
 3

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 19, No 4

Sofia  2019 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2019-0032

An Algorithm for Mining High Utility Sequential Patterns

with Time Interval

Tran Huy Duong1, Demetrovics Janos2, Vu Duc Thi3,

Nguyen Truong Thang1, Tran The Anh1
1Institute of Information Technology, Vietnam Academy of Science and Technology, Viet Nam
2Computer and Automation Institute Hungarian Academy of Sciences, Hungary
3Thanglong University, Hanoi, Viet Nam

E-mails: huyduong@ioit.ac.vn demetrovics@sztaki.mta.hu vdthi@vnu.edu.vn ntthang@ioit.ac.vn

theanh@ioit.ac.vn

Abstract: Mining High Utility Sequential Patterns (HUSP) is an emerging topic in

data mining which attracts many researchers. The HUSP mining algorithms can

extract sequential patterns having high utility (importance) in a quantitative

sequence database. In real world applications, the time intervals between elements

are also very important. However, recent HUSP mining algorithms cannot extract

sequential patterns with time intervals between elements. Thus, in this paper, we

propose an algorithm for mining high utility sequential patterns with the time interval

problem. We consider not only sequential patterns’ utilities, but also their time

intervals. The sequence weight utility value is used to ensure the important downward

closure property. Besides that, we use four time constraints for dealing with time

interval in the sequence to extract more meaningful patterns. Experimental results

show that our proposed method is efficient and effective in mining high utility

sequential pattern with time intervals.

Keywords: Datamining, sequential pattern, time interval, high utility.

1. Introduction

Data mining is a process for extracting knowledge from data. Data can be represented

in many formats of structured data such as tables [15-18], graphs [19], sequences

[1-5, 14], etc. Mining Sequential Patterns is one of the most important topics in data

mining with many applications. Sequential data are very popular in real life data, like

customer purchase sequence, medical treatment sequence, DNA sequence, weblogs

sequence, and so on. The main purpose of sequential pattern mining is to extract all

patterns frequently occurring in a sequence database. There are many works on

sequential pattern mining with different approaches; some of them can be mentioned

like AprioriAll [1], GSP [2] (Apriori approach), PrefixSpan [3] (PrefixSpan

approach), SPADE [4], SPAM [5] (vertical database format approach). These

traditional approaches have some drawbacks, such as that all items in a sequential

pattern have the same importance and there is no quantitative information associated

 4

with each item. But in real datasets, different items have different importance and

each item can have quantitative values. To address this problem, Ahmed et al [6]

proposed a new research problem named high utility sequential pattern mining, which

considers not only quantities of items but also their importance.

The goal of mining High Utility Sequential Patterns (HUSP) is to find all

sequences having a high utility in a quantitative sequence database. Each item in an

item set of a sequence is assigned with a quantity and each item in the database is

assigned with a profit indicating its importance. The utility of an item is the product

of its quantity by its unit profit. The utility of a sequential pattern can be calculated

in two ways: the summation utility and the maximum utility. Admed [6] proposed

the summation utility, which means the utility of a sequential pattern is the

summation of all distinct occurrences of that pattern in the database sequence. To

simplify the calculation and to keep the meaning of the utility, later works on HUSP

like [7-10] use the maximum utility measure to calculate the utility of a sequential

pattern. The utility of a pattern is then calculated by the maximum value of all distinct

occurrences of that pattern in the database sequence. The problem of HUSP is that it

enumerates all sequential patterns having a utility no less than a predefined minimum

utility threshold.

Although HUSP problem can discover all patterns having high utility, it does

not include time intervals between items. For instance, suppose we have two

sequences: S1: (Computer)(1 month, Printer), and S2 : (Computer)(6 month,

Printer). If we do not consider time intervals, these sequences are the same. But in

fact, we can say that the sequence S1 is more important than the sequence S2, since

the S1 has smaller time interval than the S2. To solve this problem, some works on

item interval were proposed in [11-13]. However, these works did not consider the

item’s significance when mining time interval sequential patterns.

Hence, in this paper, we integrate utility into time intervals sequential pattern

mining and propose a new problem ‒ high utility sequential pattern with time interval

mining. We consider not only sequences’ utilities, but also time intervals between

items.

