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Abstract: Since canonical PSO method has many disadvantages which do not allow 

to effectively reach the global minima of various functions it needs to be improved. 

The article refers to a novel Multi-Epoch Particle Swarm Optimization (ME-PSO) 

technique which has been developed by authors. ME-PSO algorithm is based on 

reinitializing of the stagnant swarm with low exploration efficiency. This approach 

provides a high rate of global best changing. As a result ME-PSO has great 

possibility of finding good local (or even global) optimum and does not trap in bad 

local optimum. In order to prove the advantages of the ME-PSO technique numerical 

experiments have been carried out with ten uni- and multimodal benchmark 

functions. Analysis of the obtained results convincingly showed significant 

superiority of ME-PSO over PSO and IA-PSO algorithms. It has been set that 

canonical PSO is a special case of ME-PSO. 

Keywords: Particle swarm optimization, multi-epoch technique, Benchmark 

functions, convergence. 

1. Introduction 

Bio-inspired optimization methods have great spread in many fields of the human 

activities [1]. The reasons are linked to their calculation advantages and 

implementation simplicity in different applications. One of the most powerful 

methods within such a class of methods is PSO [2]. The number of its applications is 

huge [2-6]. PSO and various modifications have been used for: learning and 

designing of artificial neural networks [2], calculations of various control problems 

[3, 4], signal processing [5], design [6], sentiment analysis [7], programming 

problems [8], etc. Almost in all of the referenced works were used modifications of 

the canonical PSO. 

Indeed, many optimization problems have complications (stochastic influences 

[9], non-linearity [10, 11], multidimensionality and multi-extremal features [12], 

multi-objectivity [8, 13, 14], necessity to find the global extremum, etc.) which cause 

attempts of deep modification of PSO. 

In this paper, we present a proposal, called Multi-Epoch Particle Swarm 

Optimization (ME-PSO). This method allows to improve significantly the 
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exploration ability of a swarm and makes possible to use computation resources in a 

more effective manner. 

2. Problem description 

According to PSO, at the beginning of the search process every particle in the swarm 

has random position. Rather quickly PSO finds local optimum, after that better local 

optimum and so on and so forth. As the algorithm continues the successive local 

optima slightly differ and the quantity of iterations, required to reach further local 

optima, is extending. Hence, the swarm tends to stagnation and efficiency of the PSO 

respectively reduces. This problem is known as a premature convergence. 

In order to overcome the premature convergence and improve PSO exploration 

ability a lot of its modifications have been proposed. Such modifications envisage 

various strategies: mutation [7], different topologies of the particles’ connections [15] 

and topology variation [16], alteration of a swarm population [17], changing 

parameters of a swarm [18], varying the initial position and velocity of a swarm [19], 

adding extra terms in velocity expression or modification of canonical velocity 

formula [20], using many swarms in co-evolution interaction [21], integration PSO 

with other optimization methods [22], etc. Note that presented classification is not 

complete. 

Some of the mentioned modifications have shown a good performance for test 

optimization problems. Nevertheless, there is a lack of the PSO modifications which 

allow to overcome the premature convergence in a simple manner. Here we mean the 

algorithms without high calculation complexity, the algorithms which are similar in 

simplicity to the canonical PSO. Hence, the further studies in the area of PSO-based 

techniques should be continued. 

3. Proposed ME-PSO technique 

3.1. Canonical PSO algorithm 

In the PSO method, a swarm is a set of particles which move on the surface of a 

minimized function in order to find global minimum of the function. During its 

movement the particle improves the found minima and exchange information with 

neighbors. The position of the i-th particle is a set of its coordinates (xi1, xi2,…, xiD) 

in the search domain with dimensionality D. 

At the initial stage of the PSO algorithm, the particles’ positions are randomly 

initialized. Each particle is also described by the velocity vector, which is usually 

zero-vector for the initial iteration. During subsequent iterations, the components of 

the position and velocity vectors of a particle are being updated according to the 

formulas 

(1)    
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where: ijv  and ijx  are the new j-th component of velocity and position vectors of the 

i-th particle; pij is the best position, that has been found by the i-th particle on the 
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previous iterations (personal best); gj is the best position, that has been found by the 

whole swarm on the previous iterations (global best); w is the inertial coefficient; c1 

and c2 are cognitive and social coefficients respectively; r1, r2 are random numbers 

that are generated on the interval [0, 1]. The inertial coefficient w determines the 

influence of the previous velocity of the particle to the ijv . The value of the cognitive 

coefficient c1 characterizes the degree of individual particle behavior, its “desire” to 

move towards personal best. The value of the social coefficient c2 reflects the degree 

of collective behavior, the “desire” to move towards global best. 

For the very first iteration the initial positions of the particles are considered as 

the best. 

An iteration of PSO algorithm includes applying the formulas (1) and updating 

the of pij and gj values according to the rules: 

(2)     
if ( ) ( ),

if ( ) ( ),

j j j j

j j

p x f x f p

g p f p f g

 


 

   

where f is a function to be minimized. 

PSO execution provides advantageous exploration of the minimized function. 

