of the 39th Annual

Meeting on Association for Computational Linguistics (pp. 402–409).

Moro, A., Cecconi, F., & Navigli, R. (2014). Multilingual Word Sense Disambigua-

tion and Entity Linking for Everybody. In Proceedings of the 2014 International

Conference on Posters & Demonstrations Track-Volume 1272 (pp. 25–28).

Moro, A., & Navigli, R. (2015). Semeval-2015 task 13: Multilingual All-words Sense

Disambiguation and Entity Linking. In Proceedings of the 9th International

Workshop on Semantic Evaluation (SemEval 2015) (pp. 288–297).

Moro, A., Raganato, A., & Navigli, R. (2014). Entity Linking Meets Word

Sense Disambiguation: a Unified Approach. Transactions of the Association

for Computational Linguistics , 2 , 231–244.

Navigli, R. (2009). Word Sense Disambiguation: A survey. ACM Computing

Surveys (CSUR), 41 (2), 10.

Navigli, R., Jurgens, D., & Vannella, D. (2013). Semeval-2013 Task 12: Multi-

lingual Word Sense Disambiguation. In Second Joint Conference on Lexical

and Computational Semantics (* SEM), Volume 2: Proceedings of the Seventh

International Workshop on Semantic Evaluation (SemEval 2013) (Vol. 2, pp.

222–231).

Navigli, R., & Lapata, M. (2007). Graph Connectivity Measures for Unsupervised

Word Sense Disambiguation. In IJCAI (pp. 1683–1688).

Navigli, R., & Lapata, M. (2010). An Experimental Study of Graph Connectivity

for Unsupervised Word Sense Disambiguation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 32 (4), 678–692.

Navigli, R., Litkowski, K. C., & Hargraves, O. (2007). Semeval-2007 Task 07:

Coarse-grained ENglish All-words Task. In Proceedings of the 4th International

Workshop on Semantic Evaluations (pp. 30–35).

Navigli, R., & Ponzetto, S. P. (2012). BabelNet: The Automatic Construction,

Evaluation and Application of a Wide-Coverage Multilingual Semantic Network.

Artificial Intelligence, 193 , 217–250.

135

Navigli, R., & Velardi, P. (2005). Structural Semantic Interconnections: a

Knowledge-based Approach to Word Sense Disambiguation. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 27 (7), 1075–1086.

Oele, D., & van Noord, G. (2018). Simple Embedding-Based Word Sense

Disambiguation..

Papandrea, S., Raganato, A., & Bovi, C. D. (2017). SUPWSD: A Flexible

Toolkit for Supervised Word Sense Disambiguation. In Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing: System

Demonstrations (pp. 103–108).

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global Vectors for

Word Representation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP) (pp. 1532–1543).

Petrov, S., Das, D., & McDonald, R. (2011). A Universal Part-of-speech Tagset.

arXiv preprint arXiv:1104.2086 .

Plank, B., Søgaard, A., & Goldberg, Y. (2016). Multilingual Part-of-speech

Tagging with Bidirectional Long Short-term Memory Models and Auxiliary

Loss. arXiv preprint arXiv:1604.05529 .

Pollard, C., & Sag, I. A. (1994). Head-driven Phrase Structure Grammar.

University of Chicago Press.

Popov, A. (2016a). Deep Learning Architecture for Part-of-Speech Tagging

with Word and Suffix Embeddings. In International Conference on Artificial

Intelligence: Methodology, Systems, and Applications (pp. 68–77).

Popov, A. (2016b). Neural Network Language Models–an Overview. In The

Workshop on Deep Language Processing for Quality Machine Translation

(DeepLP4QMT) (p. 20-26).

Popov, A. (2017). Word Sense Disambiguation with Recurrent Neural Networks.

In Proceedings of the Student Research Workshop Associated with RANLP 2017

(pp. 25–34).

Popov, A. (2018). Neural Network Models for Word Sense Disambiguation: an

Overview. Cybernetics and Information Technologies , 18 (1), 139–151.

136

Popov, A., Kancheva, S., Manova, S., Radev, I., Simov, K., & Osenova, P. (2014).

The Sense Annotation of BulTreeBank. Proceedings of TLT13 , 127–136.