The remainder of this paper is organized as follows: Section 2 provides a study

of related works. Section 3 describes the problems and proposes the mining method

for high utility sequential pattern with time interval. Section 4 presents the

experimental result. Conclusion and comments are presented in the last session.

2. Related works

2.1. Sequential pattern mining

In 1995, A g r a w a l and S r i k a n t [1] developed the sequence pattern mining

problem and proposed three Apriori based algorithms: AprioriAll, AprioriSome, and

DynamicSome. Like Apriori, these algorithms scan database multiple times and as

they are based on the level-wise technique, it takes much time for mining. Later,

Agrawal and Srikant proposed a new method called GSP [2] to speed up execution

efficiency in finding sequential patterns. However, GSP is still based on Apriori, so

it still needed generating and testing execution.

 5

In 2001 P e i et al. [3] introduced PrefixSpan algorithm which is based on

pattern growth approach. It does not require multiple times database scanning, so it

takes considerably less time of mining than other Apriori based algorithms. Z a k i

[4] devised SPADE algorithm, which is a sequential pattern mining using equivalent

classes. SPADE used vertical database format and level-wise technique to generate

and test if a pattern is frequent. The SPAM [5] algorithm uses a depth-first search

strategy using an efficient vertical bitmap representation.

2.2. Time-interval sequential pattern mining

The difference between sequential pattern mining and time-interval sequential pattern

mining is that latter takes into account the time interval between items. In 2003,

C h e n and H u a n g [11] proposed time-interval problem and two algorithms: I-

Apriori and I-PrefixSpan which are based on Apriori [1] and PrefixSpan [3],

respectively. In 2005, C h e n, C h i a n g and K o [12] extended previous work [11]

by applying fuzzy theory to partition the time intervals using FTI-Apriori, an Apriori

based algorithm that employs a distinct fuzzy membership function. Both of their

works used extended sequence approach to represent time interval.

In 2006, Y u and H a y a t o [13] proposed a framework to generalized

sequential pattern mining with item intervals. This work used four time constraints

and the extended sequence approach to handle with item interval.

2.3. High Utility Sequential pattern mining

In a real-world dataset, not only occurrence frequency of patterns, but also their

quantity and significance (like profit or price) have important roles. For example, the

pattern iPhone X, MacBook Air may not be a high frequency pattern in a sequence

database but it may contribute high profit to the shop due to its high profit. Thus, the

low frequency pattern may contribute to high profit but they may not be found in the

sequence database by using traditional sequence pattern mining approach. To solve

this problem, a high utility sequential pattern was proposed in 2010 by work of

A h m e d, T a n b e e r and J e o n g [6]. Admed proposed a new framework called

high utility sequential pattern with two types of item’s utility: internal utility

(represent item’s quantity) and external utility (represent item’s importance like

profit). Moreover, two new algorithms were introduced using level-wise technique

(UL Algorithm) and pattern-growth technique (US Algorithm). In Ahmed’s work,

the utility of a pattern is calculated as the summation of utilities of all distinct

occurrences in a sequence. This way of calculation may find some personal buying

behaviors repeatedly, rather than common behaviors. To avoid such cases and

simplify the utility calculation, later works on HUSP mining used maximum utility

measure.

In 2012, Y i n, Z h e n g and C a o [7] proposed a general framework for mining

HUSP and represents USpan algorithm, which uses Sequence Weight Utility (SWU)

for pruning candidates and two data constructions: LQS-tree and Utility Matrix for

data representation. In 2014, L a n et al. [8] proposed PHUS, an algorithm based on

a projection approach of PrefixSpan [3]. Their work used SWU as an upper bound

for pruning candidates and a temporal sequence table for data representation.

 6

A l k a n and K a r a g o z [10] proposed a new upper bound called CRoM

(Cummulated Rest of Match) used for pruning candidates before generation. They

also represent the HuspExt algorithm with a Prefix tree structure for data

representation. In 2019 (see [9]) is published a survey of High utility sequential

pattern mining. This survey provided a concise overview of recent works in the HUSP

mining field, presenting related problems and research opportunities. They also

provided a formal theoretical framework for comparing upper bounds used by HUSP

mining algorithms.

3. Problem statement and definitions

We use a Quantitative Sequence DataBase with time interval (QiSDB) given in

Table 1 as an example. Each appearance of an item in the sequence is assigned with

a positive quantity value. Each distinct item in QiSDB is assigned with a profit value

as shows in Table 2.

