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Abstract: This paper introduces an application of an Ant Colony Optimization 

algorithm to optimize the parameters in the design of a type of nonlinear robust 

control algorithm based on coefficient diagram method and backstepping strategy 

with nonlinear observer for the electrohydraulic servo system with supply pressure 

under the conditions of uncertainty and the action of external disturbance. Based on 

this model, a systematic analysis and design algorithm is developed to deal with 

stabilization and angular displacement tracking, one feature of this work is 

employing the nonlinear observer to achieve the asymptotic stability with state 

estimations. Finally, numerical simulations are given to demonstrate the usefulness 

and advantages of the proposed optimization method.  

Keywords: Ant colony optimization, Coefficients diagram method, Backstepping 

control, Electrohydraulic servo systems, Observers. 

1. Introduction 

ElectroHydraulic Servo Systems (EHSS) are usually employed for handling heavy 

loads with fast response [1-2], these systems provide many advantages over electric 

motors such as high stiffness, high force and torque, self-lubricating properties and 

low cost. They are usually used in robotic manipulators, aircraft flight-control 

actuators, hydraulic elevators, active suspension systems and automated 

manufacturing systems. Its essential components are a pump, a relief valve, a 

servovalve and a hydraulic actuator. The pump provides a flow of fluid in the system. 

The relief valve transmits an amount of flow in the pressure line to bound the supply 

pressure of the system; the servo-valve commands the motion and the pressure of the 

hydraulic actuator. The hydraulic actuator pilots the load, transmitting the desired 

displacement, velocity and pressure to the load. The dynamic behavior of hydraulic 

systems is highly nonlinear which, in turn, cause complexities in the control of such 
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systems and make control design for high performance very challenging. Also, the 

hydraulic parameters may change due to the variation of temperature and the 

entrapped air in the fluid. Finally, leakages, external load, friction and noise 

influences result in defies to ensure precise control. 

Various control methods have been established to progress the tracking 

performance of the angular displacement and mitigate the effects of uncertainties in 

EHSS. In some studies, Feedback controllers using approximate linearization of the 

nonlinear dynamics were investigated, Standard linear control theory is applied, their 

performance is only guaranteed in the environs of the operating point. The sliding 

modes control is applied, it is robust to modeling error with certain conditions, in 

terms of the uncertain parameters affecting the system, and these methods produce 

the problem of chattering, due to the switching input. Adaptive feedback linearizing 

controllers are used to control the velocity and the force of an EHSS system. 

However, the controller only applies to velocity control in a unidirectional sense. 

To resolve the declared problems, a level nonlinear robust controller is created 

by combining the advantages of Coefficient Diagram Method (CDM) [3] and 

backstepping method [4-12], CDM-backstepping with nonlinear observer is 

established to control the EHSS in company of uncertainties where exploiting the 

robustness of CDM and asymptotic convergence of backstepping. The concept of 

backstepping is easy. At every step of backstepping, another control Lyapunov 

function is developed by extension of the control Lyapunov function from the last 

step by a term [4]. The approach also permits the insertion of other nonlinearities into 

the control laws for the elimination of undesirable uncertainty. Under the assumption 

that the states of our system are not accessible, an observer is created to estimate 

unmeasurable states. Based on the Lyapunov stability analysis, the precision of 

position control and the convergence of estimating errors can be ensured. From the 

numerical results, it can be seen that the controlled system has well performance. All 

system states are bounded and the angular displacement errors of the EHSS 

asymptotically converge to zero. 

CDM-backstepping offers a good alternative to conventional control systems. 

However, its parameters must be adjusted by trial and error which takes a lot of time 

for a designer, Ant Colony Optimization (ACO) [15-19] is proposed for this purpose 

to ensure height performance with optimized parameters control [20-24], it has been 

successfully applied to various problems [25-28]. In this paper we describe the 

proposed methodology to design a CDM-backstepping control using the ACO 

metaheuristic. The controller parameters are designated based on evaluation of 

objective function ITAE through simulations and the proposed algorithm is viewed 

as a series of steps, allowing faster optimization and better results. 

