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1Introduction

„Intelligence is the art of good guesswork.

— H.B. Barlow
(The Oxford Companion to the Mind)

In the past 25 years, scientists were focused on developing machines capable of
beating the most proficient humans in games such as chess, checkers or Jeopardy!.
In 2016 for the first time in our history, a machine by Google was able to claim a
decisive victory in a game of Go over the best player in the world [26]. The Go
game is over 2500 years old and it is considered one of the most complex games
since it requires a degree of intuition. Why is it important for the future of science,
technology and human progress?

Some, as the editor of "Six Generation Computing" (1980s), Derek Stubbs, believe
that the most important leaps in the evolution of life encompass several stages. First
is the ability to reproduce, the beginning of mutation and genetic variability (sexual
reproduction), as well as the creation of multi-cell organisms. The second stage
involves the development of specialized nerve cells and the nervous system, from
which point, according to Stubbs, no more discernible leaps occur until the invention
of computers. The final stage, and the most fundamental leap in our evolution, he
concurs is the invention of artificial neural networks.

The history of artificial neural networks(ANN) has naturally progressed in parallel
with the development of von Neumann-architecture computers. Artificial neural
networks have been part of the field of Artificial Intelligence(AI), devoted to de-
velopment of agents, displaying intelligent behavior [58]. Many philosophers and
researchers in the past 80 years have tried to understand the principles of intelligent
behavior and how organisms behave intelligently. Important consideration has been
given to the internal functioning of the system. In this sense, the field of AI has been
driven forward by two important research tracks - symbolic AI and neural networks
[58].

In the subfield of symbolic AI, the path to achieve intelligence is viewed in terms of
the manipulation of symbols according to formal rules. The artificial neural network
subfield also known as connectionism, on the other hand, regards the possibility of
creating an intelligent system through the development of a simplified neuron model
by using four key elements of a biological neuron - dendrites, synapses, cell body and
axon [75]. Through the simulation of a biological neural network, the ANN design
aims for utmost computational and algorithmic simplicity, while the self-organizing
feature contributes to the high adaptability to a broad range of problems of this
network. Those features provide a distinct advantage over traditional computational
paradigms, due to the lack of strict programming which sends instructions to the
hardware.
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Artificial neural networks incorporate a network of simple processing units, inter-
connected and some cases running in parallel. Each unit contains an activation
value, which communicates with other units along connections of different strengths.
Those connections determine how input to the processors is transformed into out-
put. Significantly, the knowledge in a connectionist structures is encoded in the
strength of the connections between the units and not in the symbolic structure
of the machine. The parameters of the connections are found adaptively through
a learning strategy until an acceptable solution is found. The particular learning
paradigm, known as supervised learning, introduces to the system a training set
of an input-output mapping. In the course of the training, the difference between
actual output and the desired output (predicted by the model) is calculated and the
connections between nodes are adjusted according to predefined principle in order
to minimize the error between desired and actual output. The procedure is repeated
multiple times, often randomizing the order of the training samples presented to
the network until no considerable changes in the synaptic connections are observed.
Thus the connections between the neurons determine the functioning of the artificial
neural network. This adaptability of the neurons is essential characteristic of ANNs
to adapt to various environments - including the ability to perform in real-time
conditions with continuous change of information.

In contrast to von Neumann machines, which store information in a formal set of
instructions in the memory, neural networks store the received information in the
synaptic weights instead (in other words, the knowledge resides in the weights of
the connection). Moreover, the information in neural networks can be transmitted
not only to the immediate neighbors (unlike cellular automata), but also to the most
distant nodes due to the hierarchical multi-layered structure of the network. As such,
representation of the information is not found in a concrete programmed structures,
but is instead distributed - the input pattern is represented over the whole network.
This contextual knowledge may be affected by the activity of all other neurons in it.
As a consequence there is no central processing unit in ANNs, rather each neuron
operates independently, as well as concurrently with other neurons in the network.
Consequently their parallel distributed structure provides effectual computing power.
In terms of hardware implementation of a neural network, when hardware failure
occurs, this inherent distributed robustness of the network allows it to adapt to
the changing environment. The big advantage in the interconnectedness lies in the
capability of neural networks to continue functioning even if damage in the network
occurs, with performance drop in direct proportion to the amount of damage to the
network. Contrasting to programmable units, where even a small change of the
programmed instructions leads to a failure. In this respect, artificial neural networks
emulate loosely the biological nervous system, where thousands of neurons die out
annually, while the brain continues its work largely unaffected (unless a medical
condition has not occurred) because of the high parallelism of the biological neural
networks.

The benefits provided from the structure and functioning of artificial neural networks
have been studied by cognitive scientists, neurobiologists, physicists, computer
scientists and engineers throughout the years. The first mathematical investigation
of the behaviors of neurons and networks of neurons (although less known) belongs
to Rashevsky, who in 1930s published several papers developing the mathematical
theory of nerves conduction based on electrochemical gradients [2]. The idea of
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the Russian physicist was to utilize two linear differential equations along with
a nonlinear threshold [133], which would provide underlying principles of the
behavior of single neurons. Rashevsky was the first to argue that the neuron model
could be connected in a network of neurons in order to produce complex behavior.
Importantly, part of Rashevsky’s research group was a logician - Walter Pitts, who
in 1943 along with Warren McCulloch, a neuroscientist, would go to formulate the
first theory for modeling artificial neurons. They described a neuron mathematically
as a logical gate with two possible states - the neuron either fires or does not fire,
thus performing a computational task [112]. Their model also established that the
outputs of some neurons serve as inputs to others. The state of the neuron is then
calculated as the linear summation of those inputs and weights, later compared to a
preselected threshold. Should the summed signal be larger than the threshold, the
neuron will fire and propagate the signal, otherwise it will not. After McCulloch
and Pitts, Donald Hebb contribution to the field encompassed the introduction of
a learning strategy by which biological neurons could actually learn on the basis
of classical conditioning (Pavlov discovery) - in other words synaptic connections
can be reinforced by the simultaneous and corresponding activity levels between
neurons.

In 1958 Frank Rosenblatt introduced one of the first training algorithms for learning
in neural networks in [138] and proving the convergence of the perceptron rule.
Rosenblatt suggested the innovation of numerical weights, the computing units
which serve as threshold elements and an interconnection pattern. In his model,
the learning is achieved by adaption of the weights of the network through a
predefined algorithm. The initial experimentation with the Rosenblatt’s model
brought an important question about the possible limitations that might be observed
in various pattern recognition tasks and the ability of the network to solve them
effectively. Some early experiments with the Rosenblatt’s perceptron produced
unrealistic expectations in the connectionism field.

Marvin Minsky and S. Papert had developed a simplified perceptron to scrutinize
the computational capabilities of the perceptron network [119]. In "Perceprons"
(1960s) the authors have demonstrated that a single-layer neural network is unable
to solve a class of problems that are not linearly separable. Furthermore they held
a rather pessimistic stance about the possibility that training multilayer networks
can successfully solve those problems. This outline is believed to have had a crucial
negative effect on the redistribution of strategic funding in the AI field and therefore
the departure of many capable scientists. Nevertheless, scientific work continued
on neural networks and in the 1980s the discovery of the error back-propagation
learning algorithm provided a direct answer to the criticism raised in "Perceptrons"
about the training of multilayer networks. This algorithm has been independently
discovered by several researchers (David Rumelhart, James McClelland, Werbos,
Parker) and brought renewed energy to the field. Considerable contribution to the
revival of the field can be recognized in the invention of the cognitron by Fuskushima
(1975) and Kohonen’s investigation of neural network through the use of topological
feature maps (1984). Additionally Hopfield introduced statistical mechanics to the
field through the formalization of the Hopfield network, which aims for explanation
of the behavior of a class of recurrent neural networks, used as an associative
memory.
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Many aspects of artificial neural networks have been studied since their inception,
with over 40 different paradigms proposed and used for various task related problems.
Nevertheless, the field faces many problems such as the inherent instability of the
system depending on the chosen model. One of the most fundamental problems in
the field is the existence of local minima and the possibility of the network to reach
it during training without a potential escape from it. To deal with those inherent
problems, various combinatorial algorithms have been proposed. Unfortunately not
always a substantial improvement have been introduced due to slow convergence
problems and the presence of multiple saddle points. The growth of network
parameters provides additional burden to the convergence speed of algorithms and
increase of the computational complexity of the system. The network parameters
are generally based on manual design. The decision about the number of input and
output neurons depends on the specific problem at hand. A developer, knowledgeable
about the specific task, selects the number of hidden layers, number of neurons in
every hidden layer, the training algorithm, as well as the type of activation function.
Those components are crucial for the computational performance, efficiency and
accuracy of the network but are often established through a trial and error basis and
on the personal experience of the researchers.

One of the most important questions in the field of artificial neural networks and
AI in general is the path for future development in the field. Moreover, the limited
understanding of the function of the human brain artificial neural networks are
considered to provided important insights into those functions. Therefore the
field of artificial neural networks represent a multidisciplinary field, incorporating
knowledge from neuroscience, mathematics, statistics, physics, computer science,
engineering, etc. Artificial neural networks have been implemented in various other
fields - process modeling and control, data analytics, robotics, environmental control,
intelligent agents, where ANNs are a powerful tool for dealing with multidimensional
data.

Objectives and Tasks

The main objectives of the current PhD thesis are from scientific and application
perspective. They can be summarized as follows:

1. The development of a novel post-learning algorithm, which once implemented
allows for the network to escape from possible local minima or saddle points
reached during the optimization process.

2. The implementation of sensitivity analysis indicators to study the perturbation
of the weights in the network, affected by noise in the system. The study of
sensitivity analysis could provide beneficial to the area of hardware based
neural networks, where noise from various sources influences the network’s
performance.

3. Development and implementation of a novel automatic evolutionary architec-
ture of a neural network through a hybrid genetic algorithm. As such, trial and
error approaches to network design are discarded for an automatic discovery
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of network topology appropriate for specific tasks. The aim is to assist research
with the decision making possibilities and computational complexity involved
in designing neural networks.

To address these objectives the following tasks were constructed:

1. Development of a new optimization algorithm initialized once the training
process of a network is completed.

2. Selection and practical implementation of 3 sensitivity analysis benchmarks to
investigate levels of noise in the system in real time.

3. Development of a hybrid evolutionary algorithm, employed towards the auto-
matic selection of a neural network architecture dependent on specific task.

4. Program implementation in C a neural network architecture, including the
developed algorithms.

The current PhD thesis consists of 6 chapters. The thesis is 120 pages and includes
29 figures, 5 tables, 180 references. The framework of the thesis was developed on
the basis of 3 articles, published in international journals with impact factors. The
numerical experiments have been part of 2 scientific projects.

Chapter 2
Chapter 2 provides a critical review and analysis of the basic components of an
artificial neural network, specific topologies and their real-life applications.

Chapter 3
Chapter 3 introduces the concept of the supervised training in neural networks. The
training of ANNs is examined in terms of an optimization task. Several optimization
(training) algorithms are presented - based either on deterministic or stochastic
principles. Main advantages and drawbacks are described. The problems of local
minima and saddle points, which restrain the algorithm to find the best possible con-
figuration of the weights, are discussed. This chapter introduces a novel and effective
post-learning strategy designed to escape such local minimas or saddle points at a rel-
atively small computation cost. This novel method is based on analogy with naturally
occurring quantum effects. Several numerical experiments are presented to validate
the approach. The algorithm and results have been published in K.G. Kapanova,
I.T. Dimov, J.M. Sellier, On randomization of neural networks as a form of post-
learning strategy, Soft Computing (2015). doi : 10.1007/s00500− 015− 1949− 1,
(IF.1.63).

Chapter 4
Chapter 4 presents several sensitivity analysis indicators to understand the influence
of noise in the weights on the performance of the network. Those measurements
provide a better understanding about the network’s behavior and the sensitivity of
the outputs from the perturbation of weights during the training process. By means
of sensitivity analysis tools the acceptable level of noise which provides optimal
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solution to the random fluctuations without sacrificing the behavior of the network
is obtained. Three different indicators are utilized to observe the impact of the noise
on the system and how it can be used in an advantageous way from an engineering
perspective. The description of the sensitivity analysis method and the performed
numerical analysis has been published in K.G. Kapanova, I.T. Dimov, J.M. Sellier,
A Neural Network Sensitivity Analysis in the Presence of Random Fluctuations,
Neurocomputing (2016), doi : 10.1016/j.neucom.2016.10.060, (IF.2.392)

Chapter 5
Chapter 5 describes a novel hybrid genetic algorithm for the automatic architecture
of a neural network given a specific task. The algorithm provides several degrees
of freedom on the parameters of the network: number of possible neurons, num-
ber of hidden layers, types of connections, types of transfer functions used and
type of an optimization algorithm. The problem of expanding the space of pos-
sible solution with the increase of free parameters is discussed. It is shown that
despite the multidimensional space of possible structures, the proposed method is
capable of achieving sufficient performance at affordable computational cost. To
validate the model, several numerical experiments are presented. The algorithm,
as well as some of the results from the numerical analysis has been published in
K.G. Kapanova, I.T. Dimov, J.M. Sellier, A genetic approach to automatic neural
network architecture optimization, Neural Computing and Applications (2016),
doi : 10.1007/s00521− 016− 2510− 6, (IF.1.492).

Chapter 6
The final chapter concludes with a discussion of future directions of study, as well as
overall description of the PhD Thesis.
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2The Theory of Neural
Networks

„By far the greatest danger of Artificial
Intelligence is that people conclude too early that
they understand it.

— Eliezer Yudkowsky
(Co-founder of Singularity Institute for

Artificial Intelligence)

Artificial neural networks are computational units that emulate in a very restrictive
way the biological nervous system. This chapter provides description of the particular
computational paradigm, its underlying structure, as well as the information process-
ing capabilities and limitations of the most widely applied architectures. The chapter
begins with a brief explanation of the integral functions of biological neurons from
the field of neuroscience. Next, we provide description of the intrinsic characteristics
of artificial neural networks. We conclude with real-life implementation examples.

A biological neural network consists of nerve cells(neurons), coupled in a highly
interconnected structure. It is determined that the human brain is composed of ap-
proximately 1011 neurons, responsible for the neural computational task, connected
in a network structure through more than 1014 synapses [154]. For information to
progress from one neuron to another, an electrochemical current travels between
them through the neuron’s axon, which can be described as a long fiber. This trans-
portation of a current goes through the neuron, along the internecine connections
called synapses (meaning electrochemical junctions located on the cell branches
known as dendrites). Then the signal continues further through a very narrow
synaptic space to the dendrites and/or soma of the next neuron at an average rate
of 3m/sec (see fig. 2.1). By electrical current one considers the electro-chemical
process of a voltage-gated ion exchange that travels through the axon. Each neuron
can be connected to up to 10000 other neurons, transferring signals to one another
via 1014 synaptic connections. In a similar manner, neurons may receive multi-fold
inputs from many other neurons through their multiple dendrites. As such, our
neural system is highly interconnected. Despite this interconnectivity, not all con-
nections are equal - some have a higher transmission priority than others. Likewise,
neurons can be either excitatory, and thus promote impulse generation, or inhibitory,
preventing the neuron from firing.

Significant part of our initial neural structure is defined at birth, although throughout
a person’s life certain new connections are developed, while others die out. In
peoples’ lifetime we achieve strengthening or weakening of the neural junction
by the modification of the synaptic strengths (also known as learning). The high
connectivity, the generation of impulses and the ability of neurons to combine many
diverse signals simultaneously provides a high level of parallelization in the brain.
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Fig. 2.1: Structure of biological neuron

Currently, artificial neural networks are incapable of achieving the complexity of
the biological brain structure. Nevertheless, key structures of biological neurons
are implemented, through which high interconnectivity is possible. The artificial
neurons simulate the biological neural cells in a general manner. The synapses are
depicted by a weight which is linearly combined with the neuron input and then sent
to the neuron in order to provide an activation pattern. Similar to biological neurons,
certain activation level needs to be reached, exceeding a certain threshold limit in
order for a neuron to fire. This connectionist approach and various improvements
in the field of artificial neural network has attracted considerable attention in the
recent years. Researchers have focused on the development of an increasing number
of network architectures new mathematical optimization models which can be
implemented in various applications. It is important to remember that ANNs are
very simplified models of the brain and therefore conclusions about the function
of ANNs and its properties should not be translated as general conclusions about
biological neurons. Yet, the universal approximation capabilities of neural networks
are one of the reasons for their applicability to various scientific and engineering
domains.

2.1 Mathematical Model of Artificial Neural
Networks

In 1940s W.S. McCulloch, a neuroscientist, and W. Pitts, a logician, encouraged by
Rashevsky, proposed in a paper [112] a mathematical description of an extremely
simplified model of a neuron called "threshold logic unit" for complex pattern
recognition task. Their neuron either produces an output or not. For a neuron to
fire, more than 1 synaptic weight needs to be excited in a certain time interval. If
instead an inhibitory synapse is active, it prevents the firing of the neuron at specific
time period. Later, the set of processing nodes (neurons) that are connected to one
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another has been described as an artificial neural network. The McCulloch-Pitts
model was capable of converting a certain logical proposition in terms of an artificial
neural network.

In this work, by network it is understood the reference to a system of artificial
neurons. It can be something as simple as a single neuron or a large collection of
nodes in which each one is connected to every other in the network according to
a predefined set of conditions. The architecture of the network is defined as the
type of connections between the neurons, the specific arrangement of neurons in
the network, as well as the type of training algorithms and activation functions
that are implemented. A feedforward neural network represents layered network
architecture, where the neurons in the input layer are directly connected to the
neurons in the output layer, and no feedback mechanism is provided (there is no
backward connection). The predominant neural network architecture consists of
several layers of neurons, which can belong to one of the following types of layers:

• Input Layer - the initial layer in the network, where the neurons receive the
external input from external sources (such as data sets, sensors, real-time
data).

• Hidden Layers - the neurons in the hidden layers generally interact with the
neurons from the layer just below the current layer and the one just above it.

• Output Layer - the neurons in this layer produce the output of the network.

Connections. Each connection is defined by a certain weight value, acting on the
connection strength between any two connected neurons. The connections between
the neurons are not equally weighted. Some receive a higher priority than others,
acting in a excitatory or inhibitory way, closely resembling biological neurons. From
a computational perspective, the synaptic weights of artificial neurons can include a
range of both positive and negative values. Since the type of connection between
neurons determines the nature of the network, the specific connections between
neurons are of fundamental importance. The type of connections in the network
can be seen as another way to characterize the networks as cyclic or acyclic. Cyclic
networks are the feedback and recurrent networks, while the feedforward and the
perceptron networks (Rosenblatt, 1958), radial basis function networks, Kohonen
maps and Hopfield network can be classified in the second group.

In a similar manner, the neural network architecture can be represented as a graph.
The network is described in terms of vertices (nodes, units) and edges (connections).
A graph/network (GNN) can be represented as a pair (N,E), where N is a set of
neurons/nodes and E is a set of edges/connections between neurons from E. While
classical graph theory deals mostly with undirected (random) graphs [73], [31],
neural networks contain directed edges.

The variability of architectures can be broadly classified according to several impor-
tant attributes. First, the architecture of the network relies on the specific type of
task it will be used for. For example, one might implement an ANN for clustering
task (data mining) where the network explores the similarity between patterns;
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for a classification/pattern recognition tasks, where an input pattern is assigned
a predefined class; or for function approximation used to ascertain the value of
an unknown function f = f(x) (applied mostly in the engineering and scientific
field). Neural networks can be utilized for forecasting purposes in a dynamic system
through time-sequenced data (especially for decision support systems). Second,
the type of architecture selected by the developer- single or multilayer topology,
recurrent network or some sort of self-organized architecture. Another essential
attribute is the type of connections between neurons. Finally, one may classify neural
networks on the type of learning method used in the design - whether supervised,
unsupervised. In this chapter we provide a description of the fundamental elements
of an artificial neural network.

