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Abstract: Considering significance of a robust and Quality of Service (QoS) centric 

cloud computing, virtualization assisted load-balancing has been found a potential 

solution. However, assuring optimal Virtual-Machine (VM) migration with minimum 

violation of Service-Level-Agreement (SLA) and QoS degradation has been the 

challenge for academia-industries. VM allocation or scheduling being an NP-hard 

problem has been solved by numerous heuristic approaches such as classical Genetic 

Algorithm (GA), Ant Colony Optimization (ACO), etc. However they have been found 

confined due to local minima and convergence issues, especially for Mega Data 

Centres (MDCs). To alleviate such issues, in this paper an enhanced Evolutionary 

Computing algorithm named Adaptive Re-sampling GA (ARGA) algorithm has been 

developed that in conjunction with a stochastic prediction based dynamic load–

measurement and Maximum Correlation (MC) assisted VM selection perform 

optimal load balancing over IaaS MDC infrastructures. The proposed ARGA VM 

allocation model with dual-level dynamic threshold assisted load estimation and MC 

based VM selection has exhibited lower SLA violation, performance degradation, 

downtime and minimum VM migration as compared to classical ACO based load 

balancing.  

Keywords: Load-balancing, virtualization, Adaptive Re-sampling Genetic Algorithm 

(ARGA), SLA provision. 

1. Introduction 

The exponential rise in internet technologies and allied advanced computing systems 

has given rise to a broadened technological horizon called Cloud computing that 

facilitates decentralized scalable services for different purposes. Cloud computing 

has up surged significantly in the last few years to meet remote data or system access 

irrespective of geographical boundaries and hardware dependencies [2]. Increasing 

demands need providing more and more computing and storage infrastructures, often 

termed as data centers. Cloud service providers require ensuring Service-Level-

Agreement (SLA) by sticking to the QoS delivery to the customers while ensuring 

cost-effective, eco-friendly and reliable services [4]. Some of the key challenges in 
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current cloud computing scenarios are SLA provision, QoS delivery, cost-efficient 

services, etc. Exploring in depth one of the key issues in modern cloud computing 

arena is load balancing that ensures fault-tolerant and reliable resource provision to 

the tasks or services continuously. Virtualization employs Virtual Machines (VMs) 

as computing resources to solve the problem of Dynamic Resource Management 

(DRM) in cloud computing environment [5]. To achieve optimal load balancing 

under non-linear use patterns virtualization enables live migrations between VMs and 

the Physical Machines (PMs), often called hosts on the basis of the change of load. 

Different VM monitors like XEN [6], KVM [7] can help efficient VM migrations on 

the different hosts. In practice, the load on each node of VM might vary according to 

the service type and user demand density [8], and hence random selection of hosts 

might lead into overload condition. On contrary, there can be the possibility that 

certain node or host might undergo under load condition with low resource 

consumption. Such load imbalance issue often leads either SLA violation, especially 

downtime or energy exhaustion and hence requires certain efficient load balancing 

solution [9]. Such load balancing problems become prevalent and more complicate 

in case of highly dynamic and heterogeneous resource demands [5]. Under such 

scenarios to augment resource utilization, VMs are required to be effectively 

allocated and hence SLA sensitive load balancing must be guaranteed [5]. 

As depicted in Fig. 1, the scheduler predominantly comprises two distinct 

elements named central controller and Local Migration Controller (LMC). Here, the 

central controller retrieves the information about entire PM resources utilization and 

initiates VM migration on the basis of certain predefined policies so as to perform 

load balancing and high resource utilization. On the other hand LMC controller sends 

information about its physical resources utilization to the center controller and 

retrieves instructions to initiate migration. However, this approach often undergoes 

adversaries when to decide where to migrate the task while ensuring SLA intact and 

QoS provision as goal. Improper migration scheduling can force host nodes to 

undergo overload or underload again and again and hence can adversely affect the 

performance. To solve such issues approaches like overload detection and distributed 

computing approaches have been explored in a number of researches.  
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To solve this problem numerous meta-heuristic approaches like Particle Swarm 

Optimization (PSO) [11-15], Genetic Algorithm (GA) [16-19], Ant Colony System 

(ACS) [20-22], Cuckoo Search Optimization (CSO) [24], Honey Bee Foraging (HBF) 

[7, 10, 23, 25], etc., have been proposed. Undeniably, these approaches have made 

effort to augment VM placement policy however lacks dealing with local minima and 

convergence, which is predominant in major meta-heuristic approaches. In addition, 

most of the approaches use static threshold based CPU utilization for triggering VM 

migration, which seems confined due to dynamic nature of resource demands and 

varying utilization patterns of the allied tasks. Such problems can be dealt with certain 

predictive overload detection system that in conjunction with certain optimal VM 

selection policy such as the Minimum Migration Time (MMT) or the Maximum 

Correlation (MC) can achieve SLA sensitive VM migration and load balancing. 

Furthermore, improving genetic parameter selection (i.e., crossover probability and 

mutation probability) by applying dynamic fitness value for solution (search space) 

re-sampling can effectively alleviate local minima and convergence issue. Hence, here 

a highly robust enhanced Evolutionary Computing (EC) based load-balancing model 

is developed that exploits virtualization and live migration concept to offload tasks 

from a host undergoing overload condition. Our proposed approach employs dynamic 

load assessment method using stochastic prediction method followed by MMT based 

VM selection and Adaptive Re-sampling Genetic Algorithm (ARGA) for VM 

migration scheduling or VM allocation. Unlike classical GA based migration policy, 

ARGA applies dynamic PC and PM (value) estimation by exploiting the number of 

PMs having same fitness value. Noticeably, the concept of ARGA originates from 

the fact that during real-time computation, especially in Mega Data Centers (MDC) 

there probability may exist that the multiple hosts can have the same fitness value 

and hence assigning VM to such equi-fitness nodes becomes NP-hard. Moreover, 

higher iterations (say, generation size in GA) often overburden computations to 

exhaust energy as well as response time. In such cases, ARGA can exploit the 

information about the number of hosts with same fitness to dynamically calculate PC 

and PM values that as a result could help reducing both population size as well as 

iterations to perform timely and computationally efficient VM migration. This 

approach can achieve higher SLA provision even for large scale data centres. In this 

paper, the overall proposed system has been developed using JAVA programming 

language, which has been simulated over CloudSim simulator with PlanetLab [10] 

cloud trace data. 