Table 1. Quantitative sequence database with time interval (QiSDB)
iSID Data sequence
iS1 〈0, a[3] 〉〈1, a[2] b[4] d[2] 〉〈2, f[1] 〉〈3, a[4] 〉〈4, d[1] 〉
iS2 〈0, e[3] 〉〈1, a[2] b[6] 〉〈2, d[1] 〉〈3, c[2]〉
iS3 〈0, c[1] f[3] 〉〈1, b[3] 〉〈2, d[1] e[3] 〉
iS4 〈0, a[2] 〉〈1, b[6] d[4] 〉〈2, a[5] b[4] 〉〈3, e[5] 〉
iS5 〈0, d[1] f[5] 〉〈1, c[1] 〉〈2, g[4] 〉
iS6 〈0, d[2] 〉〈1, e[3] 〉〈2, a[5] b[7] 〉〈3, d[4] 〉 〈4, b[2] 〉〈5, e[4]〉
iS7 〈0, a[3] b[2] 〉〈1, c[2] 〉〈2, e[2]〉〈3, f[3]〉
iS8 〈0, a[3]〉〈2, d[1] f[1]〉
iS9 〈0, a[2] c[4]〉〈2, e[2]〉

Table 2. Profit table
Item Profit

a 3
b 2
c 1
d 6
e 5
f 2
g 8

The problem of mining high utility sequential patterns with time interval is then

defined as follows.

3.1. Definitions

Definition 1. An itemset XI is a set of items in lexicographic order. If |X| = r then

itemset X is called r-itemset. I = {i1, i2, …, in} is a set of all items occur in QiSDB.

Definition 2. Interval extended sequence:

iS = 〈(𝑡1,1, 𝑋1), (𝑡1,2, 𝑋2), … , (𝑡1,𝑚, 𝑋𝑚)〉 is a list of the itemsets order by their

occurrence time. Here, Xi (1≤i≤m) is an itemset and t, is the time interval between

itemsets X and X , then t, = X.time – X.time

Definition 3. Internal utility and external utility: Internal utility of an item ijI

in a sequence iSa denoted as iu(ij, iSa) is quantity of item ij in iSa. External utility of

item ij is its significant value and denoted as eu(ij).

 7

Table 1 is a QiSDB with internal utility values and Table 2 is an external utility

values table. The internal utility value represents items’ quantities and external utility

value represents profit per unit of that item. Item a in iS9 has iu(a,iS9) = 2, its external

utility eu(a)=3. An item in a sequence may appear multiple times, in that case

iu(ij, iSk) is the maximum value among all the quantities of ij in sequence iSk. For

example, iu(a, iS1)= 4.

Definition 4. The utility of an item ij in a sequence iSa denoted as su(ij, iSa) is

defined by: u(ij, iSa) = iu(ij, iSa) × eu(ij).

For example, u(a, iS1)= iu(a, iS1) × eu(a) = 4×3=12.

Definition 5. The utility of a pattern : 𝛼 = 〈(𝑡1,1, 𝑋1), (𝑡1,2, 𝑋2), … , (𝑡1,𝑛, 𝑋𝑛)〉
is a pattern with length n and 𝛼  iS𝑎, sequence utility of the pattern α in iSa denoted

as u(α, iSa) is defined by

su(𝛼, iS𝑎) = max {∑ su(ij , iS𝑎)

𝑖𝑗∈α

, ∀𝛼 ∈ iS𝑎}.

Definition 6. The sequence utility of an input sequence iSa is the sum of utilities

of all items in iSa, which means

su(iS𝑎) = ∑ su(ij ,iS𝑎)

𝑖𝑗∈iS𝑎

.

Definition 7. The utility of a pattern α in a QiSDB denoted as su(α, QiSDB) and

is defined by

su(𝛼, QiSDB) = ∑ su(𝛼,iS𝑎

iS𝑎∈QiSDB

).

Definition 8. The utility of a QiSDB is defined by:

su(QiSDB) = ∑ su(iS𝑎).

iS𝑎∈QiSDB

Definition 9. Time constraints: Given an interval extended sequence
𝛼 = 〈(𝑡1,1, 𝑋1), (𝑡1,2, 𝑋2), … , (𝑡1,𝑛, 𝑋𝑛)〉, the time constraints are given as follows:

 C1 = min_time_interval is a minimum item interval between any two adjacent

itemsets, which means ti,i+1  min_time_interval for all {i|1≤i≤n–1}.