Activation function. The power of an artificial neural network and its general
non-linear approximation capabilities are derived by the activation function. The
activation function provides not only the ability of the system to solve multidimen-
sional problems, but also to determine the output value of each neuron. In this
sense, the activation function is ultimately responsible whether a neuron will fire
or remain inactive. Many discriminant functions have been implemented, although
one must consider the importance of the nonlinear characteristic of an activation
function so a network is capable of separate complex relationships in the feature
space and therefore provide the appropriate classification boundary. Each neuron in
the network needs an activation function, which is determined based on the specific
position of the neuron in the network. The selection of such a function directly
affects the performance and complexity of the network. In the field of Artificial
neural networks, the conventional activation functions include the sign function, the
sigmoid, the hyperbolic tangent and the Gaussian ones. Those functions depend on
the discriminant function. For example, we could implement a discriminant function
that computes the dot product between an input pattern x and weight vector w,
or the discriminant function calculating the the measured distance of the weight
vector w and the input pattern x.

Fig. 2.2: Basic elements of a formal, static neuron.

The activation function can be represented in the following manner. Let x be the
number of input variables of neuron i, the weight wji represents the information
transmission between the neurons j and i, and zi is the output of neuron i. The
threshold value of neuron i is represented by θ, while σ stands for the activation
function. The bias term is described as w0. The Euclidean length of a vector x is
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denoted by ‖x‖ and the magnitude of the scalar is |x|. Finally, the slope parameter
of the network is denoted by β, the matrix as C, and Cij , where ij describes the
ij-th element of matrix C (see fig. 2.2). Therefore,

zi(wjx) = wTi · x =
n∑
j=1

wij · xj =
∥∥∥wj∥∥∥ · ‖x‖ · cosγ (2.1)

which can be interpreted considering an equation such as

n∑
j=1

wij · xj = 0. (2.2)

Then the activation function zi = f(xi, wi) = 0, if an input x is located on a
hyperplane, and is thus traversing through weights wi and wj . Since each neuron i
has a threshold value θi, one can describe the function as

n∑
j=1

(wij · xj)− θi = 0. (2.3)

In the second case where the activation function is based on the measured distance,
the activation of a neuron is computed as the distance of the weight vector (wi) from
the input value (x). Among possible choices for the computation of the distance,
one can implement the Euclidean distance, where the input spaces are symmetrical,
or the Mahalanobis distance - used for asymmetric input spaces in the covariance
matrix Ci (see fig. 2.2), where

zi(wj , x, Ci) = dm(x,wj , Ci)wi = x̄ = 1
N

n∑
p=1

xp. (2.4)

The activation function when maximum distance is considered is determined by the
modulus of the components of the different vector x− wi where

mi(wj , x) = max
1≤j≤n

|xj − wij | , (2.5)

and where the minimum distance corresponds to

ti(wi, x) = min
1≤j≤n

|xj − wij | , (2.6)

while the Manhattan distance is determined by the linear combination of the absolute
values of the vectors x and wi where

bi(wj , x) =
n∑
j−1
|xj − wij | . (2.7)

One type of activation function where no threshold value is applied is the The
Identity Function. The result is an output z, that is actually equal to the weighted
sum of the inputs z(xi, wi) and is see as actually representing the basic interpolation
function [102].
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The Threshold Function has been introduced by McCulloch and Pitts as all-or-
nothing neuron activation procedure and is described in the following way:

f(z) =
{

1 : z ≥ 0
0 : z < 0 (2.8)

The threshold function is used in a linearly separable problems, and generally applied
to the output neuron of the network.

The Sigmoid Function on the other hand is best described as an increasing function
balancing between linear and non-linear behavior [75], such as

y(z) = 1
1 + eβz

(2.9)

where β (as defined in the beginning of the section) represents the slope parameter
of the sigmoid function.

Fig. 2.3: Sigmoid activation function

One of the main drawbacks of the sigmoid activation function is that the error
produced tends to be flat near the origin and the farthest from the origin point. In
such case weight initialization with very small numbers is prohibitive. To alleviate
such a problem, the addition of another linear term is recommended to avoid such
regions. Another disadvantage of the sigmoid function is its limited range [0, 1].
Therefore, the hyperbolic tangent can be used in order to utilize a bigger range
[−1, 1]:

f(z) =


1 : z > 0
0 : z = 0
−1 : z < 0

(2.10)

Cost Function. The goal of the learning algorithm is to attain a weight parame-
ters of the network which will lead to sufficient solution to a certain predefined
task. In order to achieve this, most training algorithms use certain cost function
(i.e. error function) to establish the difference between desired and actual output.
The maximization or minimization of this cost function is accomplished through a
predetermined optimization (learning) algorithm. Therefore, the cost function is
regarded as a parameter to assist the network in the generation of output signal that
as close as possible to the desired one [153].
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2.2 Neural Network Architectures
In this section we briefly introduce the most widely implemented neural network
architectures and their mathematical descriptions.

One of the first network architectures is introduced in 1958s by F. Rosenblatt, when
he incorporated a perceptron in a simple neural network to classify linearly sepa-
rable patterns [138]. The Rosenblatt perceptron consists of a single neuron, with
adjustable weights and bias (w0). Rosenblatt has introduced for the first time also a
novel algorithm applied to the free parameters of the system to adjust their values.
Major drawback of this model is its convergence only when the system is presented
with patterns from two linearly separable classes (known as perceptron convergence
theorem). The Rosenblatt’s perceptron is one of the fundamental parts of every
neural network. While it provides an oversimplification to the biological neuron, it
adheres to the following association of the input/output parameters. Let us define
the number of inputs as (x1, x2, x3, . . . , xi), and the weight as wi and the connection
from neuron to neuron as wij . The output (Out) of a neuron is seen as

Out =
N∑
i=1

wixi (2.11)

constituting the weighted sum of the incoming inputs and weights. If a predefined
threshold (θ) is exceeded, the neuron produces an output Out. As part of the training
algorithm is the introduction of bias (w0), which can be represented in the network
as

Out = w0 +
N∑
i=1

wixi (2.12)

In computational terms the bias represents the degree of variance between the
desired and actual output of the network, which is averaged over the number
of training data samples ((x1, y1), . . . , (xn, yn)). During the initialization and sub-
sequent training iterations, the bias level is acceptably large since there is a big
difference between the desired and actual output. The advancement of the training
algorithm should provide a constant decrease of the bias since the training influence
of the data should be noticeable for regression analysis in ANN. A very well known
trade-off in the field of machine learning and neural networks is specifically the bias-
variance dilemma which is the minimization of the bias and variance parameters
and therefore limiting the ability of the training to generalize beyond the training
set [62]. Those parameters are actualized as minimization of the system to learn the
underlying noise in the training data (i.e. overlearning). An efficient way to prevent
such overlearning and increase in the bias term is a predefined stopping criteria. In
this regard, the activation function is presented as

z = f(d) (2.13)

where the operator z can be one of the previously described activation functions.

The Rosenblatt’s implementation and the novel training algorithm has been shown
to be of limited implementation to the types of problems it can approach. In 1965
M. Minsky and S. Papert published "Perceptrons" [119], where they introduce the
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inherent limitations of the perceptron model. Minsky and Paperts underscored the
ability of the perceptron to solve only linearly separable problems. Furthermore
they have established that a singled-layer perceptron is incapable of realizing the
Exclusive OR logical function, which is composed of the association of the binary
patterns (0; 0) and (1; 1) in one class and patterns (1; 0) and (0; 1) to another class.
For such function, a network and an optimization algorithm, with input values
(x1, x2), weights represented as w1, w2 (i.e., fig. 2.4), and an assigned threshold (θ),
and an activation function (f(z)) for the output node z = w1x1 + w2x2, where

f(z) =
{

1 : z ≥ 0
0 : z < 0 (2.14)

will be unable to select weight values for each input pair values in the XOR function
such that a proper output value is achieved. Moreover, Minsky and Papert considered
the problem of scaling during the learning process, where the computational time for
the training of the network increases rapidly for some problems when the number
of inputs increases as well. In this fundamental work by Minsky and Papert using
predicate calculus in the their analysis, have not considered the possibility of a
multilayer perceptron network tackling the inherent limitations presented by the
Rosenblatt’s perceptron. In the years since the publication of "Perceptron", funding

Fig. 2.4: A two-layer network, consisting of two input neurons (x1 and x2), which
take value 0 or 1.

for the field of Artificial intelligence had been significantly reduced, nevertheless
the scientists that remained active in the field focused on the task to overcome the
limitations discussed by Minsky and Papert. In the next 50 years numerous network
architectures with varying properties have been developed.

A variety of approaches to the design of neural networks have been considered in
the literature, with few distinct considerations [129], [79], [80], [94]:

• The selection of the number of hidden layers;
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• The number of neurons to be represented in every hidden layer;

• The selection of a globally optimal solution, which avoids local minima;

• Convergence time should be reasonable;

• Validation of the network for under or over fitting;

• Consideration for the interaction of hidden neurons and their interaction on a
global level.

The ability to balance the considerations described above will provide a network
preserving its function approximation capabilities without decrease of efficiency
[61].

Multilayer Perceptron
The Multilayer perceptron network (MLP) is a feedforward network, consisting of
many similar, non-linear neurons grouped in multiple layers, carrying many to one
mappings from the input to a scalar output. The multilayer network is a modification
of perceptron network (introduced by Rosenblatt), and has been proven to be capable
of universal function approximation and classification of data that is not linearly
separable [75], [21]. The connections between neurons in each layer are realized

Fig. 2.5: A scheme of the multilayer perceptron network with 1 hidden layer.

in a feedforward manner (represented graphically in fig. 2.5) in a directed graph,
where each layer is fully connected to the following one. The computation performed
by the MLP network is mathematically described in the following manner. Let x be
a vector of inputs, and z be a vector of outputs, with w representing the weights.
The matrix of the weights A of the first layers, with θ the bias vector of the first
layer. H and b represent the weight matrix and the bias vector of the second layer
respectively. The function σ represent a nonlinear activation function. Therefore a
multilayer network can be represented as

z = f(x) = Hσ(Ax+ θ) + b. (2.15)

An MLP network with only 1 hidden layer is capable of modeling functions of
arbitrary complexity [81]. The number of neurons in the input and output layers
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determines the types of data the network can accept and the dimensions of the
input feature, while the number of output neurons determine the dimensions of the
output labels (especially for a multi-class problem). Therefore the neurons from
the hidden layers are of tremendous importance for the final output of the system.
A feedforward multilayer network (FNN) is based on the following mathematical
model, where l is the number of layers in the neural network, netlj represents the
j − th neuron in the layer l, where j = 1, . . . , nl, with sum of the weighted inputs
of the neuron. The weights from the i− th neuron of the network in layer l − 1 to
the j − th neuron of the layer l are denoted as wl−1,l

ij , and the output of the j − th
neurons that is in the l− th layer, with f(netlj) the j− th neuron’s activation function.
Therefore,

netlj =
nl−1∑
i=1

wl−1,l
ij yl−1

i , ylj = f(netlj) (2.16)

The neurons in the hidden layers are a significant design choice since the inclusion
of too many neurons will decrease the generalization accuracy of the model and
present the problem of memorization. In such case, the network provides too many
degrees of freedom which enforce a type of memorization of the data rather than
estimating the general features of the data. In a network where the number of
hidden nodes is equal to the number of data inputs used for the training, complete
memorization of the features occurs. On the other hand too few hidden neurons
will be insufficient for the learning of complex decision boundaries. The precise
number of neurons in each hidden layer is not established and it highly depends on
a trial and error basis and the specific task to be solved by the neural network. An
accepted approach to the problem is the application of the Kolmogorov’s theorem
which states that to compute any arbitrary continuous function, one needs to provide
neurons equal to twice the number of input nodes plus one more. A different path is
to compute the number of hidden neurons denoted by HM is represented by the
number of neurons in the input layer k and from the output layer v, where

HM = 1
2(k + v). (2.17)

On the other hand, the high connectivity of a feedforward network can in certain
situations be detrimental of the overall knowledge of the system for theoretical
analysis and visualization of the learning process specifically in regards of the hidden
layers. Therefore a feasible method to discover the number of the connections in
a standard multilayer perceptron network with k input neurons, h hidden neurons
and v output neurons can be described as

Weights = (1 + v) ∗ h. (2.18)

For non-continuous functions and most occurrences two hidden layers might be
sufficient for the network to solve specific problems [40], [61]. This argument
is supported in the context of a function Rn → Rm which can be approximated
by a network with only two hidden layers and controlled number of neurons in
each of them, assuming the backpropagation algorithm can find a global minimum
or a local minimum close to the global one [97]. A network with more than one
hidden layer is necessary for tasks where data is modeled with discontinuities [110].
The conventional approach to determine the number of neurons in every network
have been adopted by experts in the field, however no precise formulation has
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been proposed. The network architecture needs to achieve a satisfying performance
on a data input it has never been trained on [141]. The data that the network is
trained on, should also be considered, which should be representative enough for
the specified task. A good training data size N should satisfy the following condition,
where W denotes the overall free parameters in the network, ε - the classification
error permitted on the test data, and the O(·) representing the order of quantity
enclosed within, where

N = O

(
W

ε

)
(2.19)

The selection of neurons in the hidden layers for specific tasks can sometimes
introduce two distinct disadvantages. On one hand if there are insufficient number
of neurons in the hidden layers, the neurons in the network are incapable of detecting
the appropriate underlying causalities in a complex data set. Therefore, underfitting
of the data occurs. In the other case, the reliance of too many neurons in the hidden
layer could lead to several problems. Firstly, if the network has unused processing
capacity as well small training data set, the network is unable to correctly train the
neurons in the hidden layers and overfitting occurs. Whereas the training data is
large enough, the computational time for the training of the network increases which
could prevent the network to adequately learn. Determining the patterns from the
input layer to be represented in the hidden layers of the network represents a crucial
point for the training algorithm which works in a multidimensional search space of
possible solutions [75]. Setting the network weights and activation levels also need
to be carefully regarded to minimize the prediction error, which is the main goal of
the training algorithms.

Radial basis function network
The Radial basis function network (RBF) is often considered as a subclass of the
MLP networks. Whereas in MLP networks, one can add many hidden layers, the
RBF network consists of a fixed three layer architecture, where there is 1 input layer,
1 hidden and 1 output layers [177]. The input data is linearly separated in the
hidden layer. The design of the RBF network depends on several factors, including
the network size, in initial parameters of the network (centers and widths) and
the type of training. One can extend a multilayer perceptron network to radial
basis network by increasing the input dimensions [174]. Due to its very limited 3
layer architecture, RBF networks are considered to be simpler than the MLPs. Since
the network output is determined by specified hidden neurons in local receptive
fields, RBF are considered as local approximation networks [175]. In contrast,
multilayer perceptron networks are global approximation networks. On one hand
because the neurons in RBF networks utilize only certain region from the input
space, learning is achieved faster. Conversely, the locality is disadvantageous in
highly dimensional spaces, where neurons need to cover increased input space [99],
leading to high computational time. The initialization of parameters in the networks
is achieved manually, they are not randomly generated. The neurons calculate the
Euclidean distance between the input and weights as an and the activation function
is an exponential. To estimate the output (z), lets denote the weights as wi, vi(σi)
represents the average standard deviation of the i− th Gaussian, where

f(z) =
n∑
i=1

wi

(
− 1

2σ2
i

)∥∥∥z − v2
i

∥∥∥ (2.20)
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Additional disadvantage of the RBF network is that the centers of the function
depend on the distribution of the input data, where the prediction tasks is not
considered. Therefore, computational time increases with the amount of training
data because the training algorithm covers input space areas even if they are not
relevant to the training. A possible solution to this inherent disadvantage is the
creation of centers to the training data points, leading to large memory storage
spaces and thus to overfitting of the model [113], [11].

The Recurrent Network
While networks like MLP and RBF propagate the inputs only in a feedforward manner
from layer to layer, cognitive science has established that our brain incorporates a
feedback mechanism (i.e. recurrent signal). This underlying principle is part of the
recurrent neural network (RNN), which works by incorporating the output signal
as input after an learning iteration has been completed. This recurrent element
occurs in discrete time steps of weight adjustment [140]. One of the computational
advantages of recurrent neural network is the implementation of backrpopagation
with small number of hidden layers. Comparatively, the recurrent network can be
seen as employing s number of layers, which corresponds to the s cycles of the
recurrent computation [55]. Therefore, the network topology represents a possibility
to connect one neuron to any other in the network, even to itself, which allows the
network architecture to have many different forms [168], [39], [32], [28], [72]. An
MLP network can become recurrent if even one loop is added, thus exploiting the
powerful non-linear mapping capabilities of MLP, as well as adding a form of memory
to the system. Hence RNNs are best suited for temporal processing and sequence
recognition or reproduction [41]. A fully recurrent neural network constitutes an
MLP network where the previous set of hidden neurons feeds back into the network
along with the inputs [49]. The "time" has to be discretized and the activations
need to be updated at every time step. Additional delay neuron is introduced, which
holds the activations until they are process at the next time step. Let the network
inputs be denoted by x(t), the outputs by y(t), the weights from the input layer by
Wih, the weights from the hidden layer by Whh and to the output layer by Who, the
activation function for the hidden neuron by fh and for the output neuron by fo.
The recurrent network behavior can be described as a dynamical system through a
pair of non-linear matrix equations:

h(t+ 1) = fh(Wihx(t) +Whhh(t))y(t+ 1) = fo(Whoh(t+ 1)) (2.21)

The state of the dynamical system, which describes the information about the past
behavior of the system in order to provide a unique description of the future behavior,
is defined here by the set of hidden neuron activations h(t). To convert a recurrent
network to a feedforward one can use unfolding over time (see fig. 2.6).

Deep neural networks
The neural networks described so far present a shallow architecture (many neurons
in few layers), and are successfully implemented in many fields. The increase of
data availability and due to the fact that those data sets contain multidimensional
data, scientists have focused on the development of deep neural networks(DNN),
which apply more than two hidden layers to a conventional multilayer network
[144]. DNNs are utilized in tasks such as handwritten character recognition, audio
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Fig. 2.6: Unfolding of a recurrent neural network to a feedforward one

classification, acoustic modeling, motion recognition, phone recognition, facial
expressions and many others [10].

In this thesis we implement a multilayer neural network, and therefore the focus is
on its functions and implementation in greater detail.

2.2.1 Evolution of network topologies
The development of neural network architecture today is mostly based on manual
design. To determine the network topology, the number and type of connections
and number of layers and neurons when developing a neural network, one still
needs to rely on general recommendations and arbitrary methods, as well as on the
personal experience of the developer. While certain methods exist for the automatic
network construction, one needs to consider beforehand a specific topology, which
is not always appropriate for specific training data. Since every type of neural
network architecture has certain benefits and disadvantages, depending on the
specific problem for which it has been applied, a lot of research has been focused
on developing evolutionary neural network architecture, through which we can
reduce the model complexity of the topologies. In this regard many self-organizing
topologies have been proposed and implemented [24], [176]. Yet, such strategies
often have to consider the magnitude of the space of possible neural networks,
which often is so complex and large that automatic search for the optimal network
architecture may present a computationally intractable, or in some cases impractical
solution for certain applications [29], [38].

The substantial research in the evolution of neural network topologies can be broadly
separated in two categories: the first group is concerned with parametric learning,
where the search is focused on the specific weight values. In this case, all weights
(whether in binary or real representation) are encoded in a chromosome, and the
algorithm searches for the acceptable weights by using a genetic selection. The
network topology is defined with the sequential feedforward connections prior to
the initialization of the network. After the parameters are defined, an evolutionary
algorithm is utilized to perform a search only on the synaptic weights in the topology,
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selecting the ones that are with the best performance [98]. In such a case, the size of
the network presents computational challenges. If the network is large and densely
connected, encoding the weights might be inefficient. Therefore, a hybrid approach
where genetic global approach is combines with a backpropagation (local search)
which provides fine tuning of the weights has been beneficial [1].

The second group represents structural learning, where the implemented algorithms
search for the best topology of neurons and connections. Here, the evolutionary
algorithm responsible for the selection of the topology often implements a tactic
either to add or prune neurons and connections between them. This method
introduces significant computational costs during the network run in two regards.
The pruning technology requires the initial creation of a bigger network (more
layers and neurons) than is actually necessary. The network is trained and once the
training is accomplished the pruning of neurons and connections from the network
occurs according to a predefined algorithm if they are not used in an active way
[135]. Therefore, this pruning methodology leads to increase in the training time,
slow convergence, overfitting problems, especially in methods that remove hidden
neurons, thus leading to increase of the error level [6], [14].

