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Abstract: Mining High Utility Sequential Patterns (HUSP) is an emerging topic in 

data mining which attracts many researchers. The HUSP mining algorithms can 

extract sequential patterns having high utility (importance) in a quantitative 

sequence database. In real world applications, the time intervals between elements 

are also very important. However, recent HUSP mining algorithms cannot extract 

sequential patterns with time intervals between elements. Thus, in this paper, we 

propose an algorithm for mining high utility sequential patterns with the time interval 

problem. We consider not only sequential patterns’ utilities, but also their time 

intervals. The sequence weight utility value is used to ensure the important downward 

closure property. Besides that, we use four time constraints for dealing with time 

interval in the sequence to extract more meaningful patterns. Experimental results 

show that our proposed method is efficient and effective in mining high utility 

sequential pattern with time intervals.  

Keywords: Datamining, sequential pattern, time interval, high utility. 

1. Introduction 

Data mining is a process for extracting knowledge from data. Data can be represented 

in many formats of structured data such as tables [15-18], graphs [19], sequences  

[1-5, 14], etc. Mining Sequential Patterns is one of the most important topics in data 

mining with many applications. Sequential data are very popular in real life data, like 

customer purchase sequence, medical treatment sequence, DNA sequence, weblogs 

sequence, and so on. The main purpose of sequential pattern mining is to extract all 

patterns frequently occurring in a sequence database. There are many works on 

sequential pattern mining with different approaches; some of them can be mentioned 

like AprioriAll [1], GSP [2] (Apriori approach), PrefixSpan [3] (PrefixSpan 

approach), SPADE [4], SPAM [5] (vertical database format approach). These 

traditional approaches have some drawbacks, such as that all items in a sequential 

pattern have the same importance and there is no quantitative information associated 
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with each item. But in real datasets, different items have different importance and 

each item can have quantitative values. To address this problem, Ahmed et al [6] 

proposed a new research problem named high utility sequential pattern mining, which 

considers not only quantities of items but also their importance.   

The goal of mining High Utility Sequential Patterns (HUSP) is to find all 

sequences having a high utility in a quantitative sequence database. Each item in an 

item set of a sequence is assigned with a quantity and each item in the database is 

assigned with a profit indicating its importance. The utility of an item is the product 

of its quantity by its unit profit. The utility of a sequential pattern can be calculated 

in two ways: the summation utility and the maximum utility. Admed [6] proposed 

the summation utility, which means the utility of a sequential pattern is the 

summation of all distinct occurrences of that pattern in the database sequence. To 

simplify the calculation and to keep the meaning of the utility, later works on HUSP 

like [7-10] use the maximum utility measure to calculate the utility of a sequential 

pattern. The utility of a pattern is then calculated by the maximum value of all distinct 

occurrences of that pattern in the database sequence. The problem of HUSP is that it 

enumerates all sequential patterns having a utility no less than a predefined minimum 

utility threshold. 

Although HUSP problem can discover all patterns having high utility, it does 

not include time intervals between items. For instance, suppose we have two 

sequences: S1: (Computer)(1 month, Printer), and S2 : (Computer)(6 month, 

Printer). If we do not consider time intervals, these sequences are the same. But in 

fact, we can say that the sequence S1 is more important than the sequence S2, since 

the S1 has smaller time interval than the S2. To solve this problem, some works on 

item interval were proposed in [11-13]. However, these works did not consider the 

item’s significance when mining time interval sequential patterns.  

Hence, in this paper, we integrate utility into time intervals sequential pattern 

mining and propose a new problem ‒ high utility sequential pattern with time interval 

mining. We consider not only sequences’ utilities, but also time intervals between 

items.  

The remainder of this paper is organized as follows: Section 2 provides a study 

of related works. Section 3 describes the problems and proposes the mining method 

for high utility sequential pattern with time interval. Section 4 presents the 

experimental result. Conclusion and comments are presented in the last session. 