2. Problem formulation 

In this paper the concept of virtualization or live VM-migration has been applied to 

alleviate the aforementioned issues. Noticeably, unlike classical virtualization based 

approaches where certain predefined threshold also called static threshold based 

overloading estimation is used, in our proposed load balancing model a predictive or 

stochastic load prediction model is developed that in conjunction with a suitable VM 

selection and placement policy ensures SLA centric dynamic load balancing. 

Considering NP-hard issue of the classical bin packing based VM allocation strategies 
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numerous meta-heuristic models such as GA, PSO, ACO, BFA etc. have been 

developed where these heuristic models predominantly perform VL allocation. In 

other words, it identifies the suitable host to migrate tasks or VMs. However, most of 

the classical EC algorithms undergo local minima and convergence, in addition to the 

significantly huge computational time. Considering this fact as motivation, in this 

research paper a novel EC algorithm named Adaptive Genetic Algorithm with iterative 

re-sampling has been developed. The proposed VM migration model ensures time-

efficient migration thus supporting SLA provision. Noticeably, the overall process of 

virtualization based load balancing encompasses three consecutive phases, including 

overload detection, VM selection and VM migration.  

In this research we have focused on augmenting each participating phase where 

at first we have intended to implement a stochastic or predictive model for load 

estimation at each node (say VM). In the following phase of implementation 

considering deadline sensitive as well as demand sensitive resource management 

Minimum Migration Time (MMT) and Maximum Correlation (MC) based VM 

selection model has been developed. To ensure SLA and QoS oriented load balancing, 

our proposed ARGA heuristic model has been applied for VM migration scheduling 

or VM placement purposes that intends to map VM (to be migrated) and optimal 

possible host in such manner that it enables minimum migration and SLA Violation 

(SLAV). Here, the use of ARGA significantly alleviates the problem of local minima 

and convergence even with the large scale MDC and consequently strengthens QoS 

and SLA provision for mega cloud infrastructures. The detailed discussion of the 

proposed method is given in the subsequent sections. 

3. Our contribution 

This section primarily discusses the proposed enhanced evolutionary computing 

assisted SLA centric load balancing model. 

3.1. Multi-controller assisted dynamic cloud monitoring and information exchange   

In practice, cloud computing can be stated as a highly dynamic computing platform 

with varying load or demands conditions. In such cases updating (cloud) network 

conditions and making adaptive migration decision is of paramount significance. 

Considering this fact, in this paper multi-controller assisted dynamic cloud monitoring 

and information exchange model has been developed. In our model being proposed 

two controllers named Local VM Monitoring Controller (LVMC) and Global 

Migration Controller (GMC) with distinct (dual) roles have been applied. The detailed 

discussion of the incorporated controllers is given in this section. Before discussing 

the proposed controller model, a snippet of the cloud configuration and components 

is given as it is follow. 

With intention to develop load balancing model for a large scale cloud data centre 

or infrastructure, also called Mega Data Centers (MDC), in our model we consider an 

IAAS with N heterogeneous hosts or PMs, where each PM has been assessed in terms 

of its memory utilization and CPU performance. Noticeably, these node characteristics 
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(parameters) have been defined in terms of the Millions Instructions Per Second 

(MIPS). Furthermore, in addition to the MIPS, bandwidth ad RAM utilization has been 

obtained for each node (VMs as well as PMs) which have been monitored to perform 

load-balancing decision. The considered MDC system does not have specific inbuilt 

storage provision; we have applied Network Attached Storage (NAS) or Storage Area 

Network (SAN) that helps enabling live VM migration for intended load balancing. 

In this model it is hypothesized that there exists no significant information under 

exchange or migration (pertaining to the task or application under process at the VMs). 

It signifies the proposed cloud model to be like application-agnostic paradigm. In 

function, there can be numerous simultaneously working users requesting for M 

heterogeneous VMs to access or use certain needed Processing Elements (PEs) or 

MIPS. In this way, the load balancing or VM migration can be the result of the need 

of user’s application demand and therefore load balancing by migrating tasks or VMs 

to a single host can be the consolidation problem for the multiple simultaneously 

working users with heterogeneous resource demands. During computation the VMs 

can migrate from one host to another so as to accommodate ongoing task and allied 

resource demands, however retaining intact operating environment during migration 

turns into indefinite condition thus needs certain optimal VM migration model. On the 

other hand, during migration there can be a situation where one host might get 

significantly huge workloads thus making it overloaded. Meanwhile, a host can also 

be undergoing under load condition where it can be functional even with very low or 

without any ongoing task execution. In such scenarios, developing a robust load 

balancing model becomes inevitable that could identify a host under overload or under 

load condition and can migrate tasks to the appropriate host without causing any 

significant SLA violation or QoS loss. Towards this goal, the implementation of 

multiple controllers at the different layers of the IaaS cloud infrastructure can be vital.  

As already indicated, our proposed virtualization based load balancing model 

employs two distinct controllers termed LVMC and GMC at the different layers of the 

cloud architecture where it intends to augment overall scalability and timely event-

decision control under dynamic load conditions. A snippet of the proposed controller 

model and its specific task towards SLA-centric load balancing is depicted in Fig. 1. 

As depicted here, LVMC functions on each node or VM where it operates as VMM 

manager. It performs continuous CPU/memory utilization monitoring over operating 

nodes that eventually helps enabling dynamic load (overload or under load) detection 

on host nodes. Once detecting any host undergoing overload condition, LVMC 

triggers VM selection to estimate or identify the VM(s) to be offloaded from that host 

to reduce overloading. Now, considering the fact that the improper migration 

scheduling could cause iterative overload condition on the hosts and therefore it 

becomes inevitable to develop certain robust VM migration scheduling scheme that 

could dynamically identify the optimal host to which the VM could be migrated 

without affecting ongoing task or SLA. With this motive, in this paper we have applied 

GMS that continuously gathers node’s information from the comprising VMs and 

executes optimal VM placement process. Once moving the selected VM from the 

overloaded host, VMM updates the node characteristics and exchanges information to 

the GMC to continue optimal load balancing and SLA assurance. The detailed 
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discussion of the proposed virtualization assisted load balancing is given in the 

subsequent sections.  