The paper is organized as follows. In Section 2, the EHSS state space model is 

presented. In Section 3, the CDM controller is designed for linear system. In  

Section 4 CDM-backstepping with observer is developed. Then, stability is 

demonstrated using Lyapunov stability analysis. Section 5 clarifies the concepts of 

ACO approach. In Section 6, the numerical results are examined to appear the 

effectiveness of the proposed control scheme; finally conclusions are presented in 

Section 7. In Appendix are given actual parameters of the EHSS. 
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2. EHSS state space model 

The EHSS model is designated by the next fourth order nonlinear state-space model: 
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where x1(t) is the angular displacement; x2(t) is the angular velocity; x3(t) is the motor 

pressure difference due to the load; x4(t) is the servovalve opening area; u(t) is the 

control input; y(t) is the system output. The parameters ai and bi are set as 

1 2 m 3 m m 4 sm m 5 6,  ,  4 ,  4 ,  1 ,  ,a B J a D J a D V a C V a a K              

 1 2 f 2( ) sgn( ( )) ,Ib x T x t T J    

  2 3 4 m 4 3( , ) 4 sgn( ( )) ( ),d sb x x C V P x t x t     

where I is the total inertia of the motor; Dm is the total oil volume in the two chambers 

of the actuator; B is the flow discharge coefficient; Tf is the Coulomb friction 

coefficient; Tl is the load torque; σ is the fluid bulk-modulus; Vm is the total oil volume 

in the two chambers of the actuator; Cd is the flow discharge coefficient, ρ is the fluid 

mass density; Csm is the leakage coefficient; Ps is the supply pressure; K is the 

servovalve amplifier gain and υ is the servovalve time constant. 

3. CDM control design 

CDM control is an algebraic method with polynomial form, it permit designing the 

controller under the requirements of stability, time domain performance and 

robustness. The performance specification, equivalent time constant and stability 

index are definite in the closed loop transfer function and form a relationship to the 

controller parameters algebraically [3]. The output of the controlled is expressed as 

(2)  
( ) ( ) ( ) ( )

,
( ) ( )

N s F s A s N s
y r d

P s P s
    

where y is the output; r is the reference input and d is the external disturbance signal; 

N(s) and D(s) are the numerator and the denominator of the transfer function of the 

system, respectively; A(s) is the denominator polynomial of the controller transfer 

function, while F(s) and B(s) are named the reference numerator (pre-filter) and the 

feedback numerator polynomials of the controller transfer function. 

As well, P(s) is the characteristic polynomial [3] and is specified as 
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indicate the time response speed, also the stability indices 2
1 1i i i i     for i=1 

to n – 1, give the stability and the waveform of the time response [3]. The settling 

time ts and the equivalent time constant T0 are related as  0 s 2 5 3T t . ~ , with 

1 02 5 2, 2 ( 1), .i nγ . , γ  i ~ n  γ γ        The settling time and the time constant 

can be modified to provide the needed performance, therefore  

γi >1.5 for all i=1~(n  – 1). Finally the pre-filter )()()(
0

sNsPsF
s


 
is used to 

decrease the steady state error to zero.  

4. Nonlinear observer based on CDM-backstepping 

In this section, we present the main idea to design a nonlinear observer for the 

considered system characterized by the local Lipschitz condition, an observer-based 

CDM-backstepping control method is studied to deal with the angular displacement 

control problematic, while the angular displacement is the only measured signal.  

To offer the nonlinear observer, the Lipschitz condition on the term g(x) given 

in (1) is in a closed-bounded region Ω, with ║g(q1) – g(q2)║≤κ║q1 – q2║, q1, q2 ϵ Ω 

and κ is the constant Lipschitz.  

The nonlinear observer of the system given by (1) has the following form [13] 

(4)   c
ˆ ˆ ˆ ˆ( ) ( ),

ˆ ˆ,

x Ax g x B u H y y

y Cx
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where H = (h1 h2 h3 h4) is the observer gain. Describe the estimation error by 

o ˆ.e x x   Consequently, the dynamics of error is specified as 

(5)   o o o oˆ ˆ( ) ( ) ( ) ( ) ( ).e A HC e g x g x A e g x g x        

Since the pair (A, C) is detectable [13], a stabilization observer gain H is 

acquired such that the closed-loop system matrix Ao=(A – HC) is Hurwitz. There are 

two symmetric positive definite matrices P and Q with Ao
T P+PAo= – Q.  

Consider the Lyapunov function candidate Vo=eo
TPeo [14], its derivative is 

(6)   
 

   

T T T
o o o o o o

2 2T T
o o o min o o

ˆ( ) 2 ( ) ( )

ˆ2 ( ) ( ) ( ) 2 .