2. Related works 

2.1. Sequential pattern mining 

In 1995, A g r a w a l  and S r i k a n t  [1] developed the sequence pattern mining 

problem and proposed three Apriori based algorithms: AprioriAll, AprioriSome, and 

DynamicSome. Like Apriori, these algorithms scan database multiple times and as 

they are based on the level-wise technique, it takes much time for mining. Later, 

Agrawal and Srikant proposed a new method called GSP [2] to speed up execution 

efficiency in finding sequential patterns. However, GSP is still based on Apriori, so 

it still needed generating and testing execution.  
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In 2001 P e i  et al. [3]  introduced PrefixSpan algorithm which is based on 

pattern growth approach. It does not require multiple times database scanning, so it 

takes considerably less time of mining than other Apriori based algorithms. Z a k i  

[4] devised SPADE algorithm, which is a sequential pattern mining using equivalent 

classes. SPADE used vertical database format and level-wise technique to generate 

and test if a pattern is frequent. The SPAM [5] algorithm uses a depth-first search 

strategy using an efficient vertical bitmap representation. 

2.2. Time-interval sequential pattern mining 

The difference between sequential pattern mining and time-interval sequential pattern 

mining is that latter takes into account the time interval between items. In 2003, 

C h e n  and H u a n g  [11] proposed time-interval problem and two algorithms: I-

Apriori and I-PrefixSpan which are based on Apriori [1] and PrefixSpan [3], 

respectively. In 2005, C h e n, C h i a n g  and K o  [12] extended previous work [11] 

by applying fuzzy theory to partition the time intervals using FTI-Apriori, an Apriori 

based algorithm that employs a distinct fuzzy membership function. Both of their 

works used extended sequence approach to represent time interval.  

In 2006, Y u  and H a y a t o  [13] proposed a framework to generalized 

sequential pattern mining with item intervals. This work used four time constraints 

and the extended sequence approach to handle with item interval. 

2.3. High Utility Sequential pattern mining 

In a real-world dataset, not only occurrence frequency of patterns, but also their 

quantity and significance (like profit or price) have important roles. For example, the 

pattern iPhone X, MacBook Air may not be a high frequency pattern in a sequence 

database but it may contribute high profit to the shop due to its high profit. Thus, the 

low frequency pattern may contribute to high profit but they may not be found in the 

sequence database by using traditional sequence pattern mining approach. To solve 

this problem, a high utility sequential pattern was proposed in 2010 by work of 

A h m e d, T a n b e e r  and J e o n g  [6]. Admed proposed a new framework called 

high utility sequential pattern with two types of item’s utility: internal utility 

(represent item’s quantity) and external utility (represent item’s importance like 

profit). Moreover, two new algorithms were introduced using level-wise technique 

(UL Algorithm) and pattern-growth technique (US Algorithm). In Ahmed’s work, 

the utility of a pattern is calculated as the summation of utilities of all distinct 

occurrences in a sequence. This way of calculation may find some personal buying 

behaviors repeatedly, rather than common behaviors. To avoid such cases and 

simplify the utility calculation, later works on HUSP mining used maximum utility 

measure.  

In 2012, Y i n, Z h e n g  and C a o  [7] proposed a general framework for mining 

HUSP and represents USpan algorithm, which uses Sequence Weight Utility (SWU) 

for pruning candidates and two data constructions: LQS-tree and Utility Matrix for 

data representation. In 2014, L a n  et al. [8] proposed PHUS, an algorithm based on 

a projection approach of PrefixSpan [3]. Their work used SWU as an upper bound 

for pruning candidates and a temporal sequence table for data representation.  
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A l k a n  and K a r a g o z  [10] proposed a new upper bound called CRoM 

(Cummulated Rest of Match) used for pruning candidates before generation. They 

also represent the HuspExt algorithm with a Prefix tree structure for data 

representation. In 2019 (see [9]) is published a survey of High utility sequential 

pattern mining. This survey provided a concise overview of recent works in the HUSP 

mining field, presenting related problems and research opportunities. They also 

provided a formal theoretical framework for comparing upper bounds used by HUSP 

mining algorithms. 

3. Problem statement and definitions 

We use a Quantitative Sequence DataBase with time interval (QiSDB) given in  

Table 1 as an example. Each appearance of an item in the sequence is assigned with 

a positive quantity value. Each distinct item in QiSDB is assigned with a profit value 

as shows in Table 2. 