3.2. Stochastic prediction assisted load assessment  

In this phase, our proposed load balancing model assesses and estimates load condition 

of each host node and identifies under-loaded and overloaded nodes. Considering the 

prime objective of efficient load balancing once identifying a node as under-loaded it 

is intended to off-load either all VMs and migrate it to other host so as to preserve 

resource or migrate other VMs from other host to it (current under-loaded host) so as 

to use optimal resource. On contrary, in case of overloaded node, it is intended to 

offload VMs and migrate it to other hosts so as to alleviate SLA violation probability 

on that host. 

3.2.1. Host under-load detection 

Here, a PM with minimum or significantly less workload (i.e., resource utilization) as 

compared to certain defined threshold or in comparison to other PMs, is identified as 

under load host. Identifying a host or PM as under-loaded, its connected VMs are 

migrated to the other PM(s) strategically while assuring that such migration does not 

impose overloading on target PM or host. Noticeably, once migrating overall 

connected VMs of the under loaded host, it can either be switched-off or can be availed 

for other VMs to continue SLA-centric task execution and thus can significantly 

enhance energy-efficiency of the cloud system. Our proposed EC assisted load-

balancing model ensures that the migration of VMs does not impose any further 

overloading on the target host. Furthermore, the source host remains active until all 

VMs are migrated and accommodated to the target host(s), so as to assure SLA 

assurance, especially to avoid any probable downtime. 

3.2.2. Dual-level dynamic thresholding assisted host overload detection 

To identify overloaded host, here a stochastic prediction model has been developed. 

In this approach, each host executes an algorithm that periodically estimates (current) 

load condition at the host that helps identifying overloaded node to support SLA 

provision. In our proposed method each host’s CPU utilization has been estimated so 

as to detect whether the host is overloaded or not. In majority of the existing works 

[11-15, 20-22], authors have applied static threshold to identify overloaded node. 

However, in practice, cloud infrastructure, especially IaaS undergoes dynamic load 

condition and therefore static threshold based overload node identification can be an 

optimal solution. In this paper, we have used dynamic CPU utilization to perform 

overload detection. Noticeably, in our proposed threshold scheme dynamically adjusts 

the CPU utilization threshold based on the variations of CPU utilization. The proposed 

method hypothesizes that more deviation can be referred as lower upper CPU 

utilization (threshold). Typically, higher deviation in use pattern raises the likelihood 

of almost all or 100% CPU utilization and in such cases the probability of SLA 

violation gets significantly increased. To alleviate such issues a hybrid model has been 

developed that considers both inter-service (task) relation as well as variational 
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information to perform dynamic thresholding. We have derived a hybrid model where 

both InterQuartile Range (IQR) [17] and modified Local Regression (LRR) 

approaches have been applied to estimate dynamic CPU threshold. IQR which is a 

statistical dispersion method signifies the in between the first and the third quartile (1). 

Thus, estimating the IQR value, we have applied (2) to estimate the upper threshold 

of CPU utilization per node:  

(1)   IQR = 𝒬3 − 𝒬1, 
(2)   𝒯𝓊 = 1 − 𝓈. IQR. 

However, considering the dynamism of load conditions and probable (resource 

utilization) fluctuations in the same ongoing task, there can be significant affect on the 

upper threshold estimation (2). Such inaccuracy might lead wrong decision and hence 

causing SLA violation. Considering this fact, in this paper a dual-level thresholding 

mechanism has been applied, where in this first level IQR based 𝒯𝓊has been estimated, 

while in the second level of thresholding an enhanced LRR model has been applied. 

In our proposed thresholding model LRR performs fitting of a trend polynomial to the 

preceding 𝓀 CPU utilization values, obtained using equation ℊ̂(𝓍)  =  𝒶 ̂ + 𝒷 𝓍 each 

new observation values. Estimating the observation values we have derived the value 

of the next observation ℊ̂(𝓍𝓀+1). In order to offload a host undergoing overloading 

we have used following two conditions:  

(3)   𝓈.  ℊ̂(𝓍𝓀+1) ≥ 1, 
𝓍𝓀+1 − 𝓍𝓀 ≤ 𝓉𝓂. 

In (3), 𝓈 ∈ ℝ+ refers the highest tolerance of a host node, while the maximum 

time needed to migrate a VM from host d 𝓉𝓂 represents the maximum time required 

for migrating VM from the host node.  

As already stated the classical Loess method [17] based LRR often gives inferior 

performance thus to alleviate this issue, in this paper the classical Least-Square (LR) 

model has been augmented to the bisquare. The LR enhancement has been performed 

in iterative manner so as to calculate the initial fitting where we have estimated tricube 

weights using a Tricube Weight Function (TWF). We estimated fitting parameter at 

𝓍𝒾 to retrieve the fitted values by using 𝓎̂𝒾. Thus, the residual value is estimated as 

𝜀𝑖 = 𝓎𝑖 − 𝓎̂𝒾. Now, once estimating the values of 𝓍𝑖 and 𝓎𝑖, has been assigned to a 

robustness factor ℛ𝒾 that primarily relies on the value of 𝜀𝑖. We have used  

the next equation, to estimate the robustness factor ℛ𝒾: 

(4)   ℛ𝒾 = ℬ (
ε̂l

6𝓈
). 

Here, each observation values are assigned ℛ𝒾, where ℬ(. ) states the bisquare 

weight function and 𝓈 signifies the Mediun Absolute Deviation (MAD) to perform 

least square fitting. Mathematically ℬ(. ) is estimated using (5); in (4), the value of 𝓈 

is estimated using (6): 

(5)   ℬ(. ) = {
(1 − 𝓊2)2     if |𝓊| < 1,
0                  otherwise,

 

(6)   𝓈 = mediun |ε̂𝒾|. 
In this manner, applying (3) for the estimated trend line, the subsequent has been 

predicted. In case of inequalities, host can be identified as overloaded host. Once 

identifying the overloaded host, the local controller identifies the VM to be migrated 
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from the overloaded host so as to retain SLA provision; this process is defined as VM 

selection, given in the next section.  