Pradhan, S. S., Loper, E., Dligach, D., & Palmer, M. (2007). SemEval-2007 task

17: English Lexical Sample, SRL and All Words. In Proceedings of the 4th

International Workshop on Semantic Evaluations (pp. 87–92).

Pustejovsky, J. (1991). The generative lexicon. Computational Linguistics , 17 (4),

409–441.

Pustejovsky, J. (1995). The Generative Lexicon. MIT Press.

Rada, R., Mili, H., Bicknell, E., & Blettner, M. (1989). Development and

Application of a Metric on Semantic Nets. IEEE Transactions on Systems,

Man, and Cybernetics , 19 (1), 17–30.

Raganato, A., Bovi, C. D., & Navigli, R. (2017). Neural Sequence Learning

Models for Word Sense Disambiguation. In Proceedings of the 2017 Conference

on Empirical Methods in Natural Language Processing (pp. 1156–1167).

Raganato, A., Camacho-Collados, J., & Navigli, R. (2017). Word Sense Disam-

biguation: A Unified Evaluation Framework and Empirical Comparison. In

Proc. of EACL (pp. 99–110).

Rink, B., & Harabagiu, S. (2010). Utd: Classifying Semantic Relations by Com-

bining Lexical and Semantic Resources. In Proceedings of the 5th International

Workshop on Semantic Evaluation (pp. 256–259).

Ristoski, P., & Paulheim, H. (2016). Rdf2vec: Rdf Graph Embeddings for Data

Mining. In International Semantic Web Conference (pp. 498–514).

Rothe, S., & Schütze, H. (2015). Autoextend: Extending Word Embeddings to

Embeddings for Synsets and Lexemes. arXiv preprint arXiv:1507.01127 .

Sanderson, M. (1994). Word Sense Disambiguation and Information Retrieval.

In Proceedings of the 17th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval (pp. 142–151).

Schuler, K. K. (2005). VerbNet: A Broad-coverage, Comprehensive Verb Lexicon.

Schuster, M., & Paliwal, K. K. (1997). Bidirectional Recurrent Neural Networks.

IEEE Transactions on Signal Processing , 45 (11), 2673–2681.

137

Schütze, H., & Pedersen, J. O. (1995). Information Retrieval Based on Word

Senses.

Simov, K., & Osenova, P. (2001). A Hybrid System for Morphosyntactic Dis-

ambiguation in Bulgarian. In Proceedings of the EuroConference on Recent

Advances in Natural Language Processing (pp. 5–7).

Simov, K., & Osenova, P. (2004). BTB-TR04: BulTreeBank Morphosyntactic

Annotation of Bulgarian Texts (Tech. Rep.). Technical Report BTB-TR04,

Bulgarian Academy of Sciences.

Simov, K., Osenova, P., & Popov, A. (2016a). Towards Semantic-based Hybrid

Machine Translation Between Bulgarian and English. In Proceedings of the

2nd Workshop on Semantics-Driven Machine Translation (SedMT 2016) (pp.

22–26).

Simov, K., Osenova, P., & Popov, A. (2016b). Using Context Information for

Knowledge-based Word Sense Disambiguation. In International Conference on

Artificial Intelligence: Methodology, Systems, and Applications (pp. 130–139).

Simov, K., Osenova, P., & Popov, A. (2017). Comparison of Word Embeddings

from Different Knowledge Graphs. In International Conference on Language,

Data and Knowledge (pp. 213–221).

Simov, K., Osenova, P., & Slavcheva, M. (2004). BulTreeBank Morphosyntactic

Tagset (Tech. Rep.). Technical Report BTB-TR03, BulTreeBank Project.

Simov, K., Osenova, P., Slavcheva, M., Kolkovska, S., Balabanova, E., Doikoff,

D., . . . Kouylekov, M. (2002). Building a Linguistically Interpreted Corpus of

Bulgarian: the BulTreeBank. In LREC.

Simov, K., Popov, A., & Osenova, P. (2015). Improving Word Sense Disam-

biguation With Linguistic Knowledge from a Sense Annotated Treebank. In

Proceedings of the International Conference Recent Advances in Natural Lan-

guage Processing (pp. 596–603).

Simov, K., Popov, A., & Osenova, P. (2016a). Knowledge Graph Extension for

Word Sense Annotation. In Innovative Approaches and Solutions in Advanced

Intelligent Systems (pp. 151–166). Springer.