 C2 = max_time_interval is a maximum item interval between any two

adjacent itemsets, which means ti,i+1 ≤ max_time_interval for all {i|1≤i≤n–1}.

 C3 = min_whole_interval is a minimum item interval between the first and

the last itemset of the sequence, which means ti,n  min_whole_interval.

 C4 = max_whole_interval is a maximum item interval between the first and

the last itemset of the sequence, which mean ti,n ≤ max_whole_interval.

Definition 10. The high utility sequential pattern with time interval: Given a

quantitative sequence database with time interval QiSDB, each item ij  I in the input

sequences iSa is assigned with an internal utility iu(ij,iSa) and an external utility eu(ij).

Given a minimum utility threshold minSeqUtil and four time constraints C1, C2, C3,

C4, a sequential pattern 𝛼 = 〈(𝑡1,1, 𝑋1), (𝑡1,2, 𝑋2), … , (𝑡1,𝑛, 𝑋𝑛)〉 is a high utility

sequential pattern with time interval if it satisfies:

su(α,QiSDB)  minSeqUtil & t, satisfies time constraints C1, C2, C3, C4.

 8

Then the problem of mining high utility sequential pattern with time interval is

defined as follows:

 Given a quantitative sequence database with time interval QiSDB, each item

ij  I in the input sequences iSa is assigned with an internal utility iu(ij,iSa) and an
external utility eu(ij). Given a minimum utility threshold minSeqUtil and four time
constraints C1, C2, C3, C4, find all high utility sequential patterns with time interval
in QiSDB which means finding the set L such that:

L = {α ⊆ QiSDB | su(α,QiSDB)  minSeqUtil & t, satisfies time constraints

C1, C2, C3, C4}

 The high utility sequential pattern with time interval does not satisfy the
downward closure property, which means a subsequence of a high utility sequential
pattern with time interval may not be a high utility sequential pattern with time
interval.

3.2. The proposed solution

In this subsection, we propose an algorithm for mining high utility sequential patterns

with time interval (UIPrefixSpan). Our main approach is to push time constraints and

the utility threshold while still maintaining the downward closure property.

a. Projected database

To avoid checking every possible combination of a potential candidate

sequences, we first fix the order of items within each element. Since items within an

element of a sequence can be listed in any order, without loss of generality, one can

assume that they are always listed alphabetically.

For example, the sequence is presented as (0, a[3]) (1, a[1]b[3]c[4])

(2, c[4]a[2]) instead of (0, a[3]) (1, a[1]c[4] b[3]) (2, a[2]c[4]). By such a

convention, the expression of a sequence is unique.

If we follow the order of the prefix of a sequence and project only the postfix of

a sequence, we can examine in an orderly manner all the possible subsequences and

their associated projected database.

Definition 11. Prefix and postfix of interval extended sequence: Given an

interval extended sequence 𝛼 = 〈(𝑡1,1, 𝑋1), (𝑡1,2, 𝑋2), … , (𝑡1,𝑛, 𝑋𝑛)〉, where Xβ is an

itemset, there exists an integer j (1 ≤ j ≤ n) that satisfies Xβ ⊆ Xj and t1, = t1, j.

We define a prefix of interval extended sequence  with regard to (Xβ, t1,β) as

follows:

Prefix (, X, t1, ) = (t1,1, X1), (t1,2, X2), (t1,3, X3),..., (t1,j, X).

Then the postfix of interval extended sequence  with regard to (Xβ, t1,β) is

defined as follows:

Postfix (, X, t1, ) = (tj,j, Xj), (tj,j+1, Xj+1), ..., (tj,n, Xn)

with Xj being the subset of Xj after minus X. When Xj = , postfix of  with regard

to (Xβ, t1,β) is defined as follows:

Postfix (, X, t1, ) = (tj,j+1 ,Xj+1), (tj,j+2, Xj+2), ..., (tj,n, Xn).

On the other hand, when there does not exist integer j, postfix of  with regard

to (Xβ, t1,β) becomes:

Prefix (, X, t1,) = ,

Postfix (, X, t1,) = .