3.3. SLA centric VM selection 

In this paper we have applied two methods MMT and Maximum Correlation (MC) to 

select VMs so as to off load it from the over-loaded host. A snippet of these is given 

as follows:  

3.3.1. Minimum Migration Time (MMT) model 

As name signifies MMT policy recommends selecting a VM which could be migrated 

to a target host in the minimum possible time. This is because moving a VM with 

minimum migration period can avoid downtime for that VM specific task and thus the 

overall SLA could be retained optimal. Undeniably, MMT based VM selection can 

help migrating certain task or associated VM to a near possible or suitable host; 

however this approach doesn’t consider on-going application specific scenario. On the 

other hand, exploiting correlation in between the CPU utilization and the resource 

consumption, correlation between tasks consuming resource and resource available on 

host can be an effective and potential solution to retain SLA assurance as well as 

computational efficiency and/or reliability. With this motive, in this paper Maximum 

Correlation (MC) based VM migration model has been developed.  

A brief of the proposed MC based VM migration model is given in the next 

section. 

3.3.2. Maximum Correlation (MC) model 

In general, MC based approach considers that the high correlation in between CPU 

utilization by VM on certain oversubscribed host does reflect higher likelihood of 

becoming overloaded. In this paper a VMs with the highest correlation between the 

CPU utilization patterns have been migrated from the current host to the targeted host 

so as to preserve task-reliability and minimum downtime. Here, we have incorporated 

the approach of the multiple correlation coefficients that helps assessing intra-VM 

correlation on a host and its CPU utilization pattern. In our proposed method the 

(multiple) correlation coefficients to be used are highly related to the squared 

correlation in between the actual and the predicted values of the dependent variable. 

Let, 𝒳1, 𝒳2, … , 𝒳𝑛 be the CPU utilization patterns for 𝓃 VMs assisted or connected 

to a host. Consider that 𝒴 be the VM to be migrated. Here, the arbitrary independent 

variables are 𝓃 − 1 and 𝒴 is the independent variable. Now, with this configuration, 

our model intends to calculate the correlation in between 𝒴 and 𝓃 − 1. With these 

two variables a matrix can be derived as (𝓃 − 1) × 𝓃. With these values, the 

observation vector (𝓃 −  1) × 1 for 𝒴 be 𝓎. In other words, the observation vectors 

derived for the CPU utilization of all connected hosts can be obtained using  

(7)   𝒳 = [

1 𝒳1,1 … 𝒳1,𝓃−1

⋮ ⋮ ⋱ ⋮
1 𝒳𝓃−1,1

… x𝓃−1,𝓃−1

],    𝒴 = [
𝒴1

⋮
𝒴n

]. 



 82 

Noticeably, for any ongoing task the first column as indicated in (7) would be 1 

for all instances. In our model, the predicted values of 𝒴 is 𝒴̂, which has been 

estimated as the product of 𝒳and 𝒷. Mathematically,  

(8)   𝒴̂ = 𝒳𝒷, 

where 𝒷 = (𝒳𝒯𝒳)
−1

𝒳𝒯𝒴. 

Once estimating the predicted values, we have estimated the correlation 

coefficients, ℛ2
𝒴,1,…, 𝑛−1′, using  

(9)   ℛ2
𝒴,𝒳1,…,𝒳𝓃−1

=
∑ (𝒴𝒾−𝓂𝒴)

2
(𝒴̂𝒾−𝓂𝒴̂)

2
𝓃
𝒾=1

∑ (𝒴𝒾−𝓂𝒴)
2

∑ (𝒴̂𝒾−𝓂𝒴̂)
2′

𝓃
i=1

𝓃
𝒾=1

. 

In (9), the variables 𝓂𝒴 and 𝓂𝒴̂ signify the observation means of 𝒴 and 𝒴̂ 

correspondingly. We have obtained multiple correlation coefficients for all instances 

𝒳𝒾 as ℛ2
𝒳i,𝒳1,…,𝒳i−1,𝒳i+1,…,𝒳𝓃

, an thus the VM selection has been performed using  

(10)  𝓋 ∈ VM𝒿|∀𝒶∈ 𝒱𝒿 , ℛ2
𝒳𝓋𝓂 ,𝒳1,…,𝒳𝓋𝓂−1,𝒳𝓋+1𝒳𝓃

 ≥ ℛ2
𝒳𝓋 ,𝒳1,…,𝒳𝒶−1,𝒳𝒶+1,…,𝒳𝓃

. 

3.3.3. Enhanced AGA based VM migration for SLA-centric load balancing  

Once performing VM selection one of the critical tasks surfaces is migrating the 

(selected) VM to the other host without imposing overload (on target host) and 

incurring the downtime that adversely affects the QoS and/or SLA provision. In some 

of the existing works VM migration has been considered as the problem of VM 

consolidation where “Bin-packing” approach [63] is applied to migrate VMs to the 

nearest target host up to its maximum capacity (until it doesn’t undergo overload). 

However, this approach cannot be an effective method only because it might cause 

iterative overloading at the host and hence can adversely affect the SLA. On the other 

hand, in a large-scale cloud infrastructure often called MDC there can be 

“Heterogeneous Cloud Configuration (HCC)” that can have hosts with different 

memory capacity. Similarly, the VMs or allied tasks too can have different demands 

or bin sizes. In such cases merely using CPU utilization based migration policy can’t 

be effective to achieve SLA centric load-balancing. Literatures [21] reveal that 

migrating VM to a suitable host or PM is a NP-hard problem, which can be 

significantly solved using meta-heuristics models such as Evolutionary Computing 

(EC). Towards this objective a few efforts have been made to use PSO [11-15], ACS 

[20-22], GA [16-19], HBF [23], CS [24], etc., where these approaches have been 

applied mainly for identifying the sub-optimal solution (i.e., suitable host). 