The constructive algorithm, computationally less demanding, initializes a small
network with a minimal number of neurons, layers and weights. It evolves the
topology appending additional neurons and weights during the optimization process.
One of the benefits of the algorithm is provided by the fact that most small networks
are sufficient for function approximation and therefore, the implementation of the
constructive algorithm is requires less computational time since it is initialized with
a minimal network construction and small training data sample. A disadvantage of
the model is the propensity of the algorithm to fall in structural local optima, unable
to identify available parameters [9], [92]. The cascade correlation algorithm is a
constructive algorithm, evolving the layers in a sequential manner with heteroge-
neous neurons, non-restricted network topology and possibility to choose a transfer
function [53].

A hybrid approach, combining parametric and structural evolution, like the Topology
and Weight evolving artificial neural networks [156] can also be implemented,
although depending on the task type and size of the network, the algorithm might
be inefficient due to the computational complexity to reach a solution. A possible
solution to the computational time is the utilization of a predefined list of possible
modifications, as the addition to the evolutionary models only fully connected hidden
neurons [156], [157]. The strategy evaluates the developed structures and if they do
not pass certain fitness threshold, they are discarded and new topologies are created
until a stopping criteria is met. Further symbiotic and adaptive neuro-evolution
strategy involve the random co-evolution of populations of neurons and networks
that are randomly composed [122], [121].

The implementation of an automatic evolutionary strategy has to account for in-
creased computational time and complexity, depending on the free parameters of the
system. Moreover, the general space of network topologies and training algorithms
can be so large that is impractical to search efficiently. On the other hand, such
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algorithms could reduce the time necessary to develop a network on an ad hoc basis,
as well as remove the human decision making process [66]

2.2.2 Noise in Neural Networks

Similar to biological neurons, for which a brief description has been given in the
beginning of the chapter, artificial neurons experience a presence of noise, defined as
a "random or unpredictable fluctuations and disturbances" [54]. The manifestation
of noise can interfere with the signal (noise in the input of the network), effectively
distorting the information transfer and therefore affecting the information processing
capabilities of both biological and artificial neurons [170]. The presence of noise in
the biological systems is constant part of the information processing functions and
multitude of studies have focused on determining the strategies the nervous system
employs to counter and compensate for the existence of noise in the structure. The
expression of noise can appear from different sources. Electrical currents produce
electrical or channel noise through the random opening and closing of gated ion
channels [159]-[167]. The electrical noise leads to membrane-potential fluctuations
even in the absence of input signals. Furthermore, membrane fluctuations are
affected by the noise in the dendrites and in the soma, which can have significant
consequences to the initiation and propagation of the action potentials. The latter
has been proved to be driven by a small ionic current situated inside the axon and
is naturally noisy. Whereas the presence of noise is inescapable byproduct of the
computational capabilities of the brain, affecting it in some way, it is nevertheless
capable of functioning reliably under certain noise constraints.

Analogous to biological systems, the field of artificial neural networks needs to
understand how noise influences the performance of the network and whether we
might be able to exploit it to our advantage and produce better network solutions.
An idea to use noise accumulation from the randomness in the cellular system to
influence computation and topology interactions was proposed in [27]. A strategy
to apply a sensitivity analysis on the level of noise in the system to understand how
the performance of the network is affected depending on the level of noise in the
data and how one can produce an advantegous results without a destruction to the
overall realization of the system [105].

It is possible that the noise can provide certain benefits to information processing in
ANNs. The stochastic resonance strategy applies noise when the threshold level of
the system needs to detect and transmit weak (periodic) signals, thus strengthening
the signal by adding noise to them. The capability of a signal to pass through the
threshold is reinforced by the addition of noise and as such if the noise level is too
modest, few signals pass and loss in communication occurs. On the other hand,
amplifying the signal with increased amounts of noise will deluge the system with
noisy information and as an incorrect output will be carried through. If the right
controllable amount of noise is introduced, the signal reaches the activation without
altering significantly the output [19]. In engineering systems, the existence of noise
is considered as a negative to the performance of the system and the quality of the
output. In [95] it is argued that neural networks operating by absorbing certain
levels of noise, will be on average more robust, capable of exploiting more states of
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solutions and capable of learning and adapting to changing environments. Exploiting
the variability of these random fluctuations and disturbances could lead to certain
benefits to the system and thereupon enhancing the information processing tasks
[54], [8] [51], [43], [158]. Noise fluctuations have been further utilized during the
training process of a neural network [83]. In such cases, noise has been artificially
added to the synaptic connections in either noncumulative or cumulative (with
additive and multiplicative) process on every time step or per string. The objective
is to provide the training algorithm with a possible escape from local minima and
consequently improve the convergence rate of the method. Alternative advantage is
provided by the acceleration of the learning stage [123]. Positively affected are the
fault-tolerance and error-function of the network.

If a combinatorial optimization strategy is selected for the training process, the
addition of noise to the algorithm during the random probing of the space of possible
solutions could provide a better selection of weights which will decrease the value
of the cost function. [123], as well as certain effects on the fault-tolerance and
error-function of the network.

In the hardware implementation of neural networks, where enclosure of many
electrical devices lead to electrical fluctuations, such variations influence the per-
formance of the neurons and their interaction with the network. In the context of
the Memristor devices, developed by Hewlett-Packard and IBM [132], the limited
physical space of the device contributes to a higher electrical current activity and the
presence of random fluctuations, which affect the performance of the system.

Therefore, for neural networks, implemented either on hardware or software level,
the ability to measure in a computationally efficient manner the sensitivity of ANNs
in the presence of noise could provide significant advantage for understanding how
the presence of noise can be utilized to improve the function of the network. On the
other hand those mathematical indicators could also be of immeasurable assistance
to determine the detrimental levels of noise in the system and how the performance
is affected.

2.3 Practical Applications of Neural
Networks

Nowadays, the renewed interest in the field of artificial neural networks and their
applicability for many problem solving tasks has led to their pervasive use in many
research fields and application domains.

Robotics. Currently neural networks have many practical applications. One is in
the field of robotics, where the networks are used as a way to direct manipulators
to hold objects, based on some sensory data. Neural networks are applied in robot
steering and path planning [46], [103] as well as object manipulation. Successful
implementation is the Baxter robot [50], [91] in the manufacturing industry.
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Machine Vision. The field of machine vision deals with the ability to retrieve
information about the environment through the processing of data from a collection
of images. One might further separate the field in low and high level vision. The
former deals with image filtering, feature detection, etc. The high level vision
is occupied with segmentation and control of data from the low level, which is
combined with other knowledge and further analyzed. Deep neural networks like
Supervision, consisting of more than 650000 neurons and utilizing more than 60
million parameters during the training and recognize objects in particular categories
[44], Neural networks has been essential in the object recognition research, where
generating precise and detailed object recognition in real time environment becomes
crucial. In such context of extreme importance is not only the correct classification
of images, but also the correct estimation of the class and location of objects in the
images [93].

Financial Analysis. Neural networks have been employed with considerable success
in the financial/banking sector. They are used in daily basis in measuring credit card
risk for applicants, for loan evaluation procedure and loan rates prediction, mortgage
screening, real estate appraisal, financial market and exchange rate forecasting as
well as corporate financial analysis [128], [12]. The ever increasing volume in
stock trading provides a furtive ground for the employment of neural networks
for forecasting financial time series, something that is computationally prohibitive
to implement with traditional statistical models. The reason behind this is that
data in dynamic systems forecasting possess certain attributes like non-stationarity
(changing over time), nonlinearity (the relationship between economic variables
changes), and constant variations in the time series). Although those attributes
provide a challenge to traditional statistical methods, robust neural networks are
very well suited to work with such data types for both multivariate analyses. Artificial
neural networks are applied for the daily forecast of the direction of the Standard
& Poor’s (S&P 500) index [125]. Recurrent neural networks on the other hand are
used to predict the exchange rate of currencies for a certain time period [126] and
more.

Manufacturing. Another field where artificial neural networks has found incredible
usage in the last 15 years in in manufacturing. Such activities include planning and
management, process control, product analysis, machine diagnosis and analysis,
quality analysis for different products (from the food, chemical, chip industry, etc)
[139]. The current demand for high quality and low cost production has been
essential for rise of automated manufacturing systems. The effective monitoring
and fault diagnostics in real time allows for the identification of possible failures
before they occur and thus reducing the downtime while insuring high productivity.
This monitoring information gives insight into the whole manufacturing process
and enables managers to perform high-level decision making at low cost. Since
it has been established that over 70% of operational costs are for maintenance
procedures [163] such monitoring and diagnostic systems provide a valuable tool for
cost reduction and high effectively of the manufacturing plant. The implementation
of neural networks in the monitoring and diagnostics systems have been valuable
tool for identification of "unknown" situations. The neural network ability to learn
and adapt to new conditions, as well as its nonlinearity has been proven effective in
early fault detection and warning, providing significant less cost for maintenance,
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part replacement, decreasing the downtime and providing efficiency in scheduling
for work [5], [70].

Medical Research. Currently many medical personnel are employing neural net-
works for cancer cell analysis, optimization of surgical time slots, EEG and ECG
analysis, hospital quality control [67], [161], [36], [7]. In the sub field of diagnostic
systems, neural networks are widely employed to detect cancer and heart conditions,
the analysis of blood samples, to track glucose levels, detect pathological conditions
such as tuberculosis. The need for deploying efficient medical imaging techniques
has led to the usage of neural networks in the field. From the point of view of
patients, imaging enhances the medical service provided to them, improves the
decision making process based on actual evidence. For medical professionals medical
imaging with underlying neural network architectures can produce a better perfor-
mance, as well as efficient and focused treatment of patients. Neural networks have
been also implemented in robotic surgeries where incredible sensitive equipment is
used [104]. Implementation of deep neural networks in the prediction of bioactivity
of small molecules in drug-discovery has been successfully shown [171].

Telecommunication Industry. Although largely unnoticed by the general popula-
tion, neural networks have been used in automated information services, in real-time
translations (Google translate), customer payment processing systems and image
and data compression. In 2015 Google introduced for the first time a deep neural
network inside their Google Translate application for phones, capable of real-time
visual translation of more than 20 languages. While the question of training the
network is of great importance, fundamental is the work of the neural network
on mobile phones where computational capabilities are limited due to hardware
and mobile data limitations. Therefore the development of small neural network
is limited on the density of information it can handle. The team from Google has
focused on the amount of training data to be used for their network, where rotation
of the symbols needs to be the correct amount as not to introduce noise in the
sample. The next step is to establish which training data samples are sufficient and
why. Thus in only a few minutes, Google can change the training algorithm used in
relation with the above considerations [65].

Latest Developments. The ability of artificial neural networks to learn have been
of great use in various scheduling activities - vehicle transportation scheduling, and
routing system of various kinds. The swiftkey (a keyboard app for Android phones) is
also utilizing neural networks to predict and correct language. Nowadays Facebook
has been using GPU based neural networks to recognize images, but have also used
ANNs to create automatic pictures based on specific understanding of what objects
look like, especially in the production of thumbnail images [45]. On the other hand,
Google has used neural networks and let them produce visual elements (see fig. 2.7)
the network wants to emphasize on [57].

Artificial neural networks have been also deployed in self-driving cars. Recently
NVIDIA has proposed that neural networks will accelerate self-driving cars and
provide them with self-awareness especially in precision vision where huge amounts
of information need to be processed and acted upon in navigational tasks. Those
essential needs are provided by deep neural networks to turn the information into
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Fig. 2.7: Images courtesy of Engaget.com

three- dimensional images and assist vehicles navigate the world surrounding them
[148].

Researchers from Microsoft and other scientific institutions have used neural net-
works for acoustic analysis, natural language processing and especially in the game
industry [146], [117], [118].

Hardware implementation of neural networks, the SyNAPSE project, a collaboration
between IBM and Hewlett-Packard, has been one of the leading research initiatives
in the field [85]. The project has received over thirty million dollars (27 million
Euros) grant from DARPA to create this "cognitive computer" which is essentially
made up of thousands of parallel CPUS, each a square micron in size representing
the neurons and connection of a neural network. DARPA is not limiting its financial
focus only on this project. In fact, the annual budget of the organization is over sixty
one million dollars (55 million Euros) for Machine Learning and almost fifty million
dollars (or 45 million Euros) for Cognitive Computing [15].

The description of artificial neural network implementation is not an exhaustive list.
The variety of ways for the application of neural networks represents also the many
limitations of ANNs, especially for their training. The next section of the Thesis
will introduce a novel post-learning strategy which can possibly overcome certain
training methods limitations.
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3The problem of neural
network training and
implementation of a
post-learning strategy

„For Reason, in this sense, is nothing but
Reckoning (that is, Adding and Subtracting).

— Thomas Hobbes
Leviathan

3.1 Training of neural networks
Humans differ from other species in variety of ways, but the one of a paramount
importance is their ability to learn. Through the process of learning, humans are
capable of discerning patterns in the real world, to reach conclusions and develop
non-genetically based behaviors to advance their survival. The field of artificial
neural networks has attempted to emulate certain learning capabilities through
the applicability of symbolic, data-intensive and statistical approaches. Nowadays
there are myriad of algorithms and techniques applied in various domains in the
field of neural network training (i.e. learning 1). Any attempt to accomplish an
overview of the methods and applications used for training would be incomplete.
One may classify the learning algorithms as supervised and unsupervised learning
(see fig. 3.2), being differentiated through their learning structure. Some consider
reinforcement learning as a separate learning category, or as a subcategory of
supervised/unsupervised learning [75]. The basis for many neural network learning
algorithms is structural inferences focusing on the relationship among the variables
and the data structure. We can formulate any learning task for a neural network in
terms of a variational problem. Data modeling types like function regression, pattern
recognition and time series prediction, could also be presented as a variational
problems and are the most common problems encountered in neural networks.

Functional Regression is a traditional learning task for neural networks and can
be recognized as a function approximation from provided data (f̂(x) to f(x))[143].
The neural network has to determine the relationship between the input and output
set from an input-target training examples, which can be expressed as a training
set T = (x1, y1), (x2, y2), . . . , (xi, yi) where xi (x = (x1, x2, x3, xi)) are the input
vectors. In such an instance, the algorithm utilizes those learning patterns and tries
to correctly separate them into classes with the help of a supervisor (i.e. teacher).

1The reader should note that in this thesis we interchangeably use the
words training, learning and optimization having in mind the same meaning.
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The main goal of the learning algorithm is to provide good generalization of the
data. The topic of function regression suffers from two problems - underfitting and
overfitting (e.g. lacking necessary complexity for a good data generalization). The
overfitting problem occurs in the increase of complexity of the model and leads
to a increase in the cost error value. On the other hand, underfitting lacks data
complexity and therefore it needs to be changed, but it is generally very difficult to
predict such an outcome.

Pattern Recognition (or classification) is also a traditional learning problem for
neural networks One can recognize pattern classification as a process where the
system receives a pattern, which can be described by a set of features, and is assigned
to one of a predefined number of classes. In such instance, a neural network has to
determine the relationship between the input and output set from an input-target
training examples. The input/output pattern can be described as a set of patterns
T = (x1, y1), (x2, y2), . . . , (xi, yi) and the goal is to model the ensuing probabilities
of class membership, predicated from the input variables. For a pattern recognition
problem to be completed, one needs to have the input space separated into regions,
each representing a specific class. The decision boundary represents the border
between any two regions (see fig. 3.1. The objective is to obtain a function f̂(x)
as an approximation of the f(x) [21]. The pattern recognition task also experi-
ences problems of underfitting and overfitting. In the current situations underfitting
represents too simple decision boundary which classifies poorly the training data.
Overfitting, on the other hand, produces too complex decision boundary. It can
produce a good training data separation, but poor generalization capabilities (the
test data). In unsupervised learning, on the other hand, there is no teacher present

Fig. 3.1: Example of linearly and non-linearly separable classification tasks

(desired response), thus impossible to provide an explicit error information which
acts as a function to improve the output of the network. Learning is accomplished
through observations of previous responses to inputs for which the network has
limited knowledge - the network identifies the pattern class through heuristics, with
no known output vector required. Reinforcement learning is the implementation
of learning through trial and error through the network interaction with the envi-
ronment. This method was developed by Donald Hebb and is very well known as
Hebbian learning or Pavlov training.
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Fig. 3.2: A simplified graph on the most common learning modes

There are many variations of training algorithms. Some have been inspired by
natural effects, some are deterministic or stochastic (see fig. 3.3). In instances where
simple non-convex functions are considered with well separated local minima and
consisting of several dimensions, deterministic approaches like steepest descent and
quasi-Newton can be successfully applied. Some of the drawbacks of such algorithms
is the possibility of the algorithm to be trapped in a local minimum. Therefore,
stochastic algorithms are often implemented. They are less likely to fall into local
minima and are capable of reaching an acceptable solution near the global minimum.
This is achieved with lower computational complexity than the one for deterministic
models. Most widely implemented stochastic algorithms used in the optimization of
neural networks have been genetic algorithms [77], evolutionary algorithms [160],
simulated annealing [90], and others. Whence many problems are known in the
field of artificial neural networks, several disadvantages during the learning process
include the error surface falling into local minima, saddle points and plateaus, as
well as long narrow ravines.

3.2 The training of Neural networks as an
optimization problem

For the training of a network to find the optimal set of weights and therefore
produce the desired output we need to define the technique through which this is
achieved. Therefore the training of artificial neural networks may be represented as
an optimization task, i.e. the selection of efficient strategy to discover the minimum
or the maximum values of a function, which may consists of many independent
variables. In the field of neural networks such a function is considered to be the
cost function (e.g. energy or objective function). It is dependent on the actual
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Fig. 3.3: Classification of metaheuristics methods. The representation is provided
by Johann "nojhan" Dre under CCBY − SA3.0 license

configuration of the various parts of the systems. The cost function represented
the actual measurement of the appropriate solution in a complex system. The
optimization algorithm works to reach the best state of the system according to an
objective function [142]. The whole process is repeated until no further improvement
is discovered or the system reaches the maximum amount of iterations. In supervised
learning, the operational cost generally searches until the error signal is close to or
equal to zero. The problem is defined as one of function minimization [21]. The
probabilistic function is used for function modeling and pattern classification [75].
One should consider the error calculation as a computationally complex task for the
high dimensionality of the weights space in the presence of the objective function
consisting of multiple local minima and broad flat regions with narrow steep ones
[75], [140].

The optimization process is initialized by the random setting of the weights according
to predefined strategy. The next step is the introduction of the training patterns
(xi, yi), with xi representing the input, and yi the desired/correct output to the input
sample. The network computes the output z, which will initially differ from the
desired output defined by yi. The cost function here is implemented to measure the
difference between the expected yi and desired output z, During the training of the
network, the weights are changed in order to minimize the error.
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The selection of appropriate error function depends on the particular optimization
algorithm, as well as on the topology of the neural network (see table 3.2 for other
cost functions [75], [21]). Some of the frequently utilized cost functions include::
Linear
Quadratic
Sum of squares (The least squares)
Smooth nonlinear
Nonsmooth
Additional constraints to the objective functions can be defined as bound, linear,
general smooth, discrete or unconstrained. If, for instance, the cost function
follows a Gaussian distribution, the most frequently used cost function will be the
Quadratic cost (e.g. mean squared error, maximum likelihood, and sum squared
error) (L2 in table 3.2). The squared error function can be considered as a continuous
differentiable function. One can define it as the sum of the squared error for each
separate sample, over the samples from the input-output data set. Let us define the
number of samples in the data set by T , and the number of output variables by m,
where

E [y (x;α)] =
T∑
i=1

(
E(i) [y (x;α)]

)2
=

T∑
i=1

(
m∑
k=1

yk
(
x(i);α

)
− t(i)k

)2

(3.1)

Variants of the sum squared error (SSE) are the mean squared error (MSE) and the
root mean squared error (RMSE). Both have the same properties as the SSE. In this
case the value of the error does not increase with the size of the data size. The mean
squared error can be expressed in terms of the sum squared error, as

MSE = 1
T
SSE, (3.2)

while the root mean squared is given by

RMSE =
√

1
T
SSE. (3.3)

Cross-entropy cost. Also known as Bernoulli negative log-likelihood. In a single
neuron, let us define the number of samples in the training data by T , the inputs and
desired outputs by x and y respectively, and let the output of the neuron be z = f(x)
with C > 0 where

C = − 1
T

∑
x

[ylmz + (1− y) ln (1− z)] (3.4)

The cross-entropy is valuable to address the learning slowdown problem in back-
propagation.