V e A P PA e e P g x g x

e Qe e P g x g x Q P e e  

    

        
 

Provided the condition  min ( ) 2 0Q P     which is fulfilled by suitable 

design, the asymptotic convergence of estimation error eo can be guaranteed. 

Consider the dynamics of EHSS with the angular displacement 
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(7)    
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Describe the tracking error z1 =x1 – xd with xd is the desired displacement, then 

1 1 d 2 o2 dˆz x x x e x     ; The first lyapunov function is 2
1 1 o0.5V z V  , its 

derivative is 1 1 1 oV z z V  ,  
2 2
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 
2

1 1 2 o2 d 1 o ,V z z e x e       where eo2 =x2 – x̂2 and x̂2 is considered as the 

control input, after that describing the stabilizing control law 1 1 1 dc z x    , where 

c1>0, this guide to the tracking error z2 = x̂2 – φ1. Then,  
22
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By using the generic inequality z1eo2≤κ1z1
2+(1/4κ1)eo2

2, with κ1>0, one yields 
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If c1 and κ1 are such that ω >1/4κ1 and c1 > κ1, then 0   ,
1

2

11211
 czczzV .  

To deal with the control of the subsystem (7), the state x̂3 is manipulated as an 

independent input. The time derivative of z2 is given by 

(9)    2 2 1 1 2 2 3 1 2 2 o1 1 2 d 1 o2 dˆ ˆ ˆ ˆ ˆ( ) ( ) .z x a x a x b x h e c x x c e x            

Select the second Lyapunov function as V2=V1+0.5z2
2+Vo, its derivative is  

(10)    
22

2 1 2 2 o 1 2 1 1 2 2 o .V V z z V z z c z z z e          

Replacing (9) into (10) results in 
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2
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1 2 2 o1 1 2 d 2 o2 d o
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Next, the desired command input φ2 of x3 is selected as 

(12)     2 2 1 2 1 2 2 o1 1 2 d d 1 2 2ˆ ˆ ˆ1 ( ) ( ) .a a x b x h e c x x x z c z             

Describe the tracking error  z3 = x̂3 – φ2, with easy manipulation, one yields 
22 2

2 2 2 3 1 1 2 2 1 o2 2 o .V a z z c z c z c e z e      Using inequality eo2z2≤κ2z2
2+(eo2

2/4κ2),  

κ2>0, the last equation can be reorganized as 
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Tacking ω>c1/4κ2, c2>c1κ2 and c ̅͢ 2=c2–c1κ2, It follows V̇2≤ a2z2z3– c̅͢ 1z1
2

 – c̅͢ 2z2
2. 

The time derivative of φ2 is given as 
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(16)    2
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Describe the stabilizing control law φ3 and the tracking error as  

(17)    4 4 3ˆ .z x    

Its time derivative is given as 4 4 3ˆ .z x    

Tacking ζ = x̂4  is the auxiliary variable, the control signal is written as follows  

(18)   o0 o1 oˆ ˆ( ) ( ) ( ),
du

a x u a x z t
dt
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where 

(19)    o o0 3 o0 o1ˆ ˆ ˆ( ) ( ) ( ) ( ) ,z t c x b x b x         

ao0(x), ao1(x), co0(x), bo0(x) and bo1(x) are nonlinear gains of nonlinear CDM. 

Consider the EHSS dynamic given by (1), in closed-loop with the nonlinear 

CDM control (18) and (19) and suppose that the gains  and cc are such that 

(20)    c0 4 2 3 4 3 o
0

ˆ ˆ ˆsign( ) ( ) ( , ) ( ) .
t

sc z z d b x x z h x         

The control signal that obliges z4(t) to converge to zero will be defined, let  
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With ko>0, then joining (17) with (19) gives 1 1
4 o0 c 3 o0 o( 1)z b c b z     and 

tacking co0(x)=bo0(x)=cc0, then o o0 4z c z  , its second derivative is given as    

(22)   o o0 3 o0( ) ( ) .z t c t c       

Combining (18), (19) and (21) gives 

(23)   5 4 1 o( ) ( ) .ct a t k z          

With kc1=kc
–1, using (22) and (23), gives o o0 3 o0 5 c1 o( ) ( ) ( ),z t c t c a k z     or 
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final Lyapunov function is 
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4
V , this 

designates that the objective of angular displacement control is finished. 