Undeniably, these approaches require certain Objective Functions (OF) to maintain 

optimal migration scheduling, for which CPU availability has been a most-used 

approach, though, in this paper we intend to use dynamic node (host) parameters such 

as bandwidth availability as well as CPU utilization at VM to perform migration 

decision (say, OF). VM migration or allocation policy signifies a problem of bin 

packing with varied host configuration (often called bin sizes (CPU utilization), items 

(VMs with distinct ongoing processes) and prices (it can be computational cost, energy 

consumption or SLA). Being an NP-hard problem, VM allocation requires exploiting 

multiple network parameters to select certain optimal host so as to accommodate VMs 

to be migrated from overloaded host. As stated, to solve the problem of NP-hard 
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numerous EC algorithms or meta-heuristic models, such as ACO, PSO, CS, HBF, GA, 

etc., have been applied. However, majority of these classical EC algorithms suffers 

local minima and convergence issues. Furthermore, the use of static “stopping criteria” 

and significantly huge “iterations” make these existing approaches undergo resource 

and time exhaustion and hence confined for online decision purposes. To solve such 

issues, in this paper a novel and robust EC model named Adaptive Genetic Algorithm 

(AGA) which has been further augmented as Adaptive Re-sampling Genetic 

Algorithm (ARGA) has been developed. The proposed ARGA model intends to 

alleviate the local minima and convergence issues in addition to the Adaptive Genetic 

Parameter Scheduling (AGPS) that estimates the probability of crossover and 

mutation dynamically by exploiting the number of chromosomes having same fitness 

value. This method can enable optimal solution retrieval even with lower iterations 

without causing any local minima and convergence problem. In ARGA, re-sampling 

refers an iterative method where based on the “number of chromosomes having same 

fitness value (i.e., OF)” it re-samples search space or solution set and thus reduces the 

size of search space. This makes overall computation more accurate and swift. The 

detailed discussion of the proposed ARGA based VM migration and load-balancing 

is given in the subsequent sections. 

3.3.4. ARGA assisted VM placement and Load balancing   

Since, our proposed virtualization based VM migration model incorporates multiple 

heterogeneous hosts and functional VMs simultaneously it has been simulated over 

CloudSim, a well-known simulator. Here, each host possesses one or multiple 

Processing Elements (PEs) and functional VMs on a host can have one or multiple 

(functional) cloudlets. To perform load balancing in our proposed model, user requests 

are presented as cloudlets, where the resource needed or demanded by a user (say, 

cloudlet) is defined in terms of Million Instructions Per Second (MIPS). Thus, 

considering the demands of each autonomously functional VMs, PMs and allied tasks, 

our proposed ARGA model requires identifying a suitable host to accommodate each 

demands without causing any significant SLA violation. In this approach ARGA 

exploits all connected hosts as input and generates dynamic resource use-map, where 

the overall MIPS is split into different network components (i.e., VMs and hosts). 

ARGA performs VM migration based on the upper threshold values as it enables 

satisfying transient variations in resource demand by functional VMs on a host. To 

perform VM migration or load-balancing scheduling CPU utilization pattern of the 

VMs in conjunction with host’s resource availability have been taken into 

consideration.  

Recalling the functional paradigm of the native GA which at first generates 

(random) population as the initial solution, we intend to identify the optimal or sub-

optimal host to accommodate a VM’s MIPS demands while assuring minimum 

number of migrations, minimum SLA violation and downtime. In our proposed 

model, ARGA at first generates a set of population randomly where each population 

element can be stated to be a tree encompassing GMC as the root, hosts from the next 

level nodes and VMs as the Child host nodes (Fig. 2). 
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In this method, for individual mapping ARGA calculates the total resource 

consumption (in terms of MIPS) across the MDC deployed. Now, ARGA considers 

previous patterns of the VM migration mapping onto the hosts, CPU demand pattern 

(in MIPS), number of migrations, probable VM mapping, hosts resource availability 

as the population, where it intends to identify a host with sufficient MIPS and 

minimum migration as well as SLAV. Once generating the initial population, ARGA 

selects two VMs mapping possessing minimum migration time and number of 

migrations, which have been further processed for GA functions such as crossover, 

fitness estimation, mutation, and selection, etc. Now, the mapping obtained for 

demands (i.e., VMs demands) onto the host(s) is appended to the population based 

on the fitness values or CPU availability. In our proposed mode the crossover 

operator (𝑃c) exhibits host selection by assessing CPU utilization pattern of each host 

and allied VMs mapping information. In our proposed model, GA parameters 𝑃c 

and 𝑃m signifying crossover and mutation probability, respectively intends to reduce 

the solution space (or the host nodes) by migrating offloaded (from over-loaded host) 

and/or accommodating VMs to the hosts with minimum migration counts and SLAV.  
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4
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PMn
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Fig. 2. Implementation model of the proposed ARGA assisted load balancing 

Unlike traditional GA algorithm, our proposed ARGA VM placement policy 

employs dynamic or adaptive genetic parameters (i.e., 𝑃c and 𝑃m) that not only 

alleviates that problem of local minima and convergence (over-fitting and under-

fitting) but also reduces search space (say, solution space) and hence eventually 

achieves time-efficient load balancing. Unlike classical GA where a predefined 

stopping criteria such as the number of generations or iterations (often selected as 

500 or more) ARGA considers the number of chromosomes (solutions) having same 

fitness value. This contribution can be of utmost significance, especially in the large-

scale cloud infrastructure or MDC where hosts can in large numbers and hence search 

space or solution set might keep on bulging over generations. In addition, multiple 

solutions with the same fitness value could force model to undergo pre-mature 

convergence. In such cases the implementation of our proposed ARGA scheduling 
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model with adaptive parameter (i.e., 𝑃c and 𝑃m) selection can achieve optimal 

migration scheduling. Mathematically, the dynamic update of 𝑃c and  𝑃m is given by  

(11)   (𝑃c)𝑘+1 = (𝑃c)𝑘 −
𝐶1∗𝑁SSF

7
, 

(𝑃m)𝑘+1 = (𝑃m)𝑘 −
𝐶2∗𝑁SSF 

7
. 