Exponential cost Let us construe a cost function to be of the form C(W,B, T i, Er).
The exponential cost can be defined with the weights of the network represented
by W , the biases by B, the input of a single training sample by T r, and the desired
output of that training sample to be Er. If we define a neuron j in layer i, then the
function is also dependent on the input and outputs yij and zij respectively, for those
values are dependent on W , B, and Sr. We furthermore choose a parameter τ for
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extracting a desired behavior. This cost function needs certain trial and error testing
until the appropriate behavior is found, where:

CEXP = τ exp

1
τ

∑
j

(
aLj − Erj

)2
 (3.5)

The calculation of the gradient in regards to an output and a training sample r is

2
τ

(
aL − Er

)
CEXP (W,B, T r, Er) (3.6)

Name Cost Function
L2 e2

L1 |e|
Lp

1
p · |e|

p

Logistic 1
α · log (cosh (α · e))

Most Used cost functions. α controls the robustness of the outliers, the desired signal
is denoted by d, the actual output by z and the error signal by e, with e = d− z

The supervised learning algorithms applied to the training of neural networks are
focused on the minimization of the cost function in order to solve a particular task.
The algorithms need to possess several important characteristics [75]:

• Need to be able to solve a task with minimum computational burden.

• The algorithm should be robust in the presence of noise.

• The algorithm should be able to produce similar outcomes independent of the
initial conditions used during the initialization.

• The generalization capabilities should provide adequate outputs when the
neural network is provided with data different from the training set.

• The computational burden of the algorithm should not be strongly dependent
on the dimensionality and size of the problem and training data. It should be
scalable. This problem is more pronounced currently in big data.

• Convergence requirements.

• Setting appropriate stopping criteria in order to find the best possible outcome.

Even though there are many variations of neural network architectures and learning
algorithms employed, every algorithm changes the network parameters according
to certain rule in order to accommodate the network’s characteristics to its desired
pattern.
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Currently, there are many training algorithms that use various optimization tech-
niques [130], with gradient search algorithms like backpropagation being often the
preferred ones. The gradient descent algorithms are local search ones, achieving the
best solution in the regions where the search has initiated from. Therefore the initial
choices by the developer influence the ability of the algorithm to reach a global
solution.

3.2.1 Backpropagation

The backpropagation (BP) training algorithm is one of the most frequently imple-
mented optimization methods in multilayer perceptron networks. It is based on the
gradient descent (GD) method. The objective is to minimize the chosen error func-
tion through the reduction of the gradient of the error curve [75]. In the course of
the training, the difference between actual output and the desired output (predicted
by the model) are propagated back through the architectural configuration of the
network. The selected cost function Cx needs to satisfy the following for individual
training examples x

C = 1
n

∑
x

Cx. (3.7)

The algorithm computes the gradient, which is itself dependent on the weights
and biases for every single training data point. Important characteristic of BP is
that the computation starts from the output (final) layer. The cost function Cx
is not dependent on a particular activation value but on the output values. If
the cost function relies on on any other layer different than the output one, the
backpropagation technique is invalid since no accurate tracking backwards model is
present (see Algorithm 1 for the steps of the algorithm). In order for a neurons j
to produce an output 0 ≤ zLj ≤ 1, the algorithm needs an activation function. We

define the cost function within the range
√
zLj , with zLj ≥ 0.

Algorithm 1 Backpropagation learning algorithm

for d in data do
Starting from the input layer, do a forward pass trough the network,
computing the activities of the neurons at each layer.
Compute the derivatives of the error function with respect to the output
layer activities
for layer in layers do

Compute the derivatives of the error function with respect to the
inputs of the upper layer neurons
Compute the derivatives of the error function with respect to the
weights between the outer layer and the layer below
Compute the derivatives of the error function with respect to the
activities of the layer below

end for
Updates the weights.

end for
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If one defines the objective function for the backpropagation algorithm to implement
the squared error cost function:

J(w) = 1
2
∑
i

(yi − out(xi))2 (3.8)

we then use the gradient descent to train the weights (w):

w := w − α∂J(w)
∂w

(3.9)

and with the backpropagation algorithm we can compute ∂J(w)
∂w . Even though the

gradient descent method is useful for representation of nonlinear boundaries and is
commonly implemented for small feed-forward architectures, there is no guarantee
it will reach a global optimum. In terms of computational cost, the computational
burden for the gradient descent algorithm increases with the addition of hidden
layers and neurons in the architecture. One calculates the computational cost with
the necessity of O(n) operations, where n is the number of weights in the network.
To alleviate this problem, a stochastic gradient descent has been implemented where
the weights are updated after each propagation (epoch). In batch learning, on
the other hand, a predefined amount of propagations occur before the weights are
updated in a single training step. In this process, the whole set of training data
is introduced at each step to establish the weights. Stochastic backpropagation is
advantageous in dynamic environments where the algorithm goes through the data
in a random order in order to reduce the local minima problem. In this case, the
algorithm updates the weights at each iteration after examining a random training
sample. For the stochastic gradient descent, the backpropagation for a particular
training sample can be viewed in the following manner. Let us define the activation
of a node j in layer i by zj , and the weights by w. If we consider the sigmoid
activation function of the neuron to be g(z), when

∂J(w)
∂w

= (y − out(x))
[
∂(x)
∂w

]
(3.10)

then
aj =

∑
i

wjizizj = g(aj). (3.11)

Using the chain rule, and defining δj ≡ ∂out
∂aj

we have

∂out

∂wji
= ∂out

∂aj

∂aj
∂wji

= δjzi. (3.12)

Then we calculate the activation of neuron zj with a forward steps, meaning we apply
the current input x with the current weights w to the network and we compute all
the values for the neurons in the hidden layers, starting from the bottom up. We then
calculate the δj which can be done from top to bottom (or so called backpropagation).
If the chain rules for the partial derivatives is:

∂f

∂w
= ∂f

∂x

∂x

∂w
+ ∂f

∂y

∂y

∂w
(3.13)
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which is verifiable with f(x, y) = xy;x = 2w; y = 3w, with x and w being vectors.
Then:

δj = ∂out

∂aj
=
∑
k

∂out

∂ak

∂ak
∂aj

=
∑
k

δkwkj
∂zj
∂aj

= g′(aj)
∑
k

δkwkj (3.14)

where g′ = (z) = g(z)(1 − g(z)) for the sigmoid activation function. We compute
The initialization of the recursion by

δout = ∂out

∂aout
= g′(aout). (3.15)

Whence the backpropagation algorithm is a preferred training method for neural
networks, it is often trapped in a poor local optima in either batch-mode or in
stochastic gradient descent when it starts at random initial points. The problem
increases severely with the expansion of the network architecture, often falling into
local optima, of being trapped in local minima [3, 100] and suffering from slow
convergence and instability, depending on thousands of iterations [92],[124]. The
backpropagation algorithm is known to overshoot the minimum of the error surface
[84] especially in a complex weight search space, with the presence of multiple local
minima. The specific network architecture is known to influence the convergence
of the algorithm- in particular a direct consequence to the processing capabilities
of the network is the amount of hidden layers and neurons, the learning speed, as
well as the preconfigured initial condition and the size of the training sample [16],

[4].

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

error

Error back propagation

In the
situation where the error surface is irregular, then the backpropagation algorithm,
as well as its variations like QuickProp [52] and RProp [136] or Silva-Almeida
implementation [150] are in all likelihood to reach a local minima. The Gradient
descent (and the hill climbing) strategy is efficient in situations where the search
space consists of only one minimum and whenever this is not realized, the technique
falls in local minima. Moreover, the random initialization of the parameters and
the dependence on the initial conditions could produce an outcome where the
algorithm is positioned between local maximum and local minima, or in some
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kind of saddle point, thus going in a downward direction and sticking to the local
minimum [165].

Despite the many advantages of the backpropagation algorithm, it has also shown
significant drawbacks [75, 21]:
Neuron Saturation. In the case of a feedforward multilayer neural network which
has been trained with backpropagation, the gradient descent method in many cases
fails to converge entirely for many reasons and various improvements have been
proposed [107, 52]. This failure of convergence may be caused by improper network
architecture (not enough/too many layers and/or hidden neurons). A different
reason for this failure of convergence can be due to saturation of some neurons
before others in the network. Saturation is observed when the output is found near
extremes before convergence is achieved. In this situation the derivatives are so
small, they are incapable of achieving further weight changes. This in turn leads to
the algorithm settling in a local minimum. Saturations may be detected due to many
reasons - initialization of weight is too big, the weight mapping is inappropriately
set, the learning rate is too big or the training set is not normalized. Further reason
for saturation is the presence of overtraining and therefore overfitting of the data
[71].
Weight initialization. In backpropagation the initialization of the weights is of
significant role, since depending on it the algorithm might fall into a local minima.
The role of weight initialization can be described in terms of the convergence speed
(initial distance to the minimum). The nature of the algorithm means that it will
find the closest minimum to the initial point. If the weight initialization was not
efficiently calculated then algorithm is trapped into a local minimum (initial distance
problem). Finally if the weight initialization is too large, neuron saturation may be
observed.
Plateaus. Since the weight update is proportional to the error derivative, if the
latter approaches zero (or is a very low value), weights are hardly updated and the
algorithm falls into a flat region incapable of finding an escape solution.
Learning rate. Depending on the chosen learning rate, the algorithm can becom
instable if too high a rate is chosen. On the other hand, too small value leads to
slower convergence speed.
Stopping Criteria. Various strategies are utilized as a stopping criteria - fixed
number of iterations, predefined error threshold, discovering plateaus in the objective
function. One observes that up to a certain epoch, the error decreases and a good
generalization of the data is achieved. After that point, the error increases again and
overfitting of the patterns occurs. Therefore the training should be stopped. For this
reason a sufficient number of training patterns needs to be achieved.
Architecture of the network. The training algorithm is susceptible to the precise
network architecture, the number of layers and neurons.

In the last decades many numerical optimization solvers have been utilized to im-
prove the efficiency of the backpropagation algorithm or to overcome its weaknesses
by including global search techniques. Such algorithms can be considered to be the
ant colony technique, genetic algorithms, evolutionary algorithms (EA), simulated
annealing (see fig. 3.3. In [25] the presence of a trade-off when one considers the
efficiency of metaheuristic training as compared to gradient descent methods. While
in some cases it has been shown that evolutionary training is more efficient than
backpropagation [120], in other cases no significant discrepancy has been seen in
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the training methods and in fact according to some analysis the efficiency of the
training algorithm really depends on the particular problem [22]. Furthermore, local
optimization algorithms, such as backpropagation the selection if initial weights
often leads to falling into a poor local optimum. On the other hand metaheuristic
methods are global algorithms and they are less sensitive to those initial weight
settings and do not rely on the initial weights neighborhood solution.

3.2.2 Stochastic

Stochastic algorithms are capable of handling multiple solution search spaces and
able to provide a solution in such an environment. While this is a certain benefit,
since they rarely fall in local minima, they are often computationally demanding and
can not always offer a fast convergence since the large space of possible solutions to
be searched.

Genetic Algorithm With supervised learning, one may use the genetic algorithms
(GA), which has proven to be an efficient and advanced heuristic optimization
techniques. It is derived from biological evolutionary processes such as mutation,
inheritance, crossover or selection. Introduced by Holland in the 1960− s [76], the
genetic algorithm is suitable for solutions with high degree of complexity, which
are often large, non-linear and discrete. There is no inherent guarantee that the
algorithm will be able to find a solution close to the global optimum. The algorithm
is initialized with the random generation of a large number of populations, which
are crossbreeded in a similar manner to biological evolutionary process. The algo-
rithm samples the search space, directed toward an area of the best solutions to this
moment. An objective function - usually minimization of the sum of squared errors
(or the absolute errors) is chosen for the optimization task. The algorithm measures
each population fitness function according to an evaluation test for each individual.
This can be done when applied to a training set, measuring the actual and desired
output and thus reach the fitness of the individual. Once the fitness is calculated,
the individuals are "mated". Those individuals are selected stochastically, where the
chance to be chosen is equivalent to the relevant fitness value. One needs to calculate
the total fitness in the simulation, which is provided by the linear summation of all
individuals fitness values from the population. Once done, the algorithm selects two
individuals and recalculate again until a predetermined number of individuals has
been chosen for mating or some different criteria has been met. We proceed with
pairing and mating the individuals which can be accomplished in several possible
ways. We can have several cross-points, which actually breaks an individual string
to interchange parts of it with some of its mate. Before they are reinserted in the
population, we mutate them. Not all new individuals are subject to mutation. We
select an offspring for mutation according to some probability calculated to establish
whether a new trait could be an asset in the fitness value. The mutation is achieved
through choosing a value (or a number of them), which is randomized (or changed).
After the mutation, the new individual is reinserted into the population. Following is
a restart of the entire process, which continues until a certain rule is satisfied. One
of the best advantages of genetic algorithms compared to backpropagation learning
is that GA rarely gets stuck in local minimum. Provided enough iterations and high
population diversity, GA will always provide an optimal solution. In the case where
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the population is stuck in local minimum solution from the search space, there is the
availability of a fitness penalty to any individual when his fitness comes close to that
of another individual. Therefore diversity is achieved/maintained.

In the implementation of local optimization methods like backpropagation, which
are hill climbing algorithms, we depend on the ability to find a suitable starting point
[87]. To find a suitable starting point is therefore a daunting task considering the
various degrees of freedom in a network and therefore to increase of the number of
evaluations. This makes local optimizer impractical. Although genetic algorithms
are influenced by the degree of freedom in the network, their essential global
optimization structure gives them the ability to scale rather efficiently to multi-
dimensional problems. A distinct advantage is their ability to work good even with
noisy evaluation functions. Furthermore, GA can be easily adjusted depending
on the problem at hand, although genetic algorithms are known to suffer from
premature convergence to a local extrema which is obtained by incompatible initial
configuration.

Yet, certain optimization problems are not suitable for genetic algorithms since
the fitness function is not known or not enough information is available for it. In
such instance, the fitness function provides bad chromosome blocks, even in the
presence of good block cross-over. Moreover, there is no absolute guarantee that
GA will reach a global optimum, especially when populations generate a lot of
subjects for evaluation. Similar to other methods, computational time is crucial
and combinatorial optimization techniques suffer from inability to provide constant
optimization response times. Compared to traditional gradient descent methods
GAs shortest optimization time is much larger. Combinatorial optimizations are with
limited implementation in real-life applications so far due to the demand of high
computational time to generate random solutions. Moreover, certain convergence
problems may arise even in the presence of population improvement, if the indi-
viduals lack the ability in the sample to improve. Genetic algorithms require much
more time for function evaluation than linear methods. There is also the inherent
need for discretization of the parameter space. The inability to generate all possible
permutations for populations, leads to overfitting of the training data. Low usability
of results can be due to lack of enough iterations (generation permutation), leading
to long optimization times.

Algorithm 2 GA selection algorithm

Choose an initial random population
Evaluate each candidate solution
while Termination condition is not true do

SELECT individuals for the next generation
RECOMBINE pairs of parents
MUTATE the resulting offspring
EVALUATE each candidate solution

end whileend
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Particle Swarm Optimization In 1995 a new method for parameter optimization -
particle swarm optimization (PSO), was introduced in [48]. The technique is based
on the principle of dynamic systems such as bird flocks and fish swarms or swarms
of bees, which search for food resources where the perfect location of the food in
unknown in the beginning. The main goal of the algorithm (based on stochastic
global optimization technique)) is by virtue of swarm of particles (the potential
solution) flying through the multimodal search space in the pursuit of the best
location (global optimum) through communication with one another [88], [89].
The PSO algorithm initializes with the generation of a group of random particles.
Each particle maintains an individual memory of the best position it has attained
so far (known as pbest value). Furthermore, each particle tracks the best solution
obtained by any other particle of the swarm (called lbest or global memory). Hence,
the particles exchange information between themselves and therefore influence each
others’ movements in order to reach a global best (gbest) value. At each time step,
the optimization consists of changing the velocity of each particle to reach the pbest
or lbest solution. One achieves particle acceleration by the execution of a random
number generator. Once the particle finds the best values, the velocity and positions
of the particles are updated. The particles can algorithmically be allowed to fly fast
and far from the best discovered positions in order to explore unknown areas (the
global search) or it can fly slow and close to a specific position (the fine tuning)
in search for a better result. A definition can be given in the following manner.
Consider that vi and xi are velocity and position vectors of particle i respectively.
The best local position found by particle i can be denoted by Pi, while the best
global position discovered by the whole population is described by Pg. The learning
factors are parameters c1 and c2 which are positive constants, where c1 represents
the particle moving to its best position, while c2 denotes the same but for the global
position. Then, the algorithm can be described as:

vi ← wvi + c1r1(Pi − xi) + c2r2(Pg − xi), (3.16)

and
xi ← xi + vi (3.17)

Initially, all particles are updated according to the described equations. Once a new
generation of particles are created, then they are used for the search for best position
in the search space [116]. In the case of multilayer neural network training, the
algorithm combines all the weights of the network in a vector, which is considered
as the solution in the search space. The swarm and its particles represent solution
candidates. According to a predefined criterion, usually L2 cost function represented
between patterns and outputs of the network, the particles converge to a position that
represents the best found solution. Significant advantages of the PSO algorithm are
its implementation simplicity, as well as the ability to reach a reasonably satisfactory
solution even in the present of multiple local optima. Since its first implementation,
many improvements and variations have been introduced [115]. In practice, it has
been shown that some of the parameters of the PSO algorithm do in fact affect its
performance and ability to converge [149], [20]. As a stochastic method, PSO’s
performance deteriorates with the increase of the dimensionality of the search space.
In a situation where the swarm converges to a local minimum, there could be a
possibility to escape with a momentum that is build into the algorithm through
the inertial term. However, with time, the particle momentum will decrease until
the swarm reaches a state of stagnation with no escape. Since the velocities are
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Algorithm 3 PSO selection algorithm

initialize population (position and velocity of particles)e REPEAT
evaluate all particles
for all particle i do
IF current position of particle i, xi , produces the best fitness in its history
then
Pi ← xi
if fitness of xi is the best fitness in global then
Pg ← xi
end if
end if
end for
update velocity and position of particles according to the equations 3.16
and 3.17 until termination criteria met

representing small values due to the decrease rate, one could allow for further
exploration of a portion of the search space. Such a decision could produce removal
of the nearest solution from the search space, regardless the amount of iterations
that pass. This limitation of the original algorithm is overcome by providing varying
velocities through velocity update equation for the best particle and guarantee
convergence to a local minima [20].
Nevertheless, the problem remains that particles converge to a local minimum before
they are able to reach a global one. Thus an improved multi-start PSO algorithm
was developed to automatically restart the algorithm in the presence of stagnation
[166]. By restarting, one understands the start of a new search with a new sequence
of generated random numbers to avoid the same initial positions from the previous
searches. In this instance the particles lose their memories. Once the independent
search is accomplished, the obtained values are compared to the ones reached from
the previous searches. Once the predefined number of restarts has been reached,
the best values from all the possible global best from all the searches is selected.

The algorithm is known to be susceptible of falling into local optima even in the
presence of a fast search speed. To accelerate the convergence rate, a new PSO
algorithm is proposed in [172] employing dynamic Cauchy mutation of the best
particle and using opposition based learning for each particle. Even in the presence
of research to understand the effect of the parameters of the algorithm on its
performance and convergence speed and ability, the limitations of the PSO technique
and its trapping into local minima still exists.