In order to accomplish effective disturbance rejection and robustness to 

uncertainties, it is crucial to find the optimum values δ, cc and the observer gain H, 

which are optimized using a global optimization algorithm as shown in Fig. 1.  

 
Fig. 1. Block-diagram of CDM-backstepping with observer for EHSS 

 

The performance criteria used to represent the performance of the controller and 

the observer is the integral of time multiplied by absolute error 



0

)( dttetJ , which 

gives small overshoots, well-damped oscillations and penalizes time while 

minimizing the error which are extremely suitable for an EHSS problem.  

5. The ACO technique  

ACO is an evolutionary algorithm, proposed by D o r i g o  and S t ü t z l e [15], 

D o r i g o and B l u m [16], and D o r i g o, B i r a t t a r i and S t ü t z l e [17], for 

resolving computational problems by finding minimum cost path in a graph from the 

colony to food as shown in Fig. 2. Really, the ants are directed by pheromone trails 

and heuristic information to start production of solution in the graph. In artificial ants, 
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better paths are found as a result of the global cooperation between ants in the colony 

[15]. Each ant updates the pheromones deposited to the paths it followed after 

completing one tour and updates rules; they are driven by a probability rule to choose 

their tour. When an ant k visited to i nodes and so far constructed the partial solution 

SP, the probability rule for k-th at a particular node i to choose the route from node i 

to node j is specified by   

(26)   
( )

( )  ( )
     if ( ),

 ( )  ( )

  0                                                    otherwise,
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where τij and ηij are the concentration of pheromone trail associated with the edge and 

the desirability between the nodes i and j; N(SP) and l are set of possible nodes and 

path that has not been visited by the ant k. The positive value α and β are the 

parameters controlling the relative importance of pheromone concentration and 

desirability respectively for each ant’s decision. The ants completes one tour after 

time and the pheromone concentration change in the trails as 

( 1)  (1 ) ( )ij ij ijk k        . The desirability is selected as ηij=1/Jiq, i=1, …, 6, 

and q=1, …, m, that is the heuristic information which is inversely proportional to 

the objective function associated to one node by considering all the rest of parameters 

values are equals to zeros. Where 0<λ<1 denotes the rate of pheromone evaporation, 

τ(k+1)ij and τ(k)ij illustrates the pheromone concentration of tour at moment k+1 and 

k. The increment Δτij is the pheromone deposited in the trails with 

1

( )  ( ) .
m

k
ij ij

k

k k 


   Where, m is the number of ants and Δτ(k)ij
k is the additional 

pheromone laid on the path (i, j) by the ant k at the end of iteration k, it is given as 

(27)   
  if the edge ( , )  globally best tour,

( )  
0            otherwise,   
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ij
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where Q is a constant parameter and Jiq
k
 is the value of the objective function for the 

ant k.  

Fig. 2 provides a graphical representation of the ACO approach of the proposed 

controller, the controller parameters l1, l2, l3, l4, δ and cc are organised in six column 

lists where each parameter value is designated by m valid digits (nodes), therefore, 
only one node denotes the optimum solution values of the controller’s parameters. 

Initially, all ants are distributed from random nodes of the construction graph and the 

pheromone levels τij associated with each arc (i, j) are set to an initial value, in each 

iteration all ants generate a probability vector based on the pheromone and heuristic 

values. Founded on this probability vector, at each step ants join one still unvisited 

nodes to their partial tour. The solution construction finishes once all nodes have been 

visited. 
 



 185 

 
Fig. 2. ACO graph 

6. Simulation results 

The simulation is carried out on EHSS to evaluate the validity of the angular 

displacement control for a constant and sinusoidal reference. This is illustrated in  

Fig. 3 to Fig. 10 and shows the performance of the observer as well as the controller 

in asymptotic convergence of the estimation and tracking errors. The simulation is 

achieved with the initial state x(0) = [0 0 0 0] and z(0) = [0.4 0 0 0], when the 

parameters of the ACO are: Ant number = 15, Q =120, Nodes in each vector = 100, 

the Maximum tour = 100, the rate of pheromone evaporation λ = 0.6, relative 

importance of pheromone concentration and desirability α=1, β = 1, respectively. 