In above equation the variables (𝑃c)𝑘+1 and (𝑃m)𝑘+1 signify the updated 

crossover and mutation probability, while its current probability is given by (𝑃c)𝑘 and 
(𝑃m)𝑘. Furthermore, we have considered static values for the coefficient parameters 

𝑐1 and 𝑐2 as 0.1 and 0.01, respectively. The parameter 𝑁SSF signifies the total 

chromosome (set of solution) having similar fitness value. Now, to implement ARGA 

model for VM placement, recalling the fact that any heuristic algorithm (including our 

proposed ARGA algorithm (modified GA)) requires certain goal-centric objective 

function to perform computation and retrieve optimal solution, we have estimated OF 

by exploiting previous VM mapping information and host’s CPU utilization pattern. 

The detailed discussion of the estimation model is given as follows: 

Consider that the hosts across MDC be 𝒫ℳ = {𝓅𝓂1, 𝓅𝓂2, 𝓅𝓂3, ⋯ , 𝓅𝓂𝓂}. 

Let, 𝓅𝓂𝒾 be the host node 1 ≤ 𝒾 ≤ 𝓂 signifying 𝒾-th PM. Similarly, the set of VMs 

operating across the MDC be VM𝒾 = {𝓋𝓂1, 𝓋𝓂2, 𝓋𝓂3, ⋯ , 𝓋𝓂𝓃,𝒾} and the 𝑖-th 

VM connected to the 𝑗-th host be 𝓋𝓂𝒿,𝒾. Let, 𝓍𝒾,𝒿  be the binary factor stating whether 

the 𝒾-th VM is connected to the 𝒿-th host. Now, let 𝒫𝓇,𝒾 be the resource availability of 

MIPS available at the 𝒿-th host. Now, let the MIPS or CPU demanded by the 𝒾-th VM 

be 𝓋𝓇,𝒿. With this operating scenario, the total load on a host can be defined as the 

cumulative load pertaining to all connected VMs (at that host). Let, 𝒯 be the duration 

of the previous (event) observations. In such manner, to perform time-series analysis 

the sub-intervals can be retrieved by dividing total span 𝒯 into 𝓆 − 1 sub-intervals. 

Mathematically,  

(12)   𝒯 = [(𝓉2 − 𝓉1)(𝓉3 − 𝓉2) ⋯ (𝓉𝓆 − 𝓉𝓆−1)], 

where the time slot (𝓉𝓀 − 𝓉𝓀−1) refers the duration 𝓀, where for each slot (i.e., 𝓀), 

the total CPU utilization at a host can be obtained using (13). Mathematically, 

(13)   CPU𝒾,Util(𝓀) = ∑ 𝓋𝓂CPU,𝒿 /𝓅𝓂CPU,𝒿
𝓃
𝒿=1 , 

where 𝓀 states the duration for which the MIPS or CPU utilization has been collected. 

Here, we have estimated average CPU utilization to make scheduling appropriate or 

to avoid any over-fitting or under-fitting probability. Mathematically, the average 

CPU utilization is obtained using  

(14)   𝓅𝓂𝒾,AvgUtil = ∑ 𝓅𝓂𝒾,Util
𝓉𝓀−𝓃
𝓉−𝓉𝓀

(𝓉)/(𝓆 − 1). 

Here the denominator component 𝓆 − 1 signifies the total number of sub-intervals in 

𝒯 time period. 

Let, 𝓅𝓂𝒾,be the CPU available of 𝒿-th host during 𝓉𝓀, and hence the resource 

available can be obtained for the using current CPU utilization information at a host. 

Let, 𝓅𝓂𝒾𝐶(𝓀) be the CPU consumption at the 𝒿-th host during the previous time 

interval. Mathematically,  

(15)   𝓅𝓂𝒾𝐶(𝓀) = 𝓅𝓂𝒾𝓌(𝓀 − 1) + (𝓅𝓂𝒾𝓌(𝓀 − 1) + 

+(𝓅𝓂𝒾𝓌(𝓀))(𝓉𝓀 − 𝓉𝓀 − 1). 
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The CPU utilization 𝐶(𝓅𝓂𝒿) at a host 𝓅𝓂𝒿 can be obtained in terms of the CPU 

usage CPU𝒾,Util(𝓀). Mathematically,  

(16)   𝐶(𝓅𝓂𝒿) = 𝒦𝒿 .  𝑐𝒿
max + (1 − 𝓀𝒿) . 𝑐𝒿

max . CPU𝒾,Util(𝓀). 

Here the variable 𝒦𝒿 signifies the MIPS consumed when the host 𝓅𝓂𝒿 was in 

idle case, while c𝒿
max is the MIPS used (at 𝓅𝓂𝒿) when it was being used completely. 

CPU𝒾,Util(𝓀) states the CPU utilization by 𝓅𝓂𝒿 at certain time instant 𝓀. Estimating 

above parameters, the CPU utilization at each host has been obtained. Now, the overall 

CPU utilization at a host 𝐻𝐶(𝓀) during overall process duration can be obtained using 

the following equations: 

(17)   𝒟𝐶(𝓀) = ∑ 𝓅𝓂𝒾𝐶(𝓀)𝓂
𝒾=1 . 

Here, in our proposed ARGA assisted load-balancing model VM migration problem 

has been solved by deriving a set of mapping from 𝓋𝓂 to the host(s) (𝓅𝓂) while 

reducing of (18), in such manner that 

(18)   ∀𝒾 ∑ 𝓍𝒾𝒿−1,𝓂
𝒿=1  

(19)   ∀𝒿 ∑ 𝓋𝓂𝐶𝑃𝑈,𝒾𝒳𝒾𝒿 ≤ 𝓅𝓂CPU,𝒿
𝓃
𝑖=1 . 

Noticeably, in our proposed ARGA assisted VM migration model once the 

stopping criteria has been met, the list of sorted VMs which need to be migrated and 

the list of PMs having sufficient resources to accommodate aforesaid VMs are 

obtained. Now, obtaining this list ARGA matches these two lists where it intends to 

identify most suitable PM where to migrate the VM. To achieve an optimal mapping 

relationship we have derived a function called Fitness-Function (FF), which is 

obtained using  

(20)   FF(𝓋𝓂𝒾 , 𝓅𝓂𝒾) =
𝓅𝓂CPU,𝑖−𝓋𝓂CPU,𝒾

𝓋𝓂CPU,𝒾
. 