Table 1. Quantitative sequence database with time interval (QiSDB) 
iSID Data sequence 
iS1 〈0, a[3] 〉〈1, a[2] b[4] d[2] 〉〈2, f[1] 〉〈3, a[4] 〉〈4, d[1] 〉 
iS2 〈0, e[3] 〉〈1, a[2] b[6] 〉〈2, d[1] 〉〈3, c[2]〉 
iS3 〈0, c[1] f[3] 〉〈1, b[3] 〉〈2, d[1] e[3] 〉 
iS4 〈0, a[2] 〉〈1, b[6] d[4] 〉〈2, a[5] b[4] 〉〈3, e[5] 〉 
iS5 〈0, d[1] f[5] 〉〈1, c[1] 〉〈2, g[4] 〉 
iS6 〈0, d[2] 〉〈1, e[3] 〉〈2, a[5] b[7] 〉〈3, d[4] 〉 〈4, b[2] 〉〈5, e[4]〉 
iS7 〈0, a[3] b[2] 〉〈1, c[2] 〉〈2, e[2]〉〈3, f[3]〉 
iS8 〈0, a[3]〉〈2, d[1] f[1]〉 
iS9 〈0, a[2] c[4]〉〈2, e[2]〉 

Table 2. Profit table 
Item Profit 

a 3 
b 2 
c 1 
d 6 
e 5 
f 2 
g 8 

The problem of mining high utility sequential patterns with time interval is then 

defined as follows. 

3.1. Definitions 

Definition 1. An itemset XI is a set of items in lexicographic order. If |X| = r then 

itemset X is called r-itemset. I = {i1, i2, …, in} is a set of all items occur in QiSDB. 

Definition 2. Interval extended sequence:  

iS = 〈(𝑡1,1, 𝑋1), (𝑡1,2, 𝑋2), … , (𝑡1,𝑚, 𝑋𝑚)〉 is a list of the itemsets order by their 

occurrence time. Here, Xi (1≤i≤m) is an itemset and t,  is the time interval between 

itemsets X and X , then t, = X.time – X.time 

Definition 3. Internal utility and external utility: Internal utility of an item ijI 

in a sequence iSa denoted as iu(ij, iSa) is quantity of item ij in iSa. External utility of 

item ij is its significant value and denoted as eu(ij).  
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Table 1 is a QiSDB with internal utility values and Table 2 is an external utility 

values table. The internal utility value represents items’ quantities and external utility 

value represents profit per unit of that item. Item a in iS9 has iu(a,iS9) = 2, its external 

utility eu(a)=3. An item in a sequence may appear multiple times, in that case  

iu(ij, iSk) is the maximum value among all the quantities of ij in sequence iSk. For 

example, iu(a, iS1)= 4. 

Definition 4. The utility of an item ij in a sequence iSa denoted as su(ij, iSa) is 

defined by: u(ij, iSa) = iu(ij, iSa) × eu(ij).  

For example, u(a, iS1)= iu(a, iS1) × eu(a) = 4×3=12. 

Definition 5. The utility of a pattern : 𝛼 = 〈(𝑡1,1, 𝑋1), (𝑡1,2, 𝑋2), … , (𝑡1,𝑛, 𝑋𝑛)〉 
is a pattern with length n and 𝛼  iS𝑎, sequence utility of the pattern α in iSa denoted 

as u(α, iSa) is defined by  

su(𝛼, iS𝑎) = max {∑ su(ij , iS𝑎)

𝑖𝑗∈α

, ∀𝛼 ∈ iS𝑎}. 

Definition 6. The sequence utility of an input sequence iSa is the sum of utilities 

of all items in iSa, which means 

su(iS𝑎) = ∑ su(ij ,iS𝑎)

𝑖𝑗∈iS𝑎

. 

Definition 7. The utility of a pattern α in a QiSDB denoted as su(α, QiSDB) and 

is defined by 

su(𝛼, QiSDB) = ∑ su(𝛼,iS𝑎

iS𝑎∈QiSDB

). 

Definition 8. The utility of a QiSDB is defined by: 

su(QiSDB) = ∑ su(iS𝑎).

iS𝑎∈QiSDB

 

Definition 9. Time constraints: Given an interval extended sequence  
𝛼 = 〈(𝑡1,1, 𝑋1), (𝑡1,2, 𝑋2), … , (𝑡1,𝑛, 𝑋𝑛)〉, the time constraints are given as follows: 

 C1 = min_time_interval is a minimum item interval between any two adjacent 

itemsets, which means ti,i+1   min_time_interval for all {i|1≤i≤n–1}. 