Ant Colony Optimization The implementation of the backpropagation algorithm
has been shown to be slow process which often reaches local minima [173]. In
an attempt to overcome those disadvantages, heuristic algorithms like the genetic
algorithm, PSO and others have been used. In this section we give a brief introduction
to the Ant Colony optimization method, which have also been utilized in an attempt
to train neural networks more efficiently [22]. The Ant Colony Optimization (ACO)
is a meta-heuristic approach which emulates the ability of ant colonies to find the
shortest path between the ant’s nest and the food resource [47]. The idea of the
algorithm described in fig. 3.4 is that ants initially wander in a random manner
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Fig. 3.4: Shortest path find by an ant colony. 1) the first ant find a food source
(F), using some path (a), then it comes back to the nest (N), laying a
pheromone trail. 2) the ants follow one of the 4 possible paths, but the
reinforcement of the trail make the shortest path more appealing. 3) the
ants follow the shortest path, the pheromone trail of the longest ones
evaporates. Author: Johann Dreo under CCBY − SA3.0 license

until a food resource is discovered, on the way back to the nest the ants deposit
pheromones, which evaporates with time (fig. 3.4 step 1). The ants follow the
pheromone trail with the strongest concentration of the property (fig. 3.4 step 2).
Over certain time period, as more and more ants follow a trail with the highest
pheromone level, it becomes the shortest path to the food resource (fig. 3.4 step 3).
Therefore, every ant will follow the shortest path, which will be with the highest
pheromone level respectively. The reader should note that there are two main
components in the ACO algorithm, which can be seen as a forward and backward
modes:

• Pheromone update - the pheromone is an important part of the algorithm since
it provides a dual purpose.Firstly, it leads the ants to adopt an appropriate path.
Secondly, it serves as an information exchange tool among the ants. After
the construction of paths is accomplished at each time step, the pheromone
information is updated. The update is a two step process. Initially the
pheromone is added in accordance to the path length. On the other hand
to avoid rapid convergence and to allow the ants to search for new areas, a
pheromone evaporation component is used in the update as well.

• Path construction - to construct possible solutions, one establishes a certain
probability of path construction in accordance to pheromone information. The
bigger the amount of pheromone, the higher the probability of a path being
chosen.
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The algorithm alternates between pheromone update and path construction until
a stopping criteria is met. Generally, the two steps are iterated in order to solve
some optimization problem. One constructs a possible solutions in a probabilistic
manner with probability distribution over the multimodal space. Secondly, those
candidate solutions are used in the probability distribution modification through an
approach to bias the solution construction over time to regions toward high quality
solutions.

The initial implementation of the optimization method has been in the application of
discrete optimization problems. Recently, it has been used for continuous optimiza-
tion problems such as neural network training [152], [114]. During the ACO training
of a neural network, one needs to establish the optimal combination of synaptic
weight values. To calculate the number of weights l in a neural network we denote
the number of input, hidden and output neurons by ni, nh, and no respectively with
additional values representing the bias inputs of the neurons [111].

l = nh (ni + 1) + no (nh + 1) (3.18)

The probabilistic solution construction, every ant selects only one discrete point for
each synaptic weight. The memory of the ant preserves the previously visited points
of the weights. The number of weights in the network l determines as well the
dimensionality of the ant’s memory according to Eq. 3.18. To choose a value for a
synaptic weight (wij , which connects neuron i to neuron j) with a probability 1− q
where q is parameter of the decision rule (0 ≤ q ≤ 1), where pijh is the probability
of selecting fijh for weight wij , d denotes the number of discrete points, ιijh is the
existing pheromone trail assigned with fijh , then

Pijh = ιijh∑d
k=1 ιijh

. (3.19)

Once the ant determines a value for each synaptic weight and bias, the pheromone
update procedure is initialized. In this case only the best ant is able to retrace
its values for each weight and therefore provides a pheromone, where PHbest is
the "the combination of discrete points selected by the best-so-far ant". The
amount of pheromone to be left is ∆ιbestijh , which can be described with Ebest

being the network error (i.e.L2) from the T best combination.

∆ιbestijh = 1
Ebest

(3.20)

Therefore it follows that the pheromone updating is described as:

ιijh ← ιijh + ∆ιbestijh , ∀fijh ∈ T best. (3.21)

The representation of the pheromone evaporation is accomplished with a constant
p ∈ (0, 1) evaporation rate, following:

ιijh ← (1− p)ιijh, ∀fijh. (3.22)

Certain disadvantage of the ant algorithm is that the analysis of the training is difficult
to establish. Furthermore, the algorithm changes the probability distribution by
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every iteration and thus the time to convergence is uncertain (although convergence
is accomplished).

Simulated Annealing First introduced by Kirkpatrick in 1983 (and independently by
Černỳ (1985) [30]), the simulated annealing optimization algorithm draws on simi-
larities between combinatorial optimization and statistical mechanics. Kirckpatrick’s
initial algorithm was successfully implemented for optimization in electronics de-
sign [90]. The concept of the algorithm are inspired by an analogy to the physical
annealing process of solids. In condensed matter physics, annealing is the thermal
process for obtaining low energy states of a solid in a heat bath. This process follows
two steps [90]. Initial increase of the effective temperature of the heat bath to a
maximum level, at which melting of the solid occurs. Secondly, a careful decrease
of the effective temperature until the particles arrange themselves in the ground
state of the solid. In the liquid phase, all the particles are arranged randomly. Dur-
ing the solid state the particles are arranged in a structured lattice, with minimal
corresponding energy. When the maximum effective temperature is high enough
and the cooling is produced in a sufficiently slow manner, a ground state of the
solid is obtained. Otherwise from an optimization perspective the solid falls into
equilibrium state rather than a real ground state. This ground state is perceived as
a global minimum in terms of thermodynamic energy. From this perspective, the
simulated annealing algorithm attempts to discover a global optimum of an objective
function, which is perceived as the energy function of the solid. The cooling of
the temperature is applied stochastically, which provides a way to the system to
escape from local minima, with the thought that near the end of the process, the
algorithm reaches neighborhood basin of the global minimum. Due to the inherent
statistical nature of the algorithm, it is perceived as a way for the algorithm to hop
over local minima easier than the gradient descent methods. The goal is to find a
solution where the error/energy is minimum. The process begins with an random
initialization guess. he simulated annealing algorithm explores the entire surface
of possible solutions, moving both uphill and downhill, independent of the starting
values, in direct contrast to the backpropagation algorithm. The uphill and downhill
movements provide an escape tool from falling into local optima in the path to reach
a global one. While the temperature is still high, often worse solutions are accepted
to provide a way for the algorithm to escape local optimums if it has fell into such
early in the algorithm execution. The probability of a move for a point is given by

Pr[accept] = e
−∆E

T , (3.23)

where ∆E is the difference between the actual energy and the energy before the
move, and T is the effective temperature of the system. Therefore a move is
accepted if the generated random number [0, 1] 3 R < Pr[accept]. With decrease
of the effective temperature fewer instances are accepted of solutions with higher
temperature. The algorithm focuses on a certain area of downhill improvement
in the search space, hoping it is close to the optimal solution (see algorithm 3.5.
Simulated annealing is best suited for problems where search of possible solutions
consists of multiple local optimas, saddle points or plateaus. Nevertheless, for the
implementation of the simulated annealing optimization algorithm one needs to
consider the suitable evaluation function, appropriate cooling schedule and initial
state should be identified.
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Fig. 3.5: Example for the hill climbing algorithm and the simple process of move-
ment for the simulated annealing algorithm.

The implementation of a cooling schedule should consist of four elements: starting
temperature, final temperature, temperature decrease and iterations at each temper-
ature. The first component - staring temperature must be set in the implementation
high enough so to allow the algorithm to move to almost most neighborhood states.
Failure to achieve this means that the end solution will be similar to or the same
to the starting one. If, on the other hand, the temperature value is set to be too
high, one might transform the search (early stages) into a random search since the
algorithm can move to any neighbor. The outcome will be that the search will be
random until the cooling is low enough to provide the algorithm to act as a simulated
annealing method. Various strategies have been proposed for the starting tempera-
ture. One possible could be to start from a very high temperature and to provide
rapid cooling up to about 60% worst solutions are accepted, which effectively forms
the actual starting temperature and from then the algorithm should implemented
slower cooling strategy [134].

To set the temperature to decrease to zero could potentially lead to longer running
time in case of the implementation of geometric cooling. In practice the algorithm
could be stopped when the temperature approaches zero considering the fact that the
probability of a worse solution to be accepted will be equal to the temperature being
zero. Once the temperature reaches an inability to find better or worse solution, the
algorithm is stopped, since the system is considered "frozen".

The step to decrease the temperature is needed so we can eventually reach a stopping
criteria. This is of critical success for the algorithm. Although theoretically it is
recommended to allow for enough iterations to pass until the system stabilizes at
a certain temperature, it could also mean that the number of iterations at each
temperature can increase exponentially to the problem size. Computationally, we
can decide to provide the algorithm with the option for many iterations at few
temperatures or few iteration at many temperatures. A third option is a hybrid
approach between the two.
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Algorithm 4 Simulated Annealing algorithm

Generate a random solution
Calculate its cost according to predefined cost function
Generate random neighboring solution
Calculate its energy
Compare the old and new solution
IF enew < eold - move to new solution
IF enew > eold - possible move to new solution
ENDIF
Repeat until stopping criteria is met
ENDWHILE end

The purpose of simulated annealing as a combinatorial optimization solution has
been adapted also for continuous function optimization problems. Provided that
a long enough cooling period is allowed for, the system will converge to a global
optimum. The disadvantage is that to reach a global optima the algorithm needs
higher computational time, as well as the required number of training data samples
for some problem to reach optimum convergence may be more than the whole space
of solutions. If not enough data is provided, overfitting might occur. Furthermore, a
possible strategy can be the restarting of the cooling schedule through the use of the
best found solution. The temperature of the algorithm can also influence the size of
the solutions, starting with broad neighborhood and narrowing it with the iterations
of the algorithm.

Quantum Simulated Annealing In 1998 the quantum annealing [86] method was
proposed to solve combinatorial optimization problems. Similar to other optimiza-
tion algorithms, it searches for the minimum of a cost function, achieving this by
quantum fluctuations. Here, the cost function consists of an Ising model of statistical
mechanics, where the energy function (the Hamiltonian) is chosen such that the
lowest energy state represents the solution to the problem. A quantum mechanical
fluctuation term is introduced in order to produce a quantum transition between
states. The Hamiltonian of the Ising models can be represented as

H = − t

T

∑
Jijσ

z
i σ

i
z − Γ(t)

∑
σxi (3.24)

where σ is the Pauli matrix. The first term on the right side is the Ising model and
the second terms - the transverse-field term, causes quantum fluctuations between
the classical states. The Γ(t) is initialized with a very large number and is decreased
toward zero to the end of the annealing process, following the time evolution
(Schrödinger equation). To initialize the process, a sufficiently large coefficient
for this quantum term is introduced in order to produce a uniform probability
of existence of states in all states. Then the value of the coefficient is gradually
decreased with the state of the system following the time-dependent Schrödinger
equation. When the coefficient reaches zero, only the classical Hamiltonian remains.
Then it is considered that the expected probability is the largest value for the right
solution to the optimization problem at the end of the annealing process.
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Although it has been used for combinatorial optimization problems in machine
learning and natural language processing, it still remains to be proven that quantum
annealing achieves exponential speedup over conventional optimization methods.
The presence of superposition and tunneling suggest the possibility that some energy
landscapes are more efficiently explored by the quantum annealing compared to the
classical one. On the other hand quantum annealing needs exponentially long time
to find an exact solution to difficult problems.

In 2011 D-wave systems, a Canadian company, introduced D-Wave, is a physical
representation of quantum annealer with certain confirmation on the presence of
quantum tunneling in the device [169]. D-wave represents a 2D array of quantum
bits, developed by superconducting loops that are carrying electric currents. Since
each qubits can point up, down, or it can be at the same time up and down, and the
interaction of the qubits is achieved through the lowering of their energy by their
directionality, to find the ground state of the annealing process, the states of these
qubits are changed up-down slowly turning the interactions. Of great importance is
that D-wave exploits a quantum tunneling effect [137]. To assess the capabilities
of the machine, it was tested against a von Neuman architecture computer using
simulated annealing and discovered that currently the quantum annealer (used in
D-wave) does not produce a quantum speedup [34], with many researcher actively
questioning whether quantum annealer could produce a speed-up over classical
approaches.

3.2.3 Summary

Artificial neural networks utilizing various learning algorithms have proved very
successful in distinctive fields (i.e. in predicting construction crew productivity
[127]). The consideration of a neural network training as an optimization problem
to minimize a cost function has introduced the implementation of many heuristic
algorithms in the ANN field. Although they are known to escape local minima
problems, in other instances the algorithm falls into a a saddle point, leading to
network paralysis.

Additional problems in function fitting (e.g. curve fitting of polynomials) exist in
the type of training data used. The inability to set the exact amount of training
necessary for neural networks, often leads to overlearning - meaning the network
learns the the noise in the measured data as well, unable to discern the underlying
pattern structure. This process is also known as overfitting. If the set of training
points represents a smooth function with some levels of noise to the outputs, then
utilizing just a few data points will be inefficient for the successful learning of the
network. On the other hand, too many data points will lead to the remembering of
the network of the underlying input noise, with poor results. Therefore, the training
sample, as discussed in the previous chapter, should be carefully considered in order
to procure the best predictions. Yet, the generalization capabilities of a network
improve with the increase of a training set. When the task is to fit a polynomial of a
certain degree to a set of points, the function can be overfitted (learns the training
points perfectly but interpolates unknown points incorrectly) - see fig. 3.6. The
function, therefore, oscillates in order to fit all the training points with no error, but
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it is rather smooth in the unknown function. The introduction of more points does
not reduce the error as long as the concept is represented by polynomials of a certain
degree. If we need to keep more training points, we need to reduce the search space
size through the limitation of the degree of the polynomial approximations. Training
algorithms such as backpropagation provide variability in the solutions in the part
of local minima in the cost function. Although simulated annealing improves the
problem of local minima, it is not a definitive answer to the problem.

To alleviate such algorithm shortcomings, in the next section we propose a novel post-
learning strategy and its practical implementation. Several numerical experiments
concerning the problem of approximating a known function are performed in order
in order to validate this novel approach.

Fig. 3.6: overfitting a pol. approximation

3.3 Post-learning Strategy
The field of artificial intelligence has been a place where arguments have taken place
as to whether our world is relying on deterministic casual events, where one uses
probabilities to calculate missing knowledge. The dissenting opinion states that
our world is essentially indeterministic with we use probabilities to measure the
random events. As described in the previous chapter, optimization problems (training
algorithms) are broadly classified as deterministic and stochastic. In this classical
approach all weights transformation is carried through during the optimization
process. A step further, one can say that the training methods from the previous
chapter are constituted in terms of classical (deterministic) physics. But if one
sees the world as essentially indeterministic, an interesting possibility to exploit is
quantum mechanical effects in a ANNs. The idea has been suggested for the first time
(to the best of the limited information available) in [17] where the authors propose
that biological expressions of quantum phenomena are related to the activation
points in the brain activity. All of this is described as a nerve impulse firing achieved
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by the movement of a quantum particle in the vicinity of a potential energetic barrier.
The availability of an action potential is proposed to play a significant role in the
information processing functions of the brain since there effects such as tunneling
arises. On the other hand Penrose [131] suggests the concept of the existence of
micro-tubules, capable of maintaining a macroscopic coherent superposition.

The proposed post-learning technique 1is particularly inspired by the work described
in [17]. The method mimics quantum effects and thus is capable to provide an
improvement to the set of weights in a network in the post-learning step. The main
goal is to introduce a method for supplement the level of accuracy of the network
even in the of training failure - whether for missing data, insufficient architecture or
the optimization falling into a saddle point or being stuck in local minima. This new
strategy is achieved at a relatively low computational burden.

In this section the post-learning strategy is implemented on a multilayer feedforward
network, consisting of several neurons, each of them fully connected to every neuron
in adjacent forward layers. The post-learning strategy is not limited to this particular
implementations and can be used in various layouts. For the current network, the
activation function for every neuron (σi(x)) is the function tanh(x) with output
range [−1, 1].

3.3.1 Description of the Method

The possibility of biological neurons to exploit quantum effects provides an encour-
agement of introducing randomness in a neural network implementation with the
goal of achieving certain computational advantages [17]. The proposal for the
implementation of quantum mechanical laws inside every neuron correlates to the
condition of the numerical simulation of the time-dependent Schrödinger’s equation
(or any other equivalent formalism like Feynman, Wigner). This is necessary to
quantitatively determine the eventual tunnelling effects. Therefore, the network
needs to numerically simulate the following time-dependent partial differential
equation [64] for every neuron:

ih̄
∂Φ
∂t

(r, t) =
(
− h̄

2∇2

2m + V (r)
)

Φ (r, t) , (3.25)

where i is the imaginary unit, Φ(r, t) is the wave function defined over space and
time, h̄ is the reduced Planck’s constant, r is the position of the particle, t is the
time, m is the mass of the particle, ∇2 is the Laplacian operator, and V (r, t) is the
potential energy acting on the particle. In the case of relatively small neural networks,
consisting of just one hidden layer and limited amount of neurons, this simulation
will be computationally affordable. In a real-life application of neural networks
such as the ones used for acoustic analysis or speech recognition, where hundreds
or thousands of neurons are used, this represents a daunting and computationally
prohibitive task. Therefore, a computationally convenient technique is proposed
that is capable of miming the existence of randomness, fundamental in a quantum

2The words quantum, random and noise are used interchangably, having in mind the same
meaning. The same applies for the terms classical and deterministic.
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system, without the high computational cost associated with available and accurate
quantum simulations.

The method is modeled by analogy of a biological neuron as a semiconductor
heterostructure that consists of an energetic barrier (e.g. AlGaAs) that is situated
between two energetically lower areas (e.g. GaAs). [17] gives as the possibility
to consider the activation function of an artificial neuron as one or more particles
interacting with the barrier (see Fig. 3.7) once they enter the heterostructure. The
probability of finding the particle in some point of the device at time t, is described
by the modulus of the wave-function |Φ(r, t)|2. In such a way, a randomness is
introduced to the process (Born rule). If the probability of a tunnelling is lower
than the probability of back scattering, the activation function is considered to be
inhibitory.
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Fig. 3.7: Left plot: a Gaussian wave-packet, (blue) continuous line, is travelling
against an energetic potential barrier, (red) dashed line. Right plot: after
a certain time, the wave-packet is interacting with the barrier. Part of the
packet is scattering back while the rest is tunnelling.

Certain similarities in this method exists between the proposed method and the main
structure of an Action Potential. The latter one is described as a distinct voltage-
gated ion channels in a cell’s membrane. When the potential increases to a defined
threshold value, the membrane potential of the cell opens. This electric potential
difference (voltage), maintained by the membrane potential, once triggered, is
activated.

In practical implementation, this can be achieved by adding to the network a new
function called addHiddenNoise which, adds noise to the already computed weights
after the training process. This is done only for the neurons in the hidden layers of
the network

hiddenLayer.neurons[i].weights[j]+ = randomDouble() ∗ weightNoise (3.26)

which mathematically corresponds to the expression

f(w1x1 + w2x2 + w3x3...+ wnxn) (3.27)
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RandomDouble returns a random double (generated by a Mersenne Twister) and it
is implemented with the idea to bound the noise to a percentage of the given range,
depending on the actual problem. The function backupState is used to copy the
weights for restoration if the network with the added Noise produces worse mean
squared error than the one without noise.

The following section describe the implementation of the proposed method to three
numerical experiments in order to validate the approach.

3.4 Numerical Validation
In this section a numerical validation of the suggested post-learning strategy is
presented. The implementation of the neural network works to fit two known
functions - a polynomial of second degree (f(x) = x2) and the square root of
a polynomial (f(x) =

√
x), with three training data points provided. In both

experiments the network architecture is identical - with one input node, 4 hidden
neurons and one output neuron. Furthermore, additional constraints to the weights
search space have been utilized. In the first scenario, the search space is limited
in the range −12(min) - +12(max). The weight space for the second function are
distributed between −1(min) and +1(max). In this work, the training algorithm is
based on the simulated annealing method for both functions.

During the numerical experiments, we have deliberately hindered the network by
stopping the algorithm at an arbitrary local minimum. The task is accomplished by
means of the temperature rate of the algorithm, which we decrease in a non-optimal
fashion. Through the strategy, the goal is to clearly show that our technique is able
to provide a further solution to improve the training even after the optimization
process is completed. One of the advantages in this situation is the importance of
finding the best set of weights for an ANN among the increase of available training
data and growing complexity.

The training algorithm utilizes three equidistant data points, in the range [0, 1],
although we have excluded the extrema. In the first case (see Fig. 3.9, upper left
side), the algorithm relies on (0.1, 0.01), (0.5, 0.25) and (0.9, 0.81) training data
points. The example for the square root of polynomial exploits for the training the
following data points:(0.15, 0.38), (0.6, 0.77), (0.85, 0.92).