Here 𝓅𝓂CPU,𝒿 represents the surplus resources available at the 𝒿-th host (PM), while 

𝓋𝓂CPU,𝒾 states the resources demanded by ith VM, 𝓋𝓂CPU,𝒾. In case of  

FF < 0, it signifies that the host does not have sufficient resource to accommodate the 

VM’s demands and hence cannot be suitable to migrate i-th VM onto that specific 𝑗-th 

PM or host. Thus, each VM compares with all the available hosts or PMs so as to 

identify the optimal host to accommodate the task. This process continues until all 

VMs (from overloaded hosts) are migrated to the suitable host(s) without influencing 

SLA provision. The simulation results obtained and their respective inferences are 

presented in the subsequent section.  

4. Results and discussions 

This section primarily discusses the experimental design and allied simulation 

outcomes. The results obtained and their inferences are also discussed in this section.   

4.1. Experimental design 

Considering the experimental evaluation need for the proposed load balancing model, 

we have applied CloudSim toolkit package, which is one of the best known 

virtualization simulator, especially industrially acknowledged for its generalization 
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and scalable simulation abilities towards numerous application specific simulation. It 

can provide varied significant performance metrics including energy efficiency or 

consumption, SLA violation metrics, etc. To perform simulation over real-time cloud 

event traces, we used CoMon data project, a significant cloud monitoring 

infrastructure for PlanetLab. Considering configuration or the cloud infrastructures, 

we used benchmark data encompassing CPU utilization traces by thousands of 

servers located at the different geographical locations. The cloud monitoring traces 

of encompasses the tasks information collected during 10 randomly chosen days in 

between March and April 2011. Noticeably, the considered PlanetLab data or cloud 

traces contain the trace-values or information (CPU utilization) at the interval of 5 

minutes. As hardware configurations two distinct and autonomously operating server 

configurations have been considered. The first server is armoured with the dual-core 

CPUs, single HP ProLiant ML110 G5 server with Intel Xeon 3040 and 2 cores ×1860 

MHz processors. The other server was configured with HP ProLiant ML110 G5 with 

Intel Xeon 3075, dual cores × 2660 MHz operating processors. Both servers were 

armoured with a 4GB RAM to support real-time computation. Noticeably, each 

server was having a 1 GB/s network bandwidth and to illustrate the efficacy of our 

proposed load balancing model the resource utilization of an application was 

generated stochastically where the overall RAM utilization was maintained at 50% 

to avoid any probable hanging or pre-mature shut-down condition.  

4.2. Experimental results 

To assess the efficiency of the proposed ARGA assisted load balancing model, we 

simulated different set of algorithms and allied configurations to perform load 

balancing. Hence, we have incorporated the best recommended models in 

conjunction to our novel proposed load-sensitive migration policy. We compared the 

simulation outputs of our proposed model with static THReshold (THR) and classical 

IQR-RS (IQR with Random Selection (RS) Policy) based approaches [2] with safe-

parameter of 1.5. Additionally, IQR with MS selection policy and ARGA VM-

migration scheduling has been considered and to assess relative performance, MMT 

selection policy has also been taken into consideration. Noticeably, in IQR+MS 

model, the safe parameter of 1.2 is considered. To examine effectiveness of our 

proposed model a few QoS centric performance variables have been derived and a 

snippet of these is given as follows:   

To enable QoS centric cloud-infrastructure solution, performance can be 

visualized in the form of SLA constraints that refer enterprise service-level 

requirements for data center. It can be characterized in terms of the minimum latency 

or downtime, maximum response time, minimum migration counts, etc., 

(B e l o g l a z o v  and B u y y a  [2]) too recommended SLAV metrics (SLA 

Violations) to assess the SLA delivered by a VM in an IaaS cloud infrastructure. It 

can be characterised in terms of either the SLA Violations caused because of Over-

utilization (SLATAH) (21) or due to the Performance Degradation in Migrations 

(PDM) (23). Mathematically,  

(21)   SLATAH =
1

𝑁
∑

𝑇𝑠𝑗

𝑇𝑎𝑗

𝑁
𝑖=1 . 
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Here the variable 𝑁 signifies the total hosts or PMs; 𝑇𝑠𝑖 states the overall span 

in which the 𝑗-th PM underwent 100% resource utilization and hence imposing SLA 

violation. The other variable 𝑇𝑎𝑗 presents the total i-th PM being in the active state.  

(22)   SLATAH =
1

𝑀
∑

𝐶𝑑𝑖

𝐶𝑟𝑖

𝑀
𝑗=1 . 

In (22), 𝑀 represents the total VMs; 𝐶𝑑𝑖 refers the performance degradation 

pertaining to the 𝑖-th VM caused by migrations and 𝐶𝑟𝑖 states the overall CPU 

capacity demanded by the 𝑖-th VM during its lifetime. Eventually, the overall SLA 

violation can be mathematically derived as  

(23)   SLAV = SLATAH × PDM. 

The above equation reveals that both SLATAH as well as PDM contribute 

similar significance towards SLA violations. In this paper we have estimated SLAV, 

number of migration and downtime as the performance parameters. To ensure SLA 

centric and QoS oriented reliable computation it is inevitable to maintain minimum 

downtime. In addition to the above stated performance variables, we have examined 

our proposed load balancing in terms of the total number of migration. Undeniably, 

higher number of migrations imposes high response time and even increases the 

probability of downtime [3]. In our proposed ARGA assisted load balancing we 

intend to reduce the number of migrations so as to achieve QoS as well as SLA 

provision. The results obtained for the above stated variables are given as follows: 

We have examined the performance of our proposed load balancing model with 

two VM selection policies MMT and MC. Similarly, two VM migration policies have 

also been applied including ACA (as existing meta-heuristic model) and ARGA as 

our proposed placement policy. Noticeably, in the simulation scenarios, we have 

applied IQR and LRR as the stochastic load detection approach. In numerous existing 

works authors have compared their respective performance in reference to the static 

thresholding based load detection and RS based VM placement. However, such 

approaches cannot be assured to have optimality due to dynamic nature of load 

variations (i.e., application specific resource demands variations) and iterative 

overload conditions due to classical RS approach. Even the native RS method does 

not consider micro-level SLA objective to perform consolidation. Therefore, in this 

paper we emphasized simulating our proposed model with an enhanced stochastic 

prediction assisted load measurement (proposed dual-level dynamic threshold 

assisted load estimation), where it is hypothesized to outperform classical IQR or 