 C2 = max_time_interval is a maximum item interval between any two 

adjacent itemsets, which means ti,i+1 ≤ max_time_interval for all {i|1≤i≤n–1}. 

 C3 = min_whole_interval is a minimum item interval between the first and 

the last itemset of the sequence, which means ti,n  min_whole_interval. 

 C4 = max_whole_interval is a maximum item interval between the first and 

the last itemset of the sequence, which mean ti,n ≤ max_whole_interval. 

Definition 10. The high utility sequential pattern with time interval: Given a 

quantitative sequence database with time interval QiSDB, each item ij  I in the input 

sequences iSa is assigned with an internal utility iu(ij,iSa) and an external utility eu(ij). 

Given a minimum utility threshold minSeqUtil and four time constraints C1, C2, C3, 

C4, a sequential pattern 𝛼 = 〈(𝑡1,1, 𝑋1), (𝑡1,2, 𝑋2), … , (𝑡1,𝑛, 𝑋𝑛)〉 is a high utility 

sequential pattern with time interval if it satisfies: 

su(α,QiSDB)   minSeqUtil & t,  satisfies time constraints C1, C2, C3, C4. 
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Then the problem of mining high utility sequential pattern with time interval is 

defined as follows: 

 Given a quantitative sequence database with time interval QiSDB, each item 

ij  I in the input sequences iSa is assigned with an internal utility iu(ij,iSa) and an 
external utility eu(ij). Given a minimum utility threshold minSeqUtil and four time 
constraints C1, C2, C3, C4, find all high utility sequential patterns with time interval 
in QiSDB which means finding the set L such that: 

L = {α ⊆ QiSDB  | su(α,QiSDB )  minSeqUtil & t,  satisfies time constraints 

C1, C2, C3, C4}  

 The high utility sequential pattern with time interval does not satisfy the 
downward closure property, which means a subsequence of a high utility sequential 
pattern with time interval may not be a high utility sequential pattern with time 
interval. 

3.2. The proposed solution 

In this subsection, we propose an algorithm for mining high utility sequential patterns 

with time interval (UIPrefixSpan). Our main approach is to push time constraints and 

the utility threshold while still maintaining the downward closure property. 

a. Projected database 

To avoid checking every possible combination of a potential candidate 

sequences, we first fix the order of items within each element. Since items within an 

element of a sequence can be listed in any order, without loss of generality, one can 

assume that they are always listed alphabetically. 

For example, the sequence is presented as (0, a[3]) (1, a[1]b[3]c[4])  

(2, c[4]a[2]) instead of (0, a[3]) (1, a[1]c[4] b[3]) (2, a[2]c[4]). By such a 

convention, the expression of a sequence is unique. 

If we follow the order of the prefix of a sequence and project only the postfix of 

a sequence, we can examine in an orderly manner all the possible subsequences and 

their associated projected database. 

Definition 11. Prefix and postfix of interval extended sequence: Given an 

interval extended sequence 𝛼 = 〈(𝑡1,1, 𝑋1), (𝑡1,2, 𝑋2), … , (𝑡1,𝑛, 𝑋𝑛)〉, where Xβ is an 

itemset, there exists an integer j (1 ≤ j ≤ n) that satisfies Xβ ⊆ Xj  and t1, = t1, j. 

We define a prefix of interval extended sequence  with regard to (Xβ, t1,β) as 

follows: 

Prefix (, X, t1, ) = (t1,1, X1), (t1,2, X2), (t1,3, X3),..., (t1,j, X). 

Then the postfix of interval extended sequence  with regard to (Xβ, t1,β) is 

defined as follows: 

Postfix (, X, t1, ) = (tj,j, Xj), (tj,j+1, Xj+1), ..., (tj,n, Xn) 

with Xj being the subset of Xj after minus X. When Xj = , postfix of  with regard 

to (Xβ, t1,β) is defined as follows: 

Postfix (, X, t1, ) = (tj,j+1 ,Xj+1), (tj,j+2, Xj+2), ..., (tj,n, Xn). 