 9

Definition 12. Projected database with interval extended sequence: Given a

sequence  = (t1,1, X1), (t1,2, X2), (t1,3, X3),..., (t1,m, Xm), a projected database with

regard to  denoted as QiSDB| is all postfixes of all input sequence iSa in QiSDB

with regard to .

b. Maintaining downward closure property:

In utility base framework, the Downward Closure Property (DCP) of the

sequence utility is not always observed. That means a subset of a high utility sequence

is not necessarily a high utility sequence. Thus, we cannot use sequencer utility for

pruning the search space and we must use another value, which ensures DCP. The

following definition of sequence weight utility is based on A h m e d, T a n b e e r and

J e o n g [6].

Definition 13. Sequence weight utility of sequence α: Given a sequence α, the

swu of α is defined as follows:

swu(𝛼) = ∑ su(iS𝑎).

𝛼iS𝑎 ∧ iS𝑎∈QiSDB

Definition 14. Candidate pattern: Given a minimum threshold minSeqUtil, a

sequential pattern α is called a candidate pattern if it satisfies

swu(α)  minSeqUtil and α satisfies time constraints C1, C2, C3, C4.

Lemma 1. The Sequence Weight Utility (SWU) maintains the Downward

Closure Property (DCP).

P r o o f : Let α be a candidate pattern and dα be a set of input sequences that

contains α in QiSDB. Let β be a super-sequence of α then β cannot be presented in

any sequence where α is absent. Therefore, the maximum sequence weight utility of

β is swu(α). Then, if swu(α) is less than minimum utility threshold minSeqUtil then

β is not a candidate pattern. ■

Lemma 2. Given a QiSDB and a minimum utility threshold minSeqUtil, the

high utility sequential patterns with time interval is a subset of candidate patterns.

P r o o f : Let α be a high utility sequential pattern with time interval. According

to Definition 5 and Definition 13, su(α, QiSDB) must be less than or equal to swu(α).

So, if α is a high utility sequential pattern, it must be a candidate pattern. ■

3.3. Mining high utility sequential pattern with time interval using prefix projected

database algorithm (UIPrefixSpan Algorithm)

In this subsection, we propose UIPrefixSpan Algorithm for mining high utility

sequential pattern with time interval. Our algorithm extends pattern growth approach

with time interval and utility, which was based on PrefixSpan [3] algorithm and Y u

and Y a m a n a [13] work which mines frequent sequential pattern with item interval.

Our algorithm (UIPrefixSpan) always needs maximum three QiSDB database

scans. First, UIPrefixSpan scans QiSDB once to find length-1 candidate patterns.

Then, in the second database scan, it generates projected databases with length-1

candidate patterns as prefixes. In the next step, it uses pattern growth approach to

recursively generate candidate patterns. In the final database scan, it checks each of

candidate patterns found in the previous step in its real utility and output all patterns

with utility higher than minSeqUtil.

- Input:

 10

 (1) Quantitative sequence database with time interval QiSDB and external

utility values table,

 (2) Minimum threshold : minSeqUtil,

 (3) Time constraints C1, C2, C3, C4,

- Output: Set of the high utility sequential pattern with time interval

UIPrefixSpan Algorithm

Start

1) Let α = .

 2) Let R = ; L = .

 3) Scan QiSDB first time, calculate swu(i, QiSDB) value with each item i in

QiSDB, find length-1 candidate satisfies condition swu(i, QiSDB)  minSeqUtil

 4) Loop with all i:

 5) a) Let α = (0, i).

 6) - R = {R, α}.

7) - Check condition su(α, QiSDB)  minSeqUtil,

if satisfies then L = {L, α}.

8) b) Excute recursive function R = subUIPrefixSpan(QiSDB|α, R, minSeqUtil,

C1, C2, C3, C4).

 9) End Loop;

10) Scan QiSDB and check condition su(α, QiSDB)  minSeqUtil, with each

α  R, If satisfies then L = {L, α}.

11) Output L.

End.

Function subUIPrefixSpan (QiSDB|α, R, minSeqUtil, C1, C2, C3, C4)

Start:

 1) Scan QiSDB|α , calculate swu(i) with all item i and find all pairs of i and

its time interval, denoted as (Δt,i) that satisfy swu(i)  minSeqUtil, C1 and C2.