6.1. Test one: Ideal case 

In the first simulations, non-zero initial errors are used, no uncertainties, no external 

disturbances, and no sensor noises. The EHSS is controlled to track a constant 

reference about a 1 rad in amplitude with the time span of 2.5 s. The controller 

performance is presented in Fig. 5, Fig. 6, Fig. 7 and exposes the time angular 

displacement of tracking and observer errors, its shows that ACO can reduce the 

settling time and control effort, thereby indicating its effectiveness.  

Table 1. The compare of each algorithm performance 

Algorithms δ cc
 

H ts(s)
 

J 

Traditional CDM-backstepping 35 0.25 [25 5 3 0.8] 0.14 
8.1×10–5 

ACO/CDM-backstepping 31 0.22 [22 4 2 0.5] 0.105 
1.05×10–5 

6.2. Test two: Uncertainties, external disturbance and noise 

To verify the robustness of the suggested controller, the hydraulic parameters are 

assumed to be 10% of uncertainties in total leakage coefficient and effective oil 

volume in system, the supply pressure, Ps is reduced by 80% of its nominal value of 

8.73 MPA between t=0.5 s and t=1 s and at t=1 s, Ps varies in a sinusoidal form as 

shown in Fig. 3. The fluid bulk-modulus, σ, by 25% between the moment t=1.5 s to 

t=2 s as shown in Fig. 4 and in the presence of a sinusoidal external load disturbance 

of amplitude 5 N.m, also we introduce 5% of random noise. The simulation results 

for a sinusoidal reference in the presence of these uncertainties are presented in  
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Fig. 8, Fig. 9, Fig. 10, and show the estimated angular displacements and control 

inputs. Fig. 8 shows time response of the process output with comparison of proposed 

and traditional controllers. It can be seen that the proposed controller produces much 

better performances in terms of robustness of parameters settings. It can exhibit time 

response without overshoot and reduces the settling time, this evidence of its 

swiftness, which is a great advantage in control. 
Table 1 provides a summary of the performance comparison between 

ACO/CDM-backstepping and traditional CDM-backstepping algorithms. 

 
Fig. 3. Simulation of uncertainty in the supply pressure  

 
Fig. 4. Simulation of the uncertainty in fluid bulk-modulus 

 
Fig. 5. Test one, Angular displacement: 1) Reference ACO/CDM-backstepping;  

2) Actual displacement; 3) Estimated displacement Traditional CDM-backstepping;  

4) Actual displacement; 5) Estimated displacement 

 
Fig. 6. Test one, Observer error for displacements: 1) ACO/CDM-backstepping;  

2) Traditional CDM-backstepping 
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Fig. 7. Test one, Control inputs: 1) ACO/CDM-backstepping;  

2) Traditional CDM-backstepping 

 
Fig. 8. Test one, Angular displacement: 1) Reference ACO/CDM-backstepping;  

2) Actual displacement; 3) Estimated displacement Traditional CDM-backstepping;  

4) Actual displacement; 5) Estimated displacement 

 
Fig. 9. Test two, Observer error for displacements: 1) ACO/CDM-backstepping;  

2) Traditional CDM-backstepping 

 
Fig. 10. Test two, Control inputs: 1) ACO/CDM-backstepping;  

2) Traditional CDM-backstepping 
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7. Conclusion 

The present work addressed an intelligent motion control strategy that makes possible 

the introduction of the ACO approach for tuning the parameters of the robust 

controller CDM-backstepping with observer for position tracking of EHSS, with 

supply pressure uncertainty. The asymptotic stability of the closed-loop system is 

demonstrated by utilizing the Lyapunov theorem. The simulation results clearly 

demonstrate that the proposed strategy is a significant optimization tool for the 

electrohydraulic servo system, to guarantees stability, ensures tracking with fast 

response, high precision strong robustness to disturbance and uncertainties, so that it 

may be useful for the position tracking of high-performance of industrial system. 
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Appendix  

Actual parameters of the EHSS  

I = 1.3 N.m.s2, Dm = 2.59×10–6 m3/rad, B = 10.36 N.m.s, Vm = 2.4×10–4 m3,  

Cd = 0.61, Tf = 322.5 N.m, Tl = 0 N.m, 4σ/Vm = 1.89×1013 Pa/m3, ρ = 874 kg/m3,  

υ = 0.0106 s, K = 1.54×10–6 m2/mA, Csm = 6.34×10–14 m5/(N.s), Ps = 8.73 ×106 Pa. 
 

Received: 11.08.2018; Second Version: 10.11.2018; Third Version: 24.11.2018; Accepted: 

20.12.2018 