138

Simov, K., Popov, A., & Osenova, P. (2016b). The Role of the WordNet Relations

in the Knowledge-based Word Sense Disambiguation Task. In Proceedings of

Eighth Global WordNet Conference (pp. 391–398).

Simov, K., Popov, A., Simova, I., & Osenova, P. (2018). Grammatical Role

Embeddings for Enhancements of Relation Density in the Princeton WordNet.

In Proceedings of the 9th Global Wordnet Conference.

Simov, K., Popov, A., Zlatkov, L., & Kotuzov, N. (2016). Transfer of Deep

Linguistic Knowledge in a Hybrid Machine Translation System. In The Workshop

on Deep Language Processing for Quality Machine Translation (DeepLP4QMT)

(p. 27-33).

Simova, I., Vasilev, D., Popov, A., Simov, K., & Osenova, P. (2014). Joint

Ensemble Model for POS Tagging and Dependency Parsing. In Proceedings

of the First Joint Workshop on Statistical Parsing of Morphologically Rich

Languages and Syntactic Analysis of Non-Canonical Languages (pp. 15–25).

Snyder, B., & Palmer, M. (2004). The English All-words Task. In Proceedings of

SENSEVAL-3, the Third International Workshop on the Evaluation of Systems

for the Semantic Analysis of Text.

Socher, R., Lin, C. C., Manning, C., & Ng, A. Y. (2011). Parsing Natural Scenes

and Natural Language with Recursive Neural Networks. In Proceedings of the

28th International Conference on Machine Learning (ICML-11) (pp. 129–136).

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.

(2014). Dropout: a Simple Way to Prevent Neural Networks from Overfitting.

Journal of Machine Learning Research, 15 (1), 1929–1958.

Stokoe, C., Oakes, M. P., & Tait, J. (2003). Word Sense Disambiguation in

Information Retrieval Revisited. In Proceedings of the 26th Annual International

ACM SIGIR Conference on Research and Development in Informaion Retrieval

(pp. 159–166).

Sundermeyer, M., Ney, H., & Schlüter, R. (2015). From Feedforward to Recurrent

LSTM Neural Networks for Language Modeling. IEEE/ACM Transactions on

Audio, Speech and Language Processing (TASLP), 23 (3), 517–529.

Sussna, M. (1993). Word Sense Disambiguation for Free-text Indexing Using

a Massive Semantic Network. In Proceedings of the Second International

Conference on Information and Knowledge Management (pp. 67–74).

139

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to Sequence Learning

with Neural Networks. In Advances in Neural Information Processing Systems

(pp. 3104–3112).

Taghipour, K., & Ng, H. T. (2015). Semi-Supervised Word Sense Disambiguation

Using Word Embeddings in General and Specific Domains. In HLT-NAACL

(pp. 314–323).

Tong, H., Faloutsos, C., & Pan, J.-Y. (2006). Fast Random Walk with Restart

and its Applications.

Vickrey, D., Biewald, L., Teyssier, M., & Koller, D. (2005). Word-sense Disam-

biguation for Machine Translation. In Proceedings of the Conference on Human

Language Technology and Empirical Methods in Natural Language Processing

(pp. 771–778).

Wang, P., Qian, Y., Soong, F. K., He, L., & Zhao, H. (2015a). Part-of-speech

Tagging with Bidirectional Long Short-term Memory Recurrent Neural Network.

arXiv preprint arXiv:1510.06168 .

Wang, P., Qian, Y., Soong, F. K., He, L., & Zhao, H. (2015b). A Unified

Tagging Solution: Bidirectional LSTM Recurrent Neural Network With Word

Embedding. arXiv preprint arXiv:1511.00215 .

Weischedel, R., Palmer, M., Marcus, M., Hovy, E., Pradhan, S., Ramshaw, L., . . .

others (2013). Ontonotes Release 5.0 LDC2013T19. Linguistic Data Consortium,

Philadelphia, PA.

Yin, W., Kann, K., Yu, M., & Schütze, H. (2017). Comparative Study of CNN

and RNN for Natural Language Processing. arXiv preprint arXiv:1702.01923 .