 2) Let α =α, (Δt, i).

 3) Check if α satisfies condition C4 or not

 4) Only if α satisfies C4,

5) a) Excute R = subUIPrefixSpan (QiSDB|α,R, minSeqUtil, C1, C2, C3, C4).

 6) b) When α satisfies C3,

 7) R = {R, α}.

 8) Return R .

End.

The UIPrefixSpan algorithm declares a pattern α and two sets: R is a set of all

the candidate patterns and L is a set of all the high utility sequential patterns; and it

initializes them to null (line 1 and 2). Then, it scans QiSDB once and finds all

length-1 candidate patterns (line 3). Next, it executes a loop with all candidate

patterns found in the previous step (line 4-9). A pattern α is defined by putting zero

time value to each candidate (since we cannot determine time interval with length-1

pattern, so we put zero as its time interval) and put it into the candidate set R (line 4

to 6). The real utility value of α is checked after that, if it’s utility greater than or

equal to minSeqUtil then α is a high utility sequential pattern with time interval, and

we put it in the high utility sequential patterns L (line 7). Next, the UIPrefixSpan calls

 11

recursive function subUIPrefiSpan to generate all candidate patterns by using a

pattern-growth approach (line 8). The third database scan is then executed to check

if every candidate pattern is a high utility sequential pattern or not and puts those

patterns which are high utility patterns in the high utility sequential patterns set L.

Finally, we output the set L.

The function subUIPrefixSpan generates candidate patterns with time interval

in the projected database. First, it scans the projected database and find all pairs of

items and their time interval with sequence weight utility equal or higher than

minimum threshold minSeqUtil and time interval of that pair must also satisfy two

time constraints C1 and C2 (line 1). Then it joins pairs found in the previous step with

database’s prefixes to create new interval extended sequence patterns (line 2). Each

new pattern then is checked with time constraints C4 (line 4), if it satisfies C4 then

recursively function subUIPrefixSpan is called with new prefix to get a new pattern

(line 5). After that, the new pattern is checked with constraint C3, if it satisfies C3 then

it is a candidate pattern, we put it in the set of candidate pattern R and output the set

R (line 6-8).

4. Experimental results

For evaluating the effectiveness of our algorithm, we performed several experiments

on synthetic datasets generated using an IBM data generator which was introduced

in [1]. The parameters of the IBM data generator are as follows:

|D| is the number of customers;

|C| is the average number of transactions per customer;

|T| is the average number of items per transaction;

|S| is the average length of maximal sequences;

|I| is the average length of itemsets of maximal sequences;

|N| is the number of distinct items.

We generated four synthetic datasets: D10K.C9.T8.S7.I8.N1K (DS1),

D10K.C5.T4.S5.I6.N1K (DS2), D100.C10.T5.S10.I5.N1K (DS3),

D200K.C10.T9.S9.I7.N1K (DS4). Moreover, we used a real-life dataset:

BMS-WebView-1 (DS5) containing 59,601 web click-stream data sequences with

497 data items, and the average length of a sequence is 2.42; there are some long

sequences (more than 318 sequences with more than 20 items).

However, these datasets do not provide the internal utility and external utility of

sequences. Most of the others HUP mining algorithms have generated random

numbers for internal and external utilities. Thus, we have generated random numbers

for internal and external utilities ranging from 1 up to 5 and from 1.0 up to 10.0,

respectively. In real-life databases, most items carry low profit. So we generated

external utility (which carry profit values) using a log-normal distribution. Fig. 1

shows the external utility distribution of 1000 items in synthetic datasets (DS1-DS4).

Datasets mentioned above do not contain occurrence time, so we generated

occurrence time according to itemsets’ order. Which means in each sequence, first

itemset has occurrence at time 0, second itemset has occurrence at time 1, third

itemset has occurrence at time 2, and so on.

 12

Fig 1. External utility distribution for 1000 items using log-normal distribution

All experiments were performed on a computer which has an Intel Core i7 - 3.6

Ghz processor and 8 GB of memory, running Microsoft Windows 10. All algorithms

were written in Java 1.8.

4.1. Performance test

We executed performance test of UIPrefixSpan in two cases: with time constraints

C1=0; C2=5; C3=0; C4=20 (UIPrefixSpan1) and without time constraint

((UIPrefixSpan2).