In order to better understand the influence of noise in terms of the network’s
output and error decrease, 5 different scenarios are investigated. The initial run
is accomplished without any noise addition and as such serves as a benchmarking
tests for the quantum part of the network compared to the classical one (see Fig. 3.9
and Fig. 3.11 upper left plots). The error from the classical part of the network is
depicted as a (blue) x, while the error from the quantum side of the network is
shown as a (red) square. The upper left plot illustrates the network running with
no noise for validation purposes. Upper right plot illustrates the network’s error in
scenario with 0.5% applied. The middle left and right plots constitute network error
in simulations with 1% and 2% noise. The left lowest plot represents error with 4%
noise respectively.
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The next three subsections attempt to explain how the level of noise is affecting the
two functions as well as the sphere function.

3.4.1 Polynomial of second degree

The first numerical experiment depicts the fitting of a polynomial of second degree.
An initial test is performed without addition of noise to ascertain the performance
of the network and as such to give a benchmarking assessment for the precise
functioning of the network.

To examine the influence of the noise on the network’s output, we initialized a
situation where we include negligible noise to the system (0.5%).In Fig. 3.9 the (red)
star symbolizes the desired network’s output, the (blue) x indicates the output from
the classical mode, and the quantum mode is denoted by a square. The upper left
side plot exhibits a validation test for the network, running in both classical and
quantum mode, with no noise applied. The upper right plot represents the output
when 0.5% noise is applied. The middle left and right plot, display the network’s
output when 1% and 2% noise is assigned respectively. The final plots consists of the
output when the network is executed with 4% noise.

Consequently, the effect on the quantum behavior are negligible (see Fig. 3.9 upper
right plot), influencing the first few outputs. One can corroborate those results
comparing them to the error of the network (as seen in Fig. 3.10 upper right plot).
Conceivably, the quantum part of the network contributes to slight improvement
of the first few data points. In order to accomplish this, the algorithm at every
point compares the error from the classical to the quantum part, chooses the better
option, while discarding the other. Should a better quantum solution is calculated,
the network accepts it and continues forward.

The reader might observe that indicative to the amount of noise applied is the
dispersement of both the quantum output and error throughout the plot in settings
where one successively increases the amplitude of the noise. As such, a moderate
increase of noise to 1% leads to a situation where the network output in the middle
of the solutions decreases its accuracy, while still retaining better results in the upper
and lower bound of the curve.

The application of 2% noise advances the deterioration of the network precision.
The network is able to provide only few reliable outputs close to the fitting curve.
Therefore, the increase of noise contributes to increase of output outliers in the
outcome (shown in Fig. 3.9 middle right plot).

With the addition of more noise to the system, the quantum network outperforms
the classical one in few cases. The increase from 1% to to 2% and 4% noise, leads to
an overall gradual decrease in error (Fig. 3.10, middle right and lower left plots).

The current numerical experiment shows that the performance of the network is
stable when 0.5% and 1% noise is added. We observe the quantum part’s ability to
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produce smaller error in the beginning of the validation, with the option of almost
instantaneous decrease of the error.

Nevertheless, even with higher levels of noise, the network still produces small
improvements, but at far lesser scale and depth.

3.4.2 Square root of a Polynomial
We have performed a second test in fitting a square root of a polynomial, taking into
account the assumption of the capacity of the novel technique to potentiality operate
in a distinctive mode when computing different functions. In the first scenario, where
the noise is established at 0.5%, the results between the quantum part approximate
the classical ones (Fig. 3.11 upper right plot). The reduction of the error appears to
be stepwise, close to the example from the first function. The current setup provides
only few improved outcomes, irrespective of the steep error descent from point to
point.

Expanding the analysis by adding 1% noise, we see the outcome close to the optimal
(Fig. 3.11 middle left plot). On fig. 3.11 the (red) star symbolizes the desired
network’s output, the (blue) x indicates the output from the classical mode, and
the quantum mode is denoted by a square. The upper left and right plots represent
network’s output when 0% and 0.5% noise is executed. The middle left and right
plots exhibit the output affected from 1% and 2% noise respectively. The lowest left
plot represent results from executing the network with 4% noise.

Similar to the case from the 0.5% noise, the error reduction continues in a stepwise
manner. While one might ascertain that in accordance to the previous numerical
validation test, the increase of noise should contribute to the decrease in network
performance, the current experiment illustrates the opposite conclusion.

The efficiency of the quantum network is in point of fact increased in a situation
where 2% noise is added. The network produces as much as twice as many quantum
outcomes, as when imposing 0.5% or 1% noise. Moreover, we observe the presence
of lower errors (see Fig. 3.10 middle right plot). There is significant divergence from
the initial experiment after the early steep error reduction from the quantum part.
Here, the clustering of the quantum error points is found near the classical ones.

In the last example, at 4% noise, the error decreases consecutively. In this scenario
(fig. 3.11 lower left plot), the network provides as much as twice as many quantum
outcomes, as when only 0.5% is applied. Throughout the various noise scenarios,
the outputs from the quantum network are analogous to the classical one.

One might interpret the divergent network performance for the two numerical
experiment in terms of variation of the weight space range for the two functions.

Illustration of the divergence of error reduction for the two known function is
available from Fig. 3.8. The left plot confirms the perception of increased network
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performance on noise levels at 0.5% or 1%. The behavior of the network is opposite
for the second numerical experiment. Running the network with gradual increase in
the noise actually contributes to the tapering off of the error.

3.4.3 Sphere Function
To establish how advantageous the post-learning algorithm will be when applied to
different functions, we have applied it to the Sphere model function f(x) =

∑D
i=1 x

2
i .

It is symmetric and is one of the most widely used benchmarking functions. For the
current work, we have applied 2% and 4% noise to test the algorithm.

In Fig. 3.13 one can the (blue) circle symbolizes the desired network’s output, the
(blue) ∗ indicates the output from the classical mode, and the quantum mode is
denoted by a + sign in black. The first plot exhibits the validation test of the network,
where no noise is applied, while running in both quantum and classical mode. The
middle plot represents the output when 2% noise is assigned and the last plot shows
the output with 4% noise(Fig. 3.13. As seen in the previous examples, the more
noise applied, the more deterioration of the system one observes. Despite this, there
are certain points, where the network, even with the sphere function provides a
quality output. While the network is able to produce from the quantum part only
few better outcomes, it is still able to minimize the error substantially (see Fig. 3.14).
The error from the classical part of the network in fig. 3.14 is depicted as a (blue) x,
while the error from the quantum side of the network is shown as a (red) square.
The upper plot represents the error with 2% noise. The left lowest plot represents
error with 4% noise. In the case where 4% noise is applied the first outcome is better
for the quantum network, as well as close to the last few errors.

3.5 Summary and Contribution of the
Chapter

In this chapter, we introduced several optimization strategies frequently utilized
for the training of neural networks. Some of the algorithms shortcomings involve
reaching saddle points, local or global minima with inability to escape. Furthermore,
we proposed a novel post-learning strategy that is implemented as a auxiliary
reinforcement to the classical learning process of neural networks. The main purpose
of this novel technique is to provide a method that is computationally reasonable in
the scenario of a network trying to circumvent a local minimum during the training
process. In order to achieve it, we suggested an approach based on the generation
of random numbers at the core of artificial neurons, which attempts to mimic the
presence of quantum randomness. By performing several numerical experiments,
we validated the method against the problem of fitting a known function, given a
certain number of training points, and we have shown how our technique provides
certain improvements in the system, without relevant additional computational costs.
In the next chapter we introduce a sensitivity analysis to understand the necessary
amount of noise which has to be introduced in a network in order to achieve real
improvements.
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Fig. 3.8: Final error after the network calculates for 32 output points. The left side
plot illustrates the error for the function of polynomial of second degree.
The right side plot depicts the error for the function of square root of
a polynomial. The initial error for the left plot for all levels of noise is
0.12886. The initial error for the right plot for every noise level is 0.10203.
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Fig. 3.9: The plots feature the output of our neural network for the function of
polynomial of second degree.
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Fig. 3.10: Error reduction from the neural network in the case of polynomial of
second degree.
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Fig. 3.11: Neural network outputs in the case of function of a square root of a
polynomial.
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Fig. 3.12: Error decline from the neural network in the simulation of square root of
a polynomial.

58 Chapter 3 The problem of neural network training and implementation of a

post-learning strategy



0.9

0.6

0.4

0.2

0

1.8

1.6

1.4

1.2

1

0.8

1

0.9

1.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1

0.9

1.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1

Fig. 3.13: The plots feature the output of our neural network for the sphere with
no noise, 2% and 4% noise respectively.
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Fig. 3.14: Error reduction from the neural network in the case of the sphere func-
tion.
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4Sensitivity Analysis in
Neural Networks

„Users do not care about what is inside the box, as
long as the box does what they need done.

— Jef Raskin
about Human Computer Interfaces

In this chapter we introduce a sensitivity analysis tool to establish the level of
noise in the network. Other research have been carried out on the "random or
unpredictable fluctuations and disturbances" [54] and the possible benefits noise
in neural systems can introduce [51]. For instance in engineering, the noise is
identified as a detrimental to the system and the quality of the output. In biological
neural systems, on the other hand, noise is naturally existing, often providing certain
benefits to information processing [54, 51, 43, 158]. Currently, we believe no
definitive explanation has been reached about how naturally occurring fluctuations
in neural systems could be exploited, why they do in fact occur and what could be the
potential advantages. While adding certain amounts of noise could provide benefits
from the network oscillations, in other cases this oscillation could be detrimental
[8].

Currently, there are certain experiments that add noise to the weights during the
training process of a recurrent neural network [83] to improve the optimization
convergence even in the absence of an input. To achieve this one needs to provide
noise in order to generate opening and closing of ion channels to reach a good
generalization [54]. One can apply noise either in a noncumulative and cumulative
(with additive and multiplicative) manner in every time step or for every string.
One may perceive the addition of noise to the synaptic weights as a beneficial in
situations where the optimization algorithm is stuck in local minima and therefore
through the addition of noise, we can provide a method to escape from it. Exploring
the fault tolerance of a network, the possibility of learning acceleration and the
effects on the error function where noise is inserted in the weights during raining of
a multilayer perceptron network has already been examined in [123].

One may choose an alternative approach to the optimization problem with the
algorithm randomly probing the space of weights with augmentation of all the
weights though the addition of certain level of noise. Therefore we execute the
network, calculate the error (with the selected weights) the perform additional search
for a second batch of weights. The next step involved the comparison of the two
option and the selection of the one which produces smaller error. Similar approach
has been utilized in [146], establishing the network performance in the presence of
noise in the training of deep neural network applied to a speech recognition system.
There the noise is present only in the input layer (in the signal) and could be utilized
either through representing the noise in the system through model adaptation of
environmental information or by removing the noise in order to reduce variability.
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Similarly, one could examine the presence of noise in biological system and in the
hardware representation of neural network. In the latter case, it is reasonable to
consider that the enclosement of many electrical devices contributes to electrical
fluctuations that influence the performance of the network and the interaction
of the neurons. Such instance is observed in experiments of the neural network
developed with Memristors by Hewlett-Packard and IBM [132]. As a result of the
memristor devices created in a limited space for an ANN, one detects increased
presence of electrical current activity as well as random fluctuations that could affect
the performance of the system in various ways.

In this chapter we present a sensitivity analysis methodology of a neural network
performance in the presence of noise introduced in all the weights of the network.
The goal of those sensitivity analysis techniques is to provide us with an accurate
mathematical approach to determine the noise levels in a network. Our aim is with
those tools to establish whether the noise can be utilized for improving network
performance and when it is detrimental and acts as a source of fluctuations. Further-
more, with the sensitivity analysis tools we could achieve a better understanding
of the noise variation on the network’s behavior and the sensitivity of the output in
relation to the noise fluctuation. The utilized sensitivity coefficients indicate what
is the possible variance of the outputs of the network due to fluctuations in the
weight parameters of the system. To the best of our knowledge, no study has been
accomplished to understand the level of influence of the noise in the network and
what type of consequences such noise present for the network’s performance. The
functionality of a network could be considerably altered with the modification of
noise in the weights and therefore there would be considerable sensitivity to the
system. Vice versa, with negligible sensitivity, the performance of the network should
not be substantially altered.

Those sensitivity tools provide a quantitative representation of the fact that moderate
amount of noise do in fact improve the network’s performance. Such a conclusion,
while counterintuitive, is clearly supported by the data. It can be shown with the
selection of several indicators the exploration of the sensitivity of a neural network
over the introduction of noise in the weight space. For this sensitivity analysis in
this chapter, we have implemented three measurements to establish the scope of the
solutions: the Euclidean distance (L2), the maximum norm (L∞) and the cosine-
similarity (Lcos). In a situation of two weight vectors, selected from the weight-space,
the cosine similarity provides information about their orientation, the Euclidean
distance produces the possible directions and magnitudes of the selected weights.
Finally the L∞ indicator presents the parameter of their maximum departure. The
reader should note that every instance from the performed numerical analysis is
initiated with the same starting conditions to provide duplicability and comparability
of the obtained results.

With this sensitivity analysis we pursue a better understanding of a network’s
behavior with the noise introduction in the weight space. Furthermore, we try
to establish what is the sensitivity of the output when perturbation of the weights
is introduced. Important consideration is that the perturbation is seen as a noise
fluctuation and not always the addition of noise will provide the weight solution.
Moreover, in certain settings the level of noise provides a variance in the whole
weight space composition.
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4.1 Sensitivity Analysis Tools
For the current sensitivity analysis we have developed a fully connected feedforward
neural network (see Fig. 4.1). The input layer contains one node, the hidden
has four neurons and the output layer is comprised of one neuron as well. The
selected activation function is tanh(x) with a range [−1, 1]. For our particular
case, we have decided to use the simulated annealing algorithm as an optimization
strategy for the weights. This particular design decision is in no way limiting to this
particular choice. Sensitivity studies have already been performed in relation to

Input Layer Hidden Layer Output Layer

►

►

►

►

►

►

►

►

►►

Fig. 4.1: Current design of the neural network implemented in this paper. Neu-
rons are represented as nodes, the connections between the neurons are
illustrated as directed edges.

neural networks, although the focus has been only on general feedforward networks,
while imposing various restrictive expectations. In one instance the sensitivity
analysis is characterized by a partial derivative of the network’s output to the input
of the network [74]. In other work the focus is on variance calculation from the
network’s output error under some stochastic assumptions [180, 35]. Various
implementations have applied sensitivity analysis for input perturbation for a single
neuron taken from a multi-layer feedforward network, where the analysis is on the
error from the output layer, which sequentially computes the sensitivity neuron by
neuron from the first to the last layer [180].

In this chapter, we have implemented a different sensitivity analysis approach
to investigate the introduction of noise in the weights. The next paragraph pro-
vides a brief description of the indicators. Here, we presume that the underlying
mathematical model is achieved in terms of a function model [151]. Provided a
n-dimensional vector of input parameters x = (x1, x2, . . . , xn) , which are chosen
in a space Un = [a1; b1] × [a2; b2] × · · · × [an; bn] (ai, bi in this case depicted as real
numbers and ai < bi for i = 1, . . . , n) with a joint probability density function
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p(x) = p(x1, x2, . . . , xn), allowing the model to provide an m-dimensional output
vector u = (u1, u2, . . . , um), where

u = f(x). (4.1)

We consider the output vector u to be a random vector, inasmuch as being depicted
in terms of the random input vector x. Whence models are defined generally by
multiple input parameters, in this particular case, we are examining only the noise
level parameter. Hence, the space of input parameters Un decreases to a a 1D space
[a; b] with the (real) values a and b, defined in the following section (with a < b).
Although the work defines an n-dimensional input vector and an m-dimensional
output vector, we are only assessing the method through the assignment of only one
input and one output neurons in the network. One should consider that this is not
an inherent restraint of the model. In this particular sensitivity study, the network is
described as dependent on the weights, and therefore we consider it as an assembly
of functions with f = f(x).

The introduction of three different indicators presents us with an exhaustive interpre-
tation of the dependence of f on the weight perturbation. In this case, each indicator
provides a divergent perspective regarding the problem and therefore assists with
the analysis of the results. Particularly, we use the concepts of cosine similarity,
euclidean norm (also known as the 2− norm), as well as∞− norm or supermum
norm (e.g. maximum norm). The analysis and definition of these indicators rests
in the exploration of two experimental cases, in which we have applied noise to all
available weights in the network.

In this work, the perturbation of the weights is denoted by u, while v depicts the
weight configuration from the weight space. As such, those indicators express the
configuration of certain weights in the network’s output. Furthermore, we can
represent u and v as two weight vectors with Nx components.

We introduce the first indicator, based on the cosine similarity, as

lcos(w′′) = lcos[u(w′′), v] = u · v
|u||v|

, (4.2)

with the operation · representing the scalar product and |u| describing the modulus of
the vector u. To be exact, the indicator can’t be a metric one, since the non-negativity
axiom is violated. Particularly, Lcos can represent a negative value for vectors, that
are positioned in the opposite directions in the Nx - dimensional space of output
vectors. Yet, it is a good indicator of similarity between two vectors. In point of fact,
in situation where two vectors point in the same direction and also have equivalent
moduli, the value of Lcos is close to 1. In cases when they are orthogonal then
Lcos = 0, while Lcos = −1 represents their opposite position. In situation when Lcos
is close to 1, one may conclude the perturbation of the weights is not too sensitive
(provided a certain range).

64 Chapter 4 Sensitivity Analysis in Neural Networks



The second indicator, utilized in this work, is based on the Euclidean norm. One can
describe it in terms of

I2(w′′) = I2[u(w′′), v] = |u(w′′), v|2 =

√√√√Nx∑
i=1

(ui − vi)2, (4.3)

with ui and vi being the ith component of the vectors u and v respectively. The
current indicator is in fact a metric one and therefore can be construed as the
distance between the initial weights (u) and the perturbed ones (v). This provides a
concise indication about the quality of the computed solution. Therefore, The lower
the value of L2, the better the quality of the solution.

The final metric indicator utilizes the∞− norm where

I∞(w′′) = I∞[u(w′′), v] = |u(w′′), v|∞ = max|ui − vi| (4.4)

In particular, the value ∞− norm is exploited as an expression of the maximum
distance the perturbation of weights can have from the weight solution in a point
of the weight space. Although we have access to the analytical derivatives of the
indicators, the current work focuses only on their numerical derivatives. This is
achieved for the sake of generality.

4.2 Numerical Experiments

The current sensitivity analysis implements two numerical experiments - for convex
and concave non decreasing functions with the goal of avoidance of biased results.
Respectively, the two functions presented are polynomial of second degree (f(x) =
x2) and the square root of a polynomial. For both cases the implemented neural
network consists of one input node, 4 hidden neurons and one output neuron.
Again (as in the previous chapter) for the experiments, we provide only three
training data points. There is recognition that in real-life applications many more
points are used during the training process. The ultimate goal through this, in
the current work, is to depict that even when limited training data is provided for
general function approximation [21], the performance of the system can indeed be
preserved regulated by the different levels of noise in the system. Furthermore we
show how the SA indicators can be employed in such cases.

Moreover, we present an additional constraints to the weight space for both functions.
In the first case, the weight space is confined in the range [−12, 12]. For the second
function the weight distribution is inhibited in the [−1, 1] range.

Figures 4.2-4.3 provide the results of the investigation of the sensitivity analysis of
neural networks over the introduction of three indicators. The (red) stars in the
upper left plot illustrate the Euclidean distance (L2). The (black) diamonds in the
middle left plot represent the outcomes for the L∞ indicator. The (blue) triangles
depict the cosine similarities in absolute value.
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The representation of peaks on every plot exhibits the optimal solution of the
function, which is a function of the noise applied. Likewise, irrespective the type
of indicator that has been used, one recognizes that the peaks for the solutions are
represented in the same position (see fig. 4.4 for magnified illustration).

The upper left plot on fig. 4.2 represents the Euclidean distance parameter which
shows that 45 − 47% noise improves the solution significantly. Additionally, an
observation in terms of the outputs from the L2 and L∞ show that although they
diverge quantitatively, they are qualitatively (their behavior is) similar. In this
particular numerical experiment, one expects the parameters to ascertain the same
information. Although small amount of noise represent a sufficient solution to the
optimization problem, the cosine similarity indicator does not provide the same
conclusion. In fact, one observes in this case the presence of oscillation of the
solution. Considering that in relation to this particular indicator, the closer the
output to 1 is the better, the depiction on the lower left plot on fig. 4.2 represent
deterioration of the solution (moving farther from 1).