Yuan, D., Richardson, J., Doherty, R., Evans, C., & Altendorf, E. (2016). Semi-

supervised Word Sense Disambiguation with Neural Models. arXiv preprint

arXiv:1603.07012 .

Zapirain, B., Agirre, E., Marquez, L., & Surdeanu, M. (2013). Selectional

Preferences for Semantic Role Classification. Computational Linguistics , 39 (3),

631–663.

Zhong, Z., & Ng, H. T. (2010). It Makes Sense: A Wide-coverage Word Sense

Disambiguation System for Free text. In Proceedings of the ACL 2010 System

Demonstrations (pp. 78–83).

140

Appendix A

List of TablesList of Tables

4.1 POS tagging accuracy depending on the dimensionality

of the input word embeddings (after 10000 training iterations) . . 54

4.2 POS tagging accuracy depending on the dimensionality

of the input suffix embeddings (after 10000 training iterations) . . 55

4.3 POS tagging accuracy when using word embeddings only, and when

complementing them with suffix embeddings (after 100000 training

iterations) . 56

5.1 Results on the full gold corpus . 63

5.2 Results on the test portion of the corpus (3 files) 63

5.3 Accuracy scores on the two evaluation corpora, when using the

original knowledge graphs (Simov, Popov, & Osenova, 2016a). . . 65

5.4 Results for the separate subsets of relations in WN, tested against

SemCor and BTB (Simov, Popov, & Osenova, 2016a). 66

141

5.5 Accuracy scores on SemCor and BTB. The left part of the table

presents results for KGs combining the original WN relations and

one inferred set of relations (denoted by the ”Infer”-suffix); the

right part presents a combination of the original and gloss relations

together with one extended set. Aditional specifiers like ”1stV”

indicate which part of the original relation is extended (first verb

in this case); specifiers like ”NN”, ”NV”, ”VN” indicate which

subsets of the relation set are extended. The results that are higher

than the baselines for WN and WNG are bolded (Simov, Popov, &

Osenova, 2016a). 68

5.6 Accuracy scores for the combinations of the base WN relations and

a POS-determined subset of the GL relations. The highest results

for the two corpora are bolded (Simov, Popov, & Osenova, 2016a). 69

5.7 Accuracy scores for the combinations of WNG and syntactically-

derived relations from SemCor. 69

5.8 WSD accuracy scores for different combinations of the already

existing and newly created knowledge graphs. 74

6.1 Comparing results from different VSMs on the similarity and re-

latedness tasks. C5 and C15 are used to indicate the size of the

context window for the Skip-Gram model. The best results on the

different data sets, using a single VSM as source, are marked in

bold. The final lines give the correlation scores for combinations

of VSMs: a graph-based one and the GoogleNews/Dependency

vectors; the first combination achieves the best overall results on

two of the data sets and comes close to the best result on the third

one. 78

6.2 Results on KBWSD with relations ranked by embeddings from

a POS tagged real text corpus. The maximum improvement for

SemCor is 1.04 and for M13 SemeVal is 3.47. 84

6.3 Results on KBWSD with relations ranked by embeddings from a

POS tagged real text corpus and pseudo corpus. The maximum

improvement for SemCor is 2.77 and for M13 SemeVal is 3.04. . 84

142

6.4 Results on KBWSD with relations extracted after less frequent

grammatical role embeddings were removed from the VSM. The

improvement for SemCor is 0.79 and for M13 SemeVal is 4.62. . 85

7.1 Parameters for the Architecture A model with the highest accuracy

on the development set. 93

7.2 Parameters for the Architecture B model with the highest accuracy

on the development set. 93

7.3 Comparison of the models trained with Architecture A & B with

other systems trained on SemCor and evaluated on several data

sets (”SNE” stands for ”Senseval”, ”SME” stands for ”SemEval”).

IMS-s+emb, Context2Vec, UKB-g*. UKB-g and MFS are reported

in Raganato, Camacho-Collados, & Navigli (2017); IMS-2010 is

reported in Zhong & Ng (2010); IMS-2016 (this is the configuration

IMS + Word2Vec (SemCor)) is reported in Iacobacci et al. (2016).