(a) D10K.C9.T8.S7.I8.N1K (b) D10K.C5.T4.S5.I6.N1K

(c) D100.C10.T5.S10.I5.N1K (d) 200K.C10.T9.S9.I7.N1K

(e) BMS-WebView-1

Fig 2. Runtime

 13

As shown in Fig. 2, UIPrefixSpan1 performs faster than UIPrefixSpan2. When

the minUtil is decreased, the runtime of UIPrefxiSpan2 significantly increases and in

case of DS4, UIPrefixSpan2 cannot run with low minUtil (2%). In contrast,

UIPrefixSpan1 runs well with low minUtil and much faster than UIPrefixSpan2 in

both synthetics (DS1-DS4) and real dataset (DS5). It is because when we used time

constraints (UIPrefixSpan1), less candidates were generated, so the search space was

reduced and runtime decreased.

(a) D10K.C9.T8.S7.I8.N1K (b) D10K.C5.T4.S5.I6.N1K

(c) D100.C10.T5.S10.I5.N1K (d) D200K.C10.T9.S9.I7.N1K

(e) BMS-WebView-1

Fig 3. Memory usage

UIPrefixSpan1 also uses less memory than UIPrefixSpan2 as shown in Fig. 3.

On DS1, UIPrefixSpan1 uses 1.2 times less memory than UIPrefixSpan2 and in some

cases (2, and 9, and 10%), it uses 2.2 times less memory. On DS2, UIPrefixSpan1

uses 1.4 times less memory than UIPrefixSpan2 and with the low minUtils (<0.7

percent), it uses 1.6 times less memory. On other datasets, UIPrefixSpan1 also runs

from 1.6 up to 1.8 times faster than UIPrefixSpan2. Generally, for all datasets, when

minUtil is decreased, the memory usage increases. The memory usage of

UIPrefixSpan2 also increases faster than UIPrefixSpan1’s when the minUtil is

 14

decreased. That is because when we used time constraints, the search space was

reduced and that made our algorithm use less memory.

(a) D10K.C9.T8.S7.I8.N1K D10K.C5.T4.S5.I6.N1K

(c) D100.C10.T5.S10.I5.N1K (d) D200K.C10.T9.S9.I7.N1K

(e) BMS-WebView-1

Fig. 4. Number of high sequential patterns with time interval

Despite that, a number of high sequential patterns found in UIPrefixSpan1 are

less than UIPrefixSpan2 (Fig. 4), but those patterns are more meaningful. By using

time constraints, less meaningful patterns generating can be avoided.

4.2. Scalability test

We performed scalability tests of the UIPrefixSpan algorithm on

D200K.C10.T9.S9.I7.N1K (DS2) dataset with different database sizes. We set

minimum utility threshold minUtil to 3%. The result shows that runtime is increased

linearly as database size increased. UIPrefixSpan algorithm shows good scalability

in both cases (Fig. 5).

 15

Fig 5. Scalability test

5. Conclusion

In this paper, we developed an algorithm called UIPrefixSpan which detects high

utility sequential patterns with time interval based on the candidate pattern growth

model. We consider not only the occurrence frequency of patterns but also their utility

and time interval.

We used a prefix-projected database building method, which allows to

significantly reduce the search space when mining the high utility sequential patterns

with time interval. By using sequence weight utility value, UIPrefixSpan maintains

downward closure property in mining sequential patterns with high utility. Moreover,

by adding time constraints, our proposed algorithm excludes extraction of interval

extended sequences with time intervals in which the user is not interested. Extensive

performances showed that UIPrefixSPan was efficient and scalable in high utility

sequential pattern mining.

With above comments, we can conclude that UIPrefixSpan is an efficient

algorithm for mining high utility sequential patterns with time interval.

R e f e r e n c e s

1. A g r a w a l, R., R. S r i k a n t. Mining Sequential Patterns. – In: Proc. of International Conference

on Data Engineering (ICDE’95), 1995.

2. A g r a w a l, R., R. S r i k a n t. Mining Sequential Patterns: Generallizations and Performance

Improvements. – Lecture Notes in Computer Science, Vol. 1057, 1996, pp. 3-17.