LRR individually. The simulation outcomes are obtained with the proposed dual-

level dynamic threshold assisted load estimation model, which has been followed by 

MMT and MC based VM selection and ARGA assisted VM migration. Observing 

key characteristics that MMT which considers migration time as a factor to identify 

a VM to be migrated or offloaded from the overloaded host is not concerned about 

the application demands scenario or resource access/demands type. On the other hand 

MC type VM selection approach considers hosts as well as VMs resource needs and 

based on the correlation between the resource demands patterns and thus based on 

optimal correlation identify a VM or VMs to migrate from the overloaded host. Since, 

this method considers application specific resource demand patterns; scheduling 

migration accordingly can help retaining maximum reliable offloading. In other 

words, MC based VM selection can help retaining higher reliability and minimum 
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possible vulnerability of suffering pre-mature task’s downtime. We have compared 

ARGA based migration scheduling with ACO algorithm. Though, ACO is also a 

heuristic approach that intends to solve Travelling Salesman Problem (TSP) by 

exploiting Ant’s movement or path planning phenomenon, its efficacy can be limited 

for the optimization problem with a large number of search space or population with 

dynamic non-linearity. Figs 3-6 presents the simulation results obtained with respect 

to MMT selection policy.  

Fig. 3 presents the SLAV performance by our proposed ARGA VM-migration 

policy and the existing ACO based migration. Noticeably, here we used MMT as the 

VM selection policy to offload VM from the overloaded host. Observing the results 

it can be found that the proposed ARGA based model exhibits lower SLAV than the 

existing ACO based load balancing model. 

Fig. 4 presents the SLA performance degradation with MMT selection policy. 

Result (Fig. 4) affirms efficiency of the proposed ARGA model over ACO based 

migration. Fig. 5 presents the SLA time per active host, where we observed that the 

proposed model exhibits lower SLA (downtime or loss) per active host than the 

classical ACO based scheduling. As already indicated that to achieve QoS delivery 

and SLA assurance maintaining lower migration count is a must. With this motive, 

the simulation performed exhibited that in our proposed model ARGA based 

scheduling incurs lower migration counts than the ACO (Fig. 6). Figs 7-10 presents 

the results obtained with MC selection policy. Observing these results, it can be found 

that the proposed ARGA assisted VM migration scheduling or load balancing model 

outperforms ACA based approaches in terms of SLAV (Fig. 7), SLA Performance 

degradation (Fig. 8), SLA time per active host (Fig. 9) and the number of migrations 

(Fig. 10). 
 

        
 

Fig. 3. SLAV analysis with MMT selection policy   Fig. 4. SLA Performance degradation analysis  

                                                                                       with MMT selection policy 
 

 

Fig. 5. SLA time per active host                                    Fig. 6. No of Migration analysis 

with MMT selection policy                                           with MMT selection policy 
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                Fig. 7. SLA violation analysis                   Fig. 8. SLA Performance degradation analysis  

with MC selection policy                                     with MC selection policy 

 

  
Fig. 9. SLA time per active host                          Fig. 10. No of Migration analysis 

with MC selection policy                                     with MC selection policy 
 

Observing the performance results (Figs 3-8), it can be found that the proposed 

ARGA load balancing model can be more effective with dual-level dynamic 

threshold assisted load estimation overload detection and MC based selection policy.  

The comparative performance results are depicted in Table 1. The overall results 

illustrate that the proposed ARGA based load balancing (particularly as VM 

migration policy) can be optimal with our proposed dual-level dynamic threshold 

assisted load estimation and MC based VM selection. This approach cannot only 

ensure SLA provision but can also augment QoS assurance over dynamic IaaS cloud 

infrastructure. 
 

Table 1. ARGA performance with MMT and MC VM selection policy 

QoS Parameters ARGA-MMT ARGA-MC 

SLA Violation 0.00315 0.16416 

SLA Performance Degradation 6 0.203 

SLA time Per Active Host 4.88666 5.479 

Number of VM migrations 21465 21146 

Thus, with the obtained results and allied inferences the following cloud load 

balancing model can be derived. 
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Table 2. Proposed load balancing model for IaaS 

Parameters Solution 

Cloud/Service type IaaS 

Data type Dynamic cloud trace over definite period 

Load Measurement 
Dual-level dynamic threshold assisted load estimation 

(IQR+LRR with safe parameter 1.2) 

VM Selection MC 

VM  Migration scheduling ARGA (Proposed algorithm) 

5. Conclusion  

To achieve a robust SLA and/or QoS centric load balancing it is inevitable to augment 

the above stated three phases. Considering this as motivation in this research the focus 

was made on augmenting each participating phases where at first early overloading 

prediction model was implemented that helped making timely migration decision. On 

the other hand, the consideration of MC model as VM selection strategy significantly 

assisted migrating only that task or VM, which could reach to the targeted host in 

minimum possible time. This approach significantly reduced the probability of any 

(high) downtime or SLA violation. In addition, the use of ARGA helped achieving 

optimal VM migration or scheduling where the tasks were migrated successfully 

without causing any significant violation in SLA provision. Noticeably, unlike 

classical meta-heuristic based VM migration the use of ARGA alleviated the problem 

of local minima and convergence that consequently strengthened the proposed load 

balancing method to achieve QoS and SLA centric load balancing over large-scale 

cloud data centers. Since the proposed load balancing method implements 

optimization at all comprising functions such as prediction based load sensing, SLA-

sensitive VM selection and ARGA assisted migration scheduling, it can be applied 

for any number of VMs and hosts and therefore its robustness gets confirmed. The 

simulation results with different load conditions and configurations too have 

confirmed that the proposed load balancing model outperforms state of art ACO 

based approach. Considering overall approach it can be stated that the proposed load 

balancing model can be easily implemented with real-time purposes where it can 

enable timely and QoS oriented cloud computing services or processes. 
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