The reader should note, that although we have used the cosine similarity indicator,
we in particular have utilized a variant of it, using the absolute value of Lcos =

∣∣∣ u·v|u||v| ∣∣∣.
In this sense, regardless the similar peaks from the three indicators, we are capable to
observe different information. Importantly, whereas the first two indicators provide
sufficient noise levels results for the behavior on the network, the third one reveals
opposite conclusion.

Considering the Euclidean distance parameter (fig. 4.2 upper left plot), we observe
the presence of a distinctive peak around 40% noise, which indisputably indicates
improvement of the network. As such the quantity of noise is improving the solution
drastically. In contrast, the third parameter provides a snapshot of a deterioration of
the network’s behavior when more noise is applied. Moreover, in terms of L2 and
L∞, their decreasing amounts represent a good solution to the problem, in Lcos we
observe oscillations and notice that near 1 the network provides a sufficient solution,
and away from it there is no such available good solution.

Acknowledging the fact that while the plots provide valuable information, the dy-
namic nature of the results necessitates the computation of the numerical derivative
of the three indicators. The right side plots of fig. 4.2 describe the derivative values
for the SA indicators. The (red) stars in the upper right plot provide the derivative
for the Euclidean distance (L2). The (black) diamonds in the middle right plot
are the derivative outcome for the L∞ indicator. The (blue) triangles depict the
derivative for the cosine similarities in absolute value.

We have used a second order forward finite differential approximation in order to
utilize the derivative values for the SA indicators. Specifically,

y′′(xi) = y(xi+2)− 2y(xi+1) + y(xi)
∆x2 . (4.5)

Considering that the peaks from the three indicators behave qualitatively similarly,
the utilization of the derivatives allows us to conclude that the same remains true
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in the derivatives case as well. Here, the peaks similarly correspond to the optimal
solution. Consequently, the derivatives of the parameters contribute for the better
localization of the peaks.

There is some uncertainty in the situation with the initial noise levels, where there is
oscillation of the optimal solutions. In terms of the the cosine similarity this is the
case precisely relating to the calculation of the second derivative in order to better
understand the underlying processes.

From the lower right plot on fig. 4.2 of the derivative for the Lcos parameter, we
observes that better solutions can be found near the 50% noise level, as well as in
the smaller amounts where the noise is only about 15%.

The second experiment (see fig. 4.3) for the the square root of a polynomial
(f(x) =

√
x) has also been calculated with the three parameters and their re-

spective derivative outputs and contributes to similar observations. While the first
two parameters are qualitatively similar, they are in fact quantitatively different. The
presence of the peaks for the optimal solutions for the L2 and L∞ again present
similar information from the sensitivity analysis. Whereas there are few better
solutions produced for less than 10% of noise, surprisingly one can observe there are
several better solutions in the 70th percentile. Irrespectively, there is a better chance
for an optimal solution when smaller amounts of noise are added to the system,
which improves the network’s behavior (see fig. 4.3, upper and middle left plots). In
contrast to the previous numerical experiment, presently, we can illustrate that there
are several smaller hills pointing to the solution with less rapid oscillation from point
to point.

Expectedly, the cosine similarity provides a divergent results when compared to the
information from the previous indicators. Fig. 4.3 lower left plot illustrates the Lcos
parameter in its absolute value. For better understanding of the indicators, we have
once again used the derivative of the indicators, as explained above. In the upper
and middle right plots from fig. 4.3 one may observe that the indicators gravitate
towards zero regardless the amount of noise, although better solutions are found in
the 5− 10% noise application part, as well as when 40% is applied and a little bit
when over 60% noise is considered.

4.3 Summary and Contribution of the
Chapter

In this chapter, we have introduced a sensitivity analysis of the perturbation of the
weights on a three layer fully connected network. For training algorithm we have
utilized the simulated annealing technique. With those sensitivity analysis tools we
have provided a method for calculating the noise in the network. To achieve this we
applied three indicators - Euclidean distance (L2), cosine similarity (Lcos), and L∞.
Each one contributes important knowledge to the optimal solution for the acceptable
noise applied to the network. Furthermore, with those tools we can establish the
amount of noise which won’t negatively influence the behavior of the network or
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having a negative effect on the output. Moreover, those indicators give us the
opportunity to determine accurately the level of noise which provides improvement
to the optimization process or instead are acting as a source of fluctuation.
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Fig. 4.2: The plots on the left side represent the three sensitivity analysis indicators
applied for a polynomial of second degree (f(x) = x2). .
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Fig. 4.3: The figure represents the sensitivity analysis indicators for the square root
of a polynomial (f(x) =

√
x).
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Fig. 4.4: The left side plots describe the comparison between the Euclidean distance
(L2) indicator and the cosine similarities in absolute value for the case of a
polynomial of second degree (f(x) = x2). The right side plots illustrate
the comparison between the Euclidean distance (L2) indicator and the
cosine similarities in absolute value for the case of the square root of a
polynomial (f(x) =

√
x)
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5Evolutionary ANN
Architecture

„The Moment of truth is running a program.

— Herbert Simon
Artificial Intelligence: an Empirical Sciences

In Chapter 2 we have presented some of the fields where artificial neural networks
are used and have proved to be a successful and efficient approach to various prob-
lem solving tasks. The ability of neural networks to utilize learning techniques to
adapt their connections when new information is provided in direct contrast with
conventional software techniques which needs to be programmed, has been one of
the reasons why various paradigms and network architectures have been proposed
and studied in the last 80 [75], [21]. The connectionist field and the field of artificial
intelligence have addressed multiple problems pertaining to neural network struc-
tures and the influence of various parameters have on the network’s performance
[69]. T he possible number of layers, the amount of neurons in the network and per
layer, the type of connections, the type of activation functions, weight initialization,
training algorithms, error functions and pre- and post processing of data have been
some of the parameters for the successful implementation of a neural network. Those
components are essential to the computational performance, efficiency and accuracy
of every network [92], [6]. It has been established that the topology of a neural
network in fact influences the performance of the network with examples in the
field of computer vision, where researchers have found that convolutional networks
provide the best performance in this particular case [98]. The exponential number
of parameters one can choose from depending on the problem and the knowledge
of the parameters often presents a complex combinatorial optimization problem.
Therefore various self-organizing topologies have been proposed and implemented
[98], [176], [24], [29].

We introduce a novel approach to the evolution of the neural network architecture1in
order to provide an automatic and computationally feasible self-organization of an
artificial neural network layout to solve a given problem. A hybrid stochastic
optimization and genetic algorithm, allowing the network to choose almost every
possible structure in the implementation of the network in a given space of possible
architectures is discussed. Through this evolving architecture, we obtain a method
which is easily parallelized and is capable of escaping to overfitting of the output
data when the minimal amount of training data is available.

For th automatic search/optimization of neural network architectures, as well as
their parameters an Evolutionary Algorithm (EA) is commonly utilized. In such
scenarios an evolutionary search is employed for some or all of the parameters
[37]. Two possible utilization areas: parametric learning, where one searches for
weight values. The second one is structural learning, where one searches for the best
topology of the neurons and connections. Traditionally, the topology is defined before
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the initialization of the network in certain manner. The simplest implementation
of the structural type of evolving topologies is through the addition or removal
of neurons, which limits the architecture, without exploring the whole space of
possible architectures [14], [108]. Different approach is through the definition of a
predefined list of modifications such as adding only fully connected hidden neurons,
etc [156], [157]. In this instance in an event where the network topology is deemed
insufficient, the architecture is discarded and a new one is developed. Disadvantage
of this method is the algorithm and therefore the developed architectures often fall
in structural local optima, incapable of identifying further available parameters [92].
Evolutionary algorithms (EAs) have been implemented in both the optimization
(training) of networks as well as the automatic design of neural networks [122],
[121], [9], [178], [106]. Evolutionary algorithms as heuristic methods are efficient
in the exploration of the possible space of solution for the optimization problem.
In the automatic search for the various parts of a topology one can implement a
genetic algorithms, which can operate in a sequential layer search process, where the
information for every layer is found in a specific genetic algorithm. Disadvantage to
this method is the prohibitive computational costs and high processing time [109].

Consideration on the trade-off between high computational costs and the imple-
mentation of automatic evolution of topologies and training of the network and the
possible advantages of such a method need to be accounted for. This chapter, there-
fore, introduces novel approach to the evolution of the neural network architecture
in order to provide an automatic and computationally feasible self-organization of
an artificial neural network layout to solve a given problem. A hybrid stochastic
optimization and genetic algorithm, allowing the network to choose almost every
possible structure in the implementation of the network in a given space of possible
architectures is discussed. Through this evolving architecture, we obtain a method
which is easily parallelized.

5.1 Methodology and Development
Our algorithm allows for the randomization of the number of neurons, number of
hidden layers, types of synaptic connections, use of transfer functions and type of
training algorithm, when selecting the best possible topology. The recombination
of all those components establishes a multidimensional space of possible structures,
while capable of achieving sufficient performance at affordable computational re-
sources. During the numerical experiments, we have provided a degree of freedom
for the evolutionary process for the following different network parts:

• number of possible hidden layers,

• number of possible neurons in every hidden layer,

• number of connections per neurons,

• the connection between neurons,

• the type of activation function.
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The following subsections provide more details about those options.

5.1.1 Layers, Neurons and Connections

The number of layers, the amount of neurons per hidden layer and the available
connections are the first three criteria used in the neural network architecture
method developed in this work. The model operates first by restricting the available
choices to a minimum and maximum value allowed for layers and neurons for each
run of the network. There is no specific implementation in the code for the addition
or removal of neurons during the process.

The network is not limited to a type of connections between neurons. The evo-
lutionary algorithm can choose to develop a sequential neuron connection (in a
feedforward manner), or non-sequentially - connecting neurons irrespective of their
position between layers. The evolutionary algorithm provides the best possible
solution by comparison between elements of various generations. One could restrict
the number of inputs per neuron allowed in the architectures depending on the
specific task that needs to be solved (i.e. to further control dimensions of the space
of solutions).

Once those possible choices are considered, the next step to account for is the
activation functions.

5.1.2 Activation Functions

The fourth criterion used in our proposed evolutionary network architecture provides
several distinct activation functions to be utilized in the network. There are at least
two possibilities during the evolutionary search: one may request all neurons in the
hidden layer to use the same activation function, or to provide the option for the
algorithm to choose the best one for every neuron in the hidden layers. This work
incorporates several types of activation functions:

• identity Function - where f(x) = x. It is the simplest activation function where
the activation is passed as the output of the neuron,

• exponential activation, where f(x) = exp(x),

• hyperbolic Tangent (tanh) - a trigonometric function with output in the range
[−1,+1]. One of the most used activation functions,

• function based on orthogonal polynomials - Laguerre, Legendre or Fourrier.

In this particular work, for each hidden layer, we leave a complete freedom to the
network to choose the type of activation function.
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5.1.3 The Training Process - optimization Strategy

The training process is based on the simulated annealing method [90]. By analogy
with physical systems, we initially increase an effective temperature to a maximum
value and then we start to decrease it until the particles reach an equilibrium (which
represents a solution to the task). One describes the probability of a point to move
by

Pr[accept] = e
−∆E

T , (5.1)

where ∆E is the difference between the actual energy and the energy before the
move, and T is the effective temperature of the system. A move is accepted if the
generated random number [0, 1] 3 R < Pr[accept].

5.1.4 Evolutionary Strategy

The genetic algorithm has been one of the most widely used approaches in the
studies of evolution of neural network architectures [92], [176] [90], [156], [109].
In this work, we introduce a new hybrid genetic approach through the application of
an additional stochastic layer, running simultaneously to the genetic one. The latter
combines mutation and crossover approach, through which the algorithm evolves
the potential topological combinations. Then we select the offspring with the best
fitness.

Fitness and Selection Strategy. The algorithm initialization assigns fitness scores to
each individual in the population, indicating the the quality of the specific network
topology. In this work, we have utilized the L2 − norm fitness function (although
we are not limited to only this function). Each time step, the algorithm accepts for
further evolution an individual with the best fitness. The process is similar to the
Tournament selection method [162].

Training Process. At each time step, every individual from the population is trained
by the simulated annealing method described above. In this regard, one might
consider the combination of the architecture selection and the training process as a
two nested optimization problem. Therefore, one might speculate the possibility of
both strategies influencing one another.

Initialization of the Technique. The algorithm is provided with the ability to choose
from four specified parameters described in the previous subsection: number of
possible hidden layers, number of possible neurons in every hidden layer, number of
connections per neurons, and type of activation function when choosing topology
parameters.

The algorithm involves two synchronous steps. We utilize integer value encoding,
with each chromosome representing a string of the parameters of the network. In
the integer value encoding, the crossover operator is applied in the same manner as
that in a binary encoding. This is needed since the system has the option to select
between several different activation functions or training algorithms, which in the
code are notated in an integer form.
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Type
Value

Max Number generations 32
Population 50 in genetic and 50 in stochastic layer
Rate of change 0.25
Selection Method Tournament
Crossover single-point uniform
fitness function L2 − norm

Tab. 5.1: Main values for selection in the hybrid genetic algorithm

// activation functions
#define TANH 0
#define EXP 1
#define ID 2
#define POL1 3
#define POL2 4
// discriminant functions
#define LINEAR 0
#define LEGENDRE 1
#define LAGUERRE 2
#define FOURIER 3
// error/cost/target functions
#define L2 0
#define LINF 1
#define COS 2
Code implementation for value encoding

The genetic algorithm is initialized randomly and creates 50 populations of individual
architectures C1, C2, C3, . . . Cn from the space of possible configurations. Concur-
rently, the stochastic layer generates randomly another 50 population of individual
architectures S1, S2, S3, . . . Sn. The stochastic layer functions entirely randomly in
every iteration. The genetic layer utilizes a combination of mutation and crossover to
evolve the solutions in order to find the best one for each generation. The mutation
randomly selects a chromosome. In mutation according to ratechange the algorithm
change the value of the specific chromosome by a certain value at random to be
mutated. In terms of the crossover operator we utilize a single-point crossover
chosen at uniform random form (using the ratechange parameter) either from the
first parent or from the second one in the following manner:

Parent #1: 0111010101
Parent #2: 1001110011
Offspring #1: 0101010111
Offspring #2: 1001110101
Example of a crossover

While the stochastic layer on the other hand performs random search to generate
new individuals for each generation. At every step, the algorithm evaluates the
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fitness level of each individual from both batches. It then selects one individual
from the the genetic and stochastic layer. From there, the individual with the best
fitness is further selected. Follows a stochastically evolved individual, applying the
controlled settings described above. We create a new set of populations of individual
network topologies for the genetic and stochastic layers of the algorithm. The entire
run of the genetic algorithm utilizes both crossover, as well as mutation strategies.

int maxgen = 32; /* number of generations */
int npopulation = 50; /* number of individuals per generation */
int ratechange = 0.25;/* rate of change between one generation and the parent */
int eps = 1.e-5; /* numerical accuracy */
crossover = uniform;
Code implementation for genetic layer

One might consider the stochastic evolution of the best individual to allow us several
advantages. Importantly, it provides a way for the algorithm to escape from local
optima, especially if the overall solution has various populations. We achieve this
through the adaptation according to minimum design standards in the changing
environment. Moreover, the stochastic part allows the program to develop a new
architecture specific to a problem in an affordable computational time even in the
presence of multidimensional search space.

Termination To be terminated the algorithm needs to meet one of two conditions.
It needs to reach the maximum assigned number of generations or the fitness error
to fall below the assigned threshold value after r consecutive generations.

5.2 Results
This section presents the results from a numerical experiment of fitting a known
function f(x) = x2 in order to corroborate the ability of the proposed method.
Several examples are provided, presenting the method’s outcomes with restrictions
in the number of hidden layers and neurons in them. This work presents architectures
from 4 scenarios - implementing architectures with 3, 4, 5, and 6 hidden layers and
different number of neurons allowed for each hidden layer 2, 3, 4, 5, 6. For the current
numerical validation, the amount of input connections per neuron in limited to the
maximum- 2. Those restrictions are only executed in the current experiment and are
not in any way intrinsic to the effectual work of the proposed hybrid evolutionary
technique.

Similar to the training data utilized in the previous chapters, the training data
is limited to three points - (0.1, 0.1), (0.5, 0.5) and (0.9, 0.9). Since it has been
established [21] that in order to guarantee a good function approximation ANNs
require large enough data samples, by limiting the available training data one should
expect the presence of overfitting and inability of the network to learn complex
relationships [155]. Accordingly, one of the aims of the experiments is to present
whether the hybrid evolutionary architecture could overcome those limitations
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5.2.1 Three layers from 2 to 6 neurons

For the first experiment, the possible layers are limited to 3 - one input layer, one
hidden layer and one output layer. Further constrictions (applicable to all numerical
experiments) are provided on the maximum amount of neurons in every hidden
layer to 3, 4, 5 or 6. The results in table 5.2 indicate that the cases2(3 × 2 × 2 and
3× 4× 2) where the smaller error is observed are in fact the situations where the
algorithm utilizes only 1 neuron in the hidden layer. In table 5.2 one observes 5
cases in this scenario - with the maximum of 2, 3, 4, 5 and 6 neurons per hidden layer.
The fourth column represents the total amount of neurons in the network (including
the neurons in the input and output layer), while the last column represents the
final error from the evolutionary process.

In figure 5.1 presents the output of the network (left column) and the respective
architectures used in each case (right column). In the first case 3× 3× 2 with the
(red) line is outlines the function we try to fit, the (blue) squares describes the
neural network output and the (red) stars represents the three data points provided
for the training. On the right side of the figures, the plots outline the respective
architecture for every case. In this regard the (yellow) node depicts the input node
in the input layer, the (red) node shows the output node in the output layer, and the
(blue) nodes represents the neurons in the hidden layers respectively. The synaptic
connections between the neurons are represented as edges between the nodes. The
type of activation function is symbolized according to a number, which is explained
in the legend on the lower right corner of each plot. The middle left and right plots
represent the output and network architecture in the case for 3× 4× 2. The lower
left and right plots represent the network’s output and architecture in the case for
3× 6× 2.

Significantly, in the last case (where 6 neurons can be used in the hidden layer), one
observes that the algorithm seldom utilizes all allowed neurons. In this scenario, the
associated limitations of the number of hidden layers impose the model to generate
feedforward networks. In the cases of 3× 3× 2 and 3× 4× 2 the method contributes
to an output with close to perfect function approximation (see fig. 5.1 upper left and
middle left plots respectively).

The first scenario represents network topologies in the form of a feedforward neural
network, where the 3× 3× 2 and 3× 4× 2 networks provide outputs in the range
of desired accuracy (see fig. 5.1 left comlumn, top and middle rows respectively).
Notwithstanding the architecture, in the case of 3 × 6 × 2, one might consider
the situation where the selection of an activation function actively impacting the
desired network performance. Adversely the selection of neurons in the hidden layer
appears to contribute to an over-fitting outcome for the results. Such a conclusion is
supported by [155].

2The reader should note that the notation nl×nmax× cmax connotes information about the
number of layers in the architecture (in this case nl), the maximum number of neurons
in every hidden layer (in this case nmax) as well as the maximum amount of connections
from neuron to neuron (in this case cmax)
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Case
Num.
layers

# neurons
in hidden layer

# Neurons
in the Network Error

3x2x2 3 1 3 0,017309
3x3x2 3 2 4 0,018815
3x4x2 3 1 3 0,017909
3x5x2 3 1 3 0,0185091
3x6x2 3 3 5 0,0477594

Tab. 5.2: Scenario 1: network architecture is limited to only one hidden layer.

5.2.2 Four layers from 2 to 6 neurons

The second scenario represent an increase of the space of possible network topologies
due to adjustment of available hidden layers to 2, while the possible cases represent
the maximum amount of neurons per hidden layer with 2, 3, 4, 5 and 6. Table
5.3 represents those 5 cases in this scenario. The fourth column represents the
total amount of neurons in the network (including the neurons in the input and
output layer). The last column in the table provides the final error from the hybrid
evolutionary process.