3. P e i, J., J. H a n, B. M. A s i, H. P i n o. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-

Projected Pattern Growth. – In: Proc. of Seventeenth International Conference on Data

Engineering, 2001.

4. Z a k i, M. SPADE: An Efficient Algorithm for Mining Frequent Sequences. – Machine Learning,

Vol. 40, 2000, pp. 31-60.

5. A y r e s, J., J. G e h r k e, T. Y i u, J. F l a n n i c k. Sequential Pattern Mining Using Bitmap

Representation. –In: Proc. of ACM SIGKDD’02, 2002.

6. A h m e d, C. F., S. K. T a n b e e r, B. S. J e o n g. A Novel Approach for Mining Highutility

Sequential Patterns in Sequence Databases. – ETRI Journal, 2010, pp. 676-686.

7. Y i n, J., Z. Z h e n g, L. C a o. USpan: An Efficient Algorithm for Mining High Utility Sequential.

– In: Proc. of 18th ACM SIGKDD International Conference on Knowledge, 2012.

 16

8. L a n, G. C., T. P. H o n g, V. S. T s e n g, S. L. W a n g. Applying the Maximum Utility Measure in

High Utility Sequential Pattern Mining. – Expert Syst. Appl., Vol. 41, 2014, No 11,

pp. 5071-5081.

9. T r u o n g-C h i, T., P. F o u r n i e r-V i g e r. A Survey of High Utility Sequential Pattern Mining. –

High-Utility Pattern Mining: Theory, Algorithms and Applications, Vol. 51, P. Fournier-

Viger, J. Lin, R. Nkambou, B. Vo, V. Tseng, Eds., Cham, Springer, 2019.

10. A l k a n, O. K., P. K a r a g o z. CRoM and HuspExt: Improving Efficiency of High Utility

Sequential Pattern Extraction. – In: 32nd IEEE International Conference on Data Engineering

(ICDE’16), Helsinki, 2016.

11. C h e n, Y.-L., T. C.-H. H u a n g. Discovering Time-Interval Sequential Patterns in Sequence

Databases. – Expert Systems with Applications, Vol. 25, 2003, No 3, pp. 343-354.

12. C h e n, Y.-L., M.-C. C h i a n g, M.-T. K o. Discovering Fuzzy Time-Interval Sequential Patterns in

Sequence Databases. – IEEE Transactions on Systems Man and Cybernetics, Vol. 35, 2005,

No 5, pp. 959-972.

13. Y u, H., H. Y a m a n a. Generalized Sequential Pattern Mining with Item. – Journal of Computers,

Vol. 1, 2006, No 3, pp. 51-60.

14. D e m e t r o v i c s, J., V. D. T h i, T. H. D u o n g. An Algorithm to Mine Normalized Weighted

Sequential Patterns Using Prefix-Projected Database. – Serdica Journal of Computing, Vol. 9,

2015, No 2, pp. 105-122.

15. D e m e t r o v i c s, J., H. M. Q u a n g, V. D. T h i, N. V. A n h. An Efficient Method to Reduce the

Size of Consistent Decision Tables. – Acta Cybern., Vol. 23, 2018, No 4, pp. 1039-1054.

16. D e m e t r o v i c s, J., V. D. T h i, N. L. G i a n g. On Finding All Reducts of Consistent Decision

Tables. –Cybernetics and Information Technology, Vol. 14, 2014, No 4, pp. 3-10.

17. D e m e t r o v i c s, J., N. T. L. H u o n g, V. D. T h i, N. L. G i a n g. Metric Based Attribute

Reduction Method in Dynamic Decision Tables. – Cybernetics and Information Technologies,

Vol. 16, 2016, No 2, pp. 3-15.

18. C a o, C. N., J. D e m e t r o v i c s, N. L. G i a n g, V. D. T h i. About a Fuzzy Distance between Two

Fuzzy Partitions and Application in Attribute Reduction Problems. – Cybernetics and

Information Technologies, Vol. 16, 2016, No 4, pp. 13-28.

19. D e m e t r o v i c s, J., H. M. Q u a n g, N. V. A n h, V. D. T h i. An Optimization of Closed Frequent

Subgraph Mining Algorithm. – Cybernetics and Information Technologies, Vol. 17, 2017,

No 1, pp. 3-14.

Received: 29.05.2019; Second Version: 18.11.2019; Accepted: 26.11.2019