On the other hand, when there does not exist integer j, postfix of  with regard 

to (Xβ, t1,β) becomes: 

Prefix (, X, t1,) = , 

Postfix (, X, t1,) = . 
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Definition 12. Projected database with interval extended sequence: Given a 

sequence  = (t1,1, X1), (t1,2, X2), (t1,3, X3),..., (t1,m, Xm), a projected database with 

regard to  denoted as QiSDB| is all postfixes of all input sequence iSa in QiSDB 

with regard to .  

b. Maintaining downward closure property: 

In utility base framework, the Downward Closure Property (DCP) of the 

sequence utility is not always observed. That means a subset of a high utility sequence 

is not necessarily a high utility sequence. Thus, we cannot use sequencer utility for 

pruning the search space and we must use another value, which ensures DCP. The 

following definition of sequence weight utility is based on A h m e d, T a n b e e r  and 

J e o n g  [6]. 

Definition 13. Sequence weight utility of sequence α: Given a sequence α, the 

swu of α is defined as follows: 

swu(𝛼) = ∑ su(iS𝑎).

𝛼iS𝑎 ∧ iS𝑎∈QiSDB

 

Definition 14. Candidate pattern: Given a minimum threshold minSeqUtil, a 

sequential pattern α is called a candidate pattern if it satisfies 

swu(α)  minSeqUtil and α satisfies time constraints C1, C2, C3, C4. 

Lemma 1. The Sequence Weight Utility (SWU) maintains the Downward 

Closure Property (DCP).  

P r o o f :  Let α be a candidate pattern and dα  be a set of input sequences that 

contains α in QiSDB. Let β be a super-sequence of α then β cannot be presented in 

any sequence where α is absent. Therefore, the maximum sequence weight utility of 

β is swu(α). Then, if swu(α) is less than minimum utility threshold minSeqUtil then 

β is not a candidate pattern. ■ 

Lemma 2. Given a QiSDB and a minimum utility threshold minSeqUtil, the 

high utility sequential patterns with time interval is a subset of candidate patterns.  

P r o o f :  Let α be a high utility sequential pattern with time interval. According 

to Definition 5 and Definition 13, su(α, QiSDB) must be less than or equal to swu(α). 

So, if α is a high utility sequential pattern, it must be a candidate pattern. ■ 

3.3. Mining high utility sequential pattern with time interval using prefix projected 

database algorithm (UIPrefixSpan Algorithm) 

In this subsection, we propose UIPrefixSpan Algorithm for mining high utility 

sequential pattern with time interval. Our algorithm extends pattern growth approach 

with time interval and utility, which was based on PrefixSpan [3] algorithm and Y u  

and Y a m a n a  [13] work which mines frequent sequential pattern with item interval. 

Our algorithm (UIPrefixSpan) always needs maximum three QiSDB database 

scans. First, UIPrefixSpan scans QiSDB once to find length-1 candidate patterns. 

Then, in the second database scan, it generates projected databases with length-1 

candidate patterns as prefixes. In the next step, it uses pattern growth approach to 

recursively generate candidate patterns. In the final database scan, it checks each of 

candidate patterns found in the previous step in its real utility and output all patterns 

with utility higher than minSeqUtil. 

- Input: 
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 (1) Quantitative sequence database with time interval QiSDB and external 

utility values table, 

 (2) Minimum threshold : minSeqUtil,  

 (3) Time constraints C1, C2, C3, C4, 

- Output: Set of the high utility sequential pattern with time interval 

UIPrefixSpan Algorithm 

Start 

1) Let α = . 

 2) Let R  = ; L  = .  

 3) Scan QiSDB first time, calculate swu(i, QiSDB) value with each item i in 

QiSDB, find length-1 candidate satisfies condition swu(i, QiSDB)   minSeqUtil 

 4) Loop with all i: 

 5)  a) Let α = (0, i).  

 6)     -  R = {R, α}. 

7) -  Check condition su(α, QiSDB)  minSeqUtil, 

if satisfies then L = {L, α}.    

8) b) Excute recursive function R = subUIPrefixSpan(QiSDB|α, R, minSeqUtil, 

C1, C2, C3, C4). 

 9) End Loop; 

10) Scan QiSDB and check condition su(α, QiSDB)  minSeqUtil, with each  

α  R, If satisfies then L = {L, α}. 

11) Output L. 

End. 

Function subUIPrefixSpan (QiSDB|α, R, minSeqUtil, C1, C2, C3, C4) 

Start: 

 1) Scan QiSDB|α , calculate swu(i) with all item i and find all pairs of i and 

its time interval, denoted as (Δt,i) that satisfy swu(i)  minSeqUtil, C1 and C2. 