One may recognize the accrual of more hidden layers and neurons in them, condi-
tions the hybrid algorithm to develop networks with the same number of neurons in
every hidden layer (see table 5.3). In the first case of 4× 2× 2, the best architectural
solution represents 2 hidden layers, each with 1 neuron. The topology is a type of
feedforward network, although the algorithm has utilized two connections from
each neuron to the next one. Along with those connections, the selected activation
function for the neurons is the exponential one. The final topology provides the
smallest error (0.006946, in the L2 − norm), even in the presence of an overfitting
(see fig. 5.2 first row, left and right column). Possible inference is the ability of the
cost function decrease to influence the irregularity of the output pattern.

In fig. 5.2 one observes in the first case 4×2×2 that with the (red) line is represented
the function to be fitted, the (blue) squares depict the neural network output while
the (red) stars represent the three data points provided for the training. Respectively,
the right side plots illustrate the respective architecture for every case. The (yellow)
node depicts the input node in the input layer, the (red) node shows the output node
in the output layer, and the (blue) nodes represents the neurons in the hidden layers.
As in the previous scenario, the numbers near every neurons represent the type of
activation function utilized by each neuron (described by the legend on each plot).
The middle left and right plots represent the output and network architecture in the
case for 4× 4× 2. The lower left and right plots represent the network’s output and
architecture in the case for 4× 5× 2.

Incremental increase of the maximum number of neurons per hidden layer to 4 and
with maximum of hidden layers to 2, contributes to an outcome where the hybrid
algorithm produces network topology with the same amount of neurons (3) for
every hidden layer. Accordingly, the method selects three types of activation are
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Case
Max.
# layers

# neurons
in hidden layer

# Neurons
in the Network Error

4x2x2 4
hidden #1 - 1 neuron
hidden #2 - 1 neuron 4 0,006946

4x3x2 3 hidden #1 - 2 neurons 4 0,017937

4x4x2 4
hidden #1 - 3 neurons
hidden #2 - 3 neurons 8 0,019676

4x5x2 4
hidden #1 - 2 neurons
hidden #2 - 2 neurons 6 0,017426

4x6x2 4 1 hidden - 1 neuron 4 0,034233
Tab. 5.3: Scenario 2: network architecture is limited to only two hidden layers.

utilized - logistic activation function in 2 neurons and the identity and second order
polynomial as activation functions for the other neurons.

Significantly, the hybrid evolutionary method has automatically pruned certain
neurons from connecting any further (see fig. 5.2,right column, second right row).
Comparing the final error from the other cases shown in table 5.3, one might
observe the final error being larger. This directly contrasts with the actual output
of the network (see fig. 5.2 left column, middle row), which is the desired range
accuracy.

Fig. 5.2 lower right plot (case 4× 5× 2) depicts the ability of the hybrid algorithm
to utilize the neuron connection freedom. The construction of the topology consists
of 4 layers - 1 input, two hidden and 1 output layer. Interestingly, the input layer
is connected to every other available neuron through the network, inclusive of the
output neuron. Along with this connection, the output neuron receives a connection
from the second neuron in the first hidden layer. As a consequence, the hybrid
method discards the implementation of the second hidden layer by pruning the
output connections from those neurons. Evident from table 5.3 the error converges
to the accepted minimum. The output of the network respectively exhibits the
intended function approximation. Probable explanation of the small error and the
desired output can be given by means of the presented results in [40] (important
observation in this case is the removal of neurons through their connection). As
a results, one might see our hybrid evolutionary method as capable of building a
representation of a model, where the option of discarding input connections is viable
and seemingly beneficial to the particular method.

5.2.3 Five layers from 2 to 6 neurons

One should evaluate the performance of the hybrid algorithm in a situation where
there is an expansion of the multidimensional space of possible structures. As a
matter of course, we have examined scenarios with 3 hidden layers. 5 cases in this
scenario were developed - with implementation of maximum 2, 3, 4, 5 and 6 neurons
per hidden layer. Byproduct of such expansion should be higher computational costs,
possible performance decrease, as well as divergent output in relation to the desired
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range of solutions. The latter should be considered as a probable aftereffect as the
network is unable to learn complex patterns when provided with limited training
data while there is an increase of the number of neurons in the network [155].

In the first architecture from this scenario - 5 × 3 × 2, each of the 3 hidden layers
utilizes 2 neurons. Further adjustment of the network’s architecture is achieved
through the reduction of the number of connected neurons (see fig. 5.3 second
column first row). In fig. 5.3 with the (red) line is depicted the function to be fit, the
(blue) squares describe the neural network output while the (red) stars represent
the three data points provided for the training. The right side plots characterize the
respective architecture for every case. The (yellow) node shows the input node in
the input layer, the (red) node represents the output node in the output layer, with
the (blue) nodes - the neurons in the hidden layers respectively. The edges from the
nodes account for the synaptic connections between nodes. Once again the numbers
near each neuron represent the type of activation function selected by the algorithm,
with the legend on every plot describing each function.

The strategy of neuron pruning has been utilized by various evolutionary methods
in previous cases. Particularly in this case, one recognizes rather large final error
(see table 5.4, where the fourth column represents the total amount of neurons in
the network (including the neurons in the input and output layer), while the last
column represents the final error from the evolutionary process). We furthermore
observe a sharp overfitting of data. One may reasonably infer that the resemblance
of the network to a traditional feedforward topology, in this situation presented with
limited data for learning could be a limitation the ability of the method to provide a
sufficient function generalization.

In the 5×5×2 experiment (represented in fig. 5.3 lower left and right plots), similar
to the previous case, the hybrid algorithm selects 3 hidden layers, consisting of 2
neurons each. Comparable to th previous 4× 5× 2 network architecture, the method
develops connections from the neuron in the input layer to every other neuron in the
structure, including the one in the output layer (see fig. 5.3 second column, second
row). Once again one may observe that the obtained topology has discarded almost
all connections from the rest of the neurons, leaving neuron 1 from hidden layer 2
to connect to the output layer, along with the connection between the input and the
output neuron. As such, the output reaches near optimal approximation (see fig. 5.3
first column, second row).

5.2.4 Six layers from 2 to 6 neurons

The last experiment introduces further expansion in the space of possible architec-
tures, allowing for the algorithm to select up to 4 hidden layers. 5 cases in this
scenario were developed - with implementation of maximum 2, 3, 4, 5 and 6 neurons
per hidden layer.

In the 6× 3× 2 case, depicted in fig. 5.4 upper right plot, the algorithm produces
an architecture with 4 hidden layers. Each layer has 1 neuron, which in turn is
sequentially connected by 2 synaptic connections. Three possible activation functions
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Case
Max.
# layers

# neurons
in hidden layer

# Neurons
in the Network Error

5x2x2 3 hidden #1 - 1 neuron 3 0,019079

5x3x2 5
hidden #1 - 2 neurons
hidden #2 - 2 neurons
hidden #3 - 2 neurons

8 0,016791

5x4x2 5
hidden #1 - 1 neuron
hidden #2 - 1 neuron
hidden #3 - 1 neuron

5 0,006132

5x5x2 5
hidden #1 - 2 neurons
hidden #2 - 2 neurons
hidden #3 - 2 neurons

8 0,015428

5x6x2 4 1 hidden - 1 neuron 10 0,008473
Tab. 5.4: Scenario 3: network architecture is limited to only three hidden layers.

are assigned to the neurons. In fig. 5.4 with the (red) line we represent the function
we try to fit, the (blue) squares relates to the neural network output and the (red)
stars represent the three data points provided for the training. On the right side of
fig. 5.4 are showed the corresponding architectures for each case. There the yellow
node characterizes the input node in the input layer, the (red) node shows the output
node in the output layer, with the (blue) nodes - the neurons in the hidden layers
respectively. Each edge in the network represents the synaptic connections between
nodes. The numbers attached to each neuron depict the type of activation function
used by every neuron, while the legend in the plots explains the types of activation
functions.

In correlation to the 4 × 2 × 2 scenario, the implementation of a feedforward
topology generated bigger error (see table 5.5 as well as a presence of output
overfitting. In table 5.5 the fourth column depicts the total amount of neurons in
the network (including the neurons in the input and output layer), while the last
column represents the final error from the hybrid genetic process. Notwithstanding,
considering in this particular case, the availability of a free parameters - number of
layers, neurons and the types of activation functions, constituting a multidimensional
space of possible architectures, the method still provides a sufficient data fitting
outcome at affordable computational cost.

The composition of the topology in the last case - 6× 6× 2 (see fig. 5.4, lower left
and right plots) utilizes 4 hidden layers, with 2 neurons each.

Compared to the 6× 3× 2 case, one might observe a variation in the architecture
consisting of a lack of sequential connection between neurons. Since the method
utilizes a randomized synaptic connection method, the input neuron is connected to
every other available neuron with one or two input connections. As a consequence,
it seems the strategy allows for the removal of nearly 90% of the neurons in the
network. Barring the input neuron connection to the output neuron, the only other
connection is established with the second neuron in hidden layer 2. Similarly to the
4× 5× 2 and 5× 5× 2 cases, the implementation of randomized connections leads
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Case
Max.
# layers

# neurons
in hidden layer

# Neurons
in the Network Error

6x2x2 6

hidden #1 - 1 neuron
hidden #2 - 1 neuron
hidden #3 - 1 neuron
hidden #4 - 1 neuron

6 0,010450

6x3x2 6

hidden #1 - 1 neuron
hidden #2 - 1 neuron
hidden #3 - 1 neuron
hidden #4 - 1 neuron

6 0,027712

6x4x2 6

hidden #1 - 2 neurons
hidden #2 - 2 neurons
hidden #3 - 2 neurons
hidden #4 - 2 neurons

10 0,039770

6x5x2 3 hidden #1 - 1 neuron 3 0,018634

6x6x2 6

hidden #1 - 2 neurons
hidden #2 - 2 neurons
hidden #3 - 2 neurons
hidden #4 - 2 neurons

10 0,0271704

Tab. 5.5: Scenario 4: network architecture is limited to only four hidden layers.

to a negligible overfitting of the output in the upper 3− 4 data points. Nonetheless,
the network appears capable of developing an inner model, as well as providing a
good data fit, irrespective of the training limitations imposed and the larger error
(see table 5.5).

In accordance to the discussed numerical experiments, one may conclude that
in certain situations a sequentially connected network might not be superior for
certain tasks. Moreover, in situations where the proposed hybrid evolutionary
technique utilizes more than one hidden layer with several neurons, the algorithm
frequently performs a model of a neuron removal. As such it discontinues redundant
calculations. In those instances, the network accomplishes sufficient results according
to a user defined cost function. Conjointly, the neurons connected to the output layer
consistently use the logistic activation function. Therefore, inherent consequence in
bigger architectures, which allow for expanded search space of possible solutions,
the hybrid algorithm reduces the architecture by providing several layers, though
leavig only one neuron from them is connected to the output layer.

5.3 Summary and Contribution of the
Chapter

In this chapter we have introduced a novel method for the automatic search of
an optimal neural network architecture, given a specific problem (in our case -
the fitting of a function). Through the implemented approach we provide several
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degrees of freedom for parameter selection for the hybrid approach to search for
a network structure, which can eventually become quite complex. According to
the specific task, we believe the evolutionary strategy in our method reaches the
optimal network topologies - whether through the automatic removal of unnecessary
connections, or through the frequent usage of better activation function. Therefore,
we obtain a reliable network topology not based on the experience of the researcher,
but on well defined automatic evolutionary strategy. Furthermore, our approach is
capable to produce close approximation results in the presence of a limited training
data set, with little or no overfitting.
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Fig. 5.1: Scenario with 3 layers,with 3, 4, 5 or 6 maximum neurons per layer. The
plots represent the output of the network (left column) and the respective
architectures used in each case (right column).
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Fig. 5.2: Scenario with 4 layers,with 3, 4, 5 or 6 maximum neurons per layer. The
plots represent the output of the network (left column) and the respective
architectures used in each case (right side plots).
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6Conclusion and Future
work

„Users do not care about what is inside the box, as
long as the box does what they need done.

— Jef Raskin
about Human Computer Interfaces

This dissertation has been structured with 6 chapters. The obtained results are pre-
sented in 29 figures, 5 tables, and 180 cited resources. The main part of the research
has been submitted to international journals and has been already published.

Scientific Contributions

• This dissertation has introduced a new post-learning technique to assist the
supervised learning algorithm of an artificial neural network to escape a local
minima or a saddle point if such has been reached during the optimization
process.

• We have implemented a mathematical tool to quantitatively measure the
influence of noise in the perturbed weights on the performance of the network.
We demonstrated numerical results indicating the effects of noise on the
network and its performance sensitivity to such process.

• We have introduced a hybrid genetic algorithm for the automatic evolution of
neural network architectures. This method, although providing a search in a
multi-modal search space for all possible solutions is capable with minimal
training data to produce an output with small or no overfitting of the output
data, which is a common problem in the field of neural networks.

The neural network, the proposed post-learning technique, as well as the evolu-
tionary algorithm for the automatic network architecture has been developed in
the C language. The software allows for the specific definition of several network
characteristics and more specifically:

1. Minimum and maximum number of neurons.

2. Minimum and maximum number of layers.

3. The specificity of the connections between neurons.

4. Specification of several cost function/activation functions.
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5. Specification of three training algorithms - backpropagation (as well as def-
inition whether the backpropagation should be batch or online), genetic
algorithm, simulated annealing.

The author hopes that this research have provided useful tools for the further
development of the field of neural networks. The described results were influenced
by the world of quantum mechanics. Hopefully, this is only a small part of the
future implementation of such interdisciplinary approach, as well as for the practical
applications in those methods in real-life situations. Further research is focused
on exploring quantum effects in deep neural network architectures, as well as
improvement of the hybrid automatic architecture for deep architectures.

List of Publications

1. K.G. Kapanova, I.T. Dimov, J.M. Sellier, On randomization of neural net-
works as a form of post-learning strategy, Soft Computing (2015). doi :
10.1007/s00500− 015− 1949− 1, (IF.1.63).

2. K.G. Kapanova, I.T. Dimov, J.M. Sellier, A Neural Network Sensitivity Anal-
ysis in the Presence of Random Fluctuations, Neurocomputing (2016), doi :
10.1016/j.neucom.2016.10.060, (IF.2.392)

3. K.G. Kapanova, I.T. Dimov, J.M. Sellier, A genetic approach to automatic
neural network architecture optimization, Neural Computing and Applications
(2016), doi : 10.1007/s00521− 016− 2510− 6, (IF.1.492)

Dissemination of results The results have been presented in two seminars at the
IICT, BAS in department "Parallel Algorithms". The novel algorithms and the numeri-
cal experiments, presented in the thesis, have been reported at:

• Large Scale Scientific Computing, Sozopol, 2015.

• MCM, Linz, 2015.

• LinuxCon, Dublin, 2015.

• PhD Forum, BAS, 2016.

The presentation on the hybrid evolutionary algorithm and the numerical experi-
ments have been awarded for best presentation during the PhD Forum, BAS, 2016.

The results have been published in 3 scientific articles, all of them in international
journals with Impact Factor.
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Contribution

The central contributions of this dissertation are from scientific and application
perspective.

From a scientific aspect, the work had focused on the development of novel opti-
mization algorithms. They have been based either on a quantum or evolutionary
approach with the main objective to improve the function of the algorithm in situ-
ations where it reaches local minima, saddle points or a plateau and is unable to
escape during its runtime.

• A novel post-learning algorithm was developed to assist the network to reach
an improved weigths solution, once the training algorithm has completed.
The running time of the algorithm was established at 32 iterations, achieving
extremely low computational time and requiring minimal additional computa-
tional resources.

• A mathematical tool to quantitatively measure the influence of noise in the
perturbed weights of the network was implemented.

• Introduced a novel hybrid genetic algorithm for the automatic evolution of
neural network architectures. Several degrees of freedom for the design of the
network and the algorithm are achieved at acceptable computational costs.

From application perspective a neural network programming environment was
created in the C language. The software is utilized to select from several degrees of
freedom in terms of number of layers, number of neurons per layer and as a whole,
type of activation function per neuron, input/output files, number of iterations.





Appendix

The algorithms proposed here, were implemented and tested by a custom build
software. The aim is to develop an artificial neural network able to fit a function,
utilizing the proposed methods. The network was developed in the C programming
language, with no graphical user interface. The code allows for the following
options:

• Maximum number of neurons in the entire network, defined as define TO-
TAL_NEURONS 12

• Maximum number of layers in the entire network, defined as define TO-
TAL_LAYERS 4

• Maximum number of training samples, defined as define N_SAMPLES 3

• Maximum number of inputs per neuron, defined as define INPUTS 8

• Maximum number of iterations the network is running for, defined as define
ITERATIONS 32

Furthermore, each neuron in every layer could be assigned different activation
function. Currently, there are two implemented functions, defined in the following
manner:

double activationFunction(int class,double x){
if(class==TANH) return(tahn(x));
else if(class==EXP) return(1-2/(exp(2*-x)+1);
else (class==IDEN) return(x);

}

One can select which function the network to calculate in the script by choosing the
following:

// function menu options
char* functionMenu[] =



{
" 1. Square root",
" 2. Sine",
" 3. Power",
" 4. Parabola",
NULL
};

// calculates the currently selected function
double calculateFunction(double value1, double value2)
{
if(selectedFunction == 1) return sqrt(value1);
if(selectedFunction == 2) return sin(value1);
if(selectedFunction == 3) return pow(value1, value2);
if(selectedFunction == 4) return value1 * value1;
return 0;
}

We then create the network as following:

// network configuration
int nInputNeurons = 1;
char* filename = NULL;
int nSamples = 0;

// select the current function
selectedFunction = getMenu(functionMenu);
if(selectedFunction == 1) filename = "samples_sqrt.txt";
if(selectedFunction == 2) filename = "samples_sin.txt";
if(selectedFunction == 3) filename = "samples_pow.txt";
if(selectedFunction == 4) filename = "samples_parabola.txt";
if(selectedFunction == 3) nInputNeurons = 2; // for the Power function

// load the training samples
if(!filename) continue;
nSamples = loadSamples(filename, nInputNeurons);
if(nSamples < 1) continue;

// create the network
if(network) freeNetwork(network);
network = createNetwork(nInputNeurons, nHiddenNeurons, nSamples, samples);

// update the status
if(selectedFunction == 1) networkStatus = "Created Square root";
if(selectedFunction == 2) networkStatus = "Created Sine";
if(selectedFunction == 3) networkStatus = "Created Power";
if(selectedFunction == 4) networkStatus = "Created Parabola";



// report the initial iteration and MSE
printf("iteration = %d MSE = %f\n", network->currentIteration, calculateMSE(network));
}

The training of the network follows, by using Simulated Anealing as the training
algorithm. Once the training is completed, one can choose to continue with the
post-learning strategy:

// Post-learning selection of one with or without noise
for(k = 0; k < nIterations; k++)
{
addHiddenNoise(network, biasNoise, weightNoise);
}

In the event the algorithm has not found a better outcome, the swap function allows
it to continue with the previous best function in the following manner:

// swaps two values
void swapValues(double* value1, double* value2)
{
double tmp = *value1;
*value1 = *value2;
*value2 = tmp;
}

// swapping of biases and weights with their copies (to restore the previous version and to store the current)
void swapState(Network* network)
{
int i, j;
// swap the hidden layer
for(i = 0; i < network->hiddenLayer.nNeurons; i++)
{
// swap the bias with its copy
swapValues(&network->hiddenLayer.neurons[i].bias, &network->hiddenLayer.neurons[i].bias2);

// swap the weights with their copies
for(j = 0; j < network->inputLayer.nNeurons; j++)
{
swapValues(&network->hiddenLayer.neurons[i].weights[j], &network->hiddenLayer.neurons[i].weights2[j]);
}
}

To add noise in the hidden layer, we call the following function:



void addHiddenNoise(Network* network, double biasNoise, double weightNoise)
{
int i, j;

// add some noise to the hidden layer
for(i = 0; i < network->hiddenLayer.nNeurons; i++)
{
// bias noise
if(biasNoise != 0) network->hiddenLayer.neurons[i].bias += randomDouble() * biasNoise;

// weight noise
if(weightNoise != 0)
{
for(j = 0; j < network->inputLayer.nNeurons; j++)
{
network->hiddenLayer.neurons[i].weights[j] += randomDouble() * weightNoise;
}
}
}
}
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