The results from the UEF stand for the F-1 score, but since all

systems there either use a back-off strategy or are knowledge-based,

this is equivalent to accuracy, just as in the present work. 94

7.4 Comparison of the models trained with Architecture B on the

Senseval-2 data. The parametrization of the models is the same

(except for one of the SW2V models which has more hidden layer

neurons). The SW2V embeddings are associated with mixed case

strings of word forms as described in Mancini et al. (2016); the

AutoExtend vectors are described in Rothe & Schütze (2015). . . 95

143

8.1 Comparison of single-task and multi-task models. The first section

of the table presents accuracy results on all evaluation data sets

for two similarity (Architecture B) models that are initialized with

the same parameters and embedding vectors (see chapter 7 for

details); the only difference is that one has been trained only on the

similarity task and the other one has been trained together with

an Architecture A type classification model.

The second section presents accuracy results for classification mod-

els. The results for Models A1-A3 are repeated from chapter 7. The

Model A4 variations have the same parametrizations and inputs

as Model B1 (multi) with regards to their shared components; the

only exception is Model A4 (single-200), which has half the number

of hidden units. This is motivated by the better performance of

Architecture A-type models with smaller hidden layers – when the

GloVe vectors are used. Model A4 (multi) shares the same princi-

ples and parameters with B1 (multi) and is in fact trained together

with a B-type model, i.e. A4 (multi) and B1 (multi) are just the

two separate pathways of one and the same model. 100

8.2 Comparison of different models. The first column gives information

about cases where neither of the three models agrees with any of

the rest; in the second column the similarity module picks the same

answer as the WN 1st sense heuristic; and in the third one the

classification module conforms to the WNFS heuristic. ”A” stands

for ”classification module”; ”B” – for ”similarity module”; ”C” –

for ”WN 1st sense”. The ”Both correct” line means that the two

modules (A and B) chose different synsets which are both listed in

the gold annotation. 102

8.3 Comparison of single-task models that learn to solve only either

WSD or POS tagging, and a multi-task model that learns to solve

both in parallel. ”SNE-2” stands for ”Senseval-2”. 104

9.2 Successfully Conducted Tasks . 120

144

Appendix B

List of FiguresList of Figures

3.1 Feedforward neural network language model; figure taken from

Mikolov et al. (2010). 35

3.2 The CBOW and Skip-Gram architectures; figure taken from Mikolov,

Chen, et al. (2013). 37

3.3 A bidirectional RNN (Popov, 2016b) 43

4.1 Recurrent neural network for sequence-to-sequence tagging: The

dotted lines mean that a component or a connection is optional (in

the case of concatenating embeddings from two different sources –

e.g. word and suffix embeddings). Taken from Popov (2017). . . . 53

5.1 A tree structure that represents graphically part of one constructed

context. Terminal nodes are represented only by WN synset IDs

(Simov, Osenova, & Popov, 2016b). 72

5.2 The top part of a dependency parse of one sentence, also connected

to the previous sentence via a link to a preceding top node (Simov,

Osenova, & Popov, 2016b). The numbers in the artificial nodes

are simply indices to the file, sentence and token positions within

SemCor. 73

145

7.1 Recurrent neural network for word sense disambiguation: The

dotted lines mean that a component or a connection is optional (in

the case of concatenating embeddings from two different sources –

e.g. word embeddings from natural text and lemma embeddings

from a KG). 88

7.2 Diagrammatic representation of Architecture B. The same principles

apply as with Architecture A, but the output layer produces a vector

of the size of the VSM, which is then compared to the embedding

vector for the gold synset; a mean of the least squares error is

back-propagated as a learning signal. Crucial to the architecture is

the availability of a VSM where both lemmas/words and synsets

are represented as vectors of the same dimensionality. 90

146

Appendix C

List of Abbreviations

Bi-LSTM Bidirectional Long Short-term Memory

IMS It Makes Sense

IR Information Retrieval

KB Knowledge Base

KBWSD Knowledge-based Word Sense Disambiguation

KG Knowledge Graph

LSTM Long Short-term Memory

LM Language Model

ML Machine Learning

MT Machine Translation

NER Named Entity Recognition

NLP Natural Language Processing

NN Neural Network

POS Part-of-speech

RNN Recurrent Neural Network

SVM Support Vector Machine

VSM Vector Space Model

WN WordNet

WSD Word Sense Disambiguation

147