 2) Let α =α, (Δt, i). 

 3) Check if α satisfies condition C4 or not 

 4) Only if α satisfies C4, 

5)  a) Excute R = subUIPrefixSpan (QiSDB|α,R, minSeqUtil, C1, C2, C3, C4). 

 6) b) When α  satisfies C3,  

 7)  R = {R, α}. 

 8) Return R . 

End. 

The UIPrefixSpan algorithm declares a pattern α and two sets: R is a set of all 

the candidate patterns and L is a set of all the high utility sequential patterns; and it 

initializes them to null (line 1 and 2). Then, it scans QiSDB once and finds all  

length-1 candidate patterns (line 3). Next, it executes a loop with all candidate 

patterns found in the previous step (line 4-9). A pattern α is defined by putting zero 

time value to each candidate (since we cannot determine time interval with length-1 

pattern, so we put zero as its time interval) and put it into the candidate set R (line 4 

to 6). The real utility value of α is checked after that, if it’s utility greater than or 

equal to minSeqUtil then α is a high utility sequential pattern with time interval, and 

we put it in the high utility sequential patterns L (line 7). Next, the UIPrefixSpan calls 
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recursive function subUIPrefiSpan to generate all candidate patterns by using a 

pattern-growth approach (line 8). The third database scan is then executed to check 

if every candidate pattern is a high utility sequential pattern or not and puts those 

patterns which are high utility patterns in the high utility sequential patterns set L. 

Finally, we output the set L. 

The function subUIPrefixSpan generates candidate patterns with time interval 

in the projected database. First, it scans the projected database and find all pairs of 

items and their time interval with sequence weight utility equal or higher than 

minimum threshold minSeqUtil and time interval of that pair must also satisfy two 

time constraints C1 and C2 (line 1). Then it joins pairs found in the previous step with 

database’s prefixes to create new interval extended sequence patterns (line 2). Each 

new pattern then is checked with time constraints C4 (line 4), if it satisfies C4 then 

recursively function subUIPrefixSpan is called with new prefix to get a new pattern 

(line 5). After that, the new pattern is checked with constraint C3, if it satisfies C3 then 

it is a candidate pattern, we put it in the set of candidate pattern R and output the set 

R (line 6-8). 

4. Experimental results 

For evaluating the effectiveness of our algorithm, we performed several experiments 

on synthetic datasets generated using an IBM data generator which was introduced 

in [1]. The parameters of the IBM data generator are as follows: 

|D| is the number of customers; 

|C| is the average number of transactions per customer; 

|T| is the average number of items per transaction; 

|S| is the average length of maximal sequences; 

|I|  is the average length of itemsets of maximal sequences; 

|N| is the number of distinct items. 

We generated four synthetic datasets: D10K.C9.T8.S7.I8.N1K (DS1), 

D10K.C5.T4.S5.I6.N1K (DS2), D100.C10.T5.S10.I5.N1K (DS3), 

D200K.C10.T9.S9.I7.N1K (DS4). Moreover, we used a real-life dataset:  

BMS-WebView-1 (DS5) containing 59,601 web click-stream data sequences with 

497 data items, and the average length of a sequence is 2.42; there are some long 

sequences (more than 318 sequences with more than 20 items). 

However, these datasets do not provide the internal utility and external utility of 

sequences. Most of the others HUP mining algorithms have generated random 

numbers for internal and external utilities. Thus, we have generated random numbers 

for internal and external utilities ranging from 1 up to 5 and from 1.0 up to 10.0, 

respectively. In real-life databases, most items carry low profit. So we generated 

external utility (which carry profit values) using a log-normal distribution. Fig. 1 

shows the external utility distribution of 1000 items in synthetic datasets (DS1-DS4). 

Datasets mentioned above do not contain occurrence time, so we generated 

occurrence time according to itemsets’ order. Which means in each sequence, first 

itemset has occurrence at time 0, second itemset has occurrence at time 1, third 

itemset has occurrence at time 2, and so on. 
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Fig 1. External utility distribution for 1000 items using log-normal distribution 

 

All experiments were performed on a computer which has an Intel Core i7 - 3.6 

Ghz processor and 8 GB of memory, running Microsoft Windows 10. All algorithms 

were written in Java 1.8. 

4.1. Performance test 

We executed performance test of UIPrefixSpan in two cases: with time constraints  

C1=0; C2=5; C3=0; C4=20 (UIPrefixSpan1) and without time constraint 

((UIPrefixSpan2).  

  
(a) D10K.C9.T8.S7.I8.N1K                 (b) D10K.C5.T4.S5.I6.N1K 

 

  
(c) D100.C10.T5.S10.I5.N1K            (d) 200K.C10.T9.S9.I7.N1K 

 

 
(e) BMS-WebView-1 

Fig 2. Runtime 
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As shown in Fig. 2, UIPrefixSpan1 performs faster than UIPrefixSpan2. When 

the minUtil is decreased, the runtime of UIPrefxiSpan2 significantly increases and in 

case of DS4, UIPrefixSpan2 cannot run with low minUtil (2%). In contrast, 

UIPrefixSpan1 runs well with low minUtil and much faster than UIPrefixSpan2 in 

both synthetics (DS1-DS4) and real dataset (DS5). It is because when we used time 

constraints (UIPrefixSpan1), less candidates were generated, so the search space was 

reduced and runtime decreased.  
 

   
(a) D10K.C9.T8.S7.I8.N1K                         (b) D10K.C5.T4.S5.I6.N1K 

 

    
(c) D100.C10.T5.S10.I5.N1K                          (d) D200K.C10.T9.S9.I7.N1K 

 

 
(e) BMS-WebView-1 

Fig 3. Memory usage 

 

UIPrefixSpan1 also uses less memory than UIPrefixSpan2 as shown in Fig. 3. 

On DS1, UIPrefixSpan1 uses 1.2 times less memory than UIPrefixSpan2 and in some 

cases (2, and 9, and 10%), it uses 2.2 times less memory. On DS2, UIPrefixSpan1 

uses 1.4 times less memory than UIPrefixSpan2 and with the low minUtils (<0.7 

percent), it uses 1.6 times less memory. On other datasets, UIPrefixSpan1 also runs 

from 1.6 up to 1.8 times faster than UIPrefixSpan2. Generally, for all datasets, when 

minUtil is decreased, the memory usage increases. The memory usage of 

UIPrefixSpan2 also increases faster than UIPrefixSpan1’s when the minUtil is 
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decreased. That is because when we used time constraints, the search space was 

reduced and that made our algorithm use less memory.  
 

    
(a) D10K.C9.T8.S7.I8.N1K                               D10K.C5.T4.S5.I6.N1K 

 

     
(c) D100.C10.T5.S10.I5.N1K                       (d) D200K.C10.T9.S9.I7.N1K 

 

 
(e) BMS-WebView-1 

Fig. 4. Number of high sequential patterns with time interval 

 

Despite that, a number of high sequential patterns found in UIPrefixSpan1 are 

less than UIPrefixSpan2 (Fig. 4), but those patterns are more meaningful. By using 

time constraints, less meaningful patterns generating can be avoided.  

4.2. Scalability test 

We performed scalability tests of the UIPrefixSpan algorithm on 

D200K.C10.T9.S9.I7.N1K (DS2) dataset with different database sizes. We set 

minimum utility threshold minUtil to 3%. The result shows that runtime is increased 

linearly as database size increased. UIPrefixSpan algorithm shows good scalability 

in both cases (Fig. 5). 
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Fig 5. Scalability test 

5. Conclusion 

In this paper, we developed an algorithm called UIPrefixSpan which detects high 

utility sequential patterns with time interval based on the candidate pattern growth 

model. We consider not only the occurrence frequency of patterns but also their utility 

and time interval.  

We used a prefix-projected database building method, which allows to 

significantly reduce the search space when mining the high utility sequential patterns 

with time interval. By using sequence weight utility value, UIPrefixSpan maintains 

downward closure property in mining sequential patterns with high utility. Moreover, 

by adding time constraints, our proposed algorithm excludes extraction of interval 

extended sequences with time intervals in which the user is not interested. Extensive 

performances showed that UIPrefixSPan was efficient and scalable in high utility 

sequential pattern mining.    

With above comments, we can conclude that UIPrefixSpan is an efficient 

algorithm for mining high utility sequential patterns with time interval. 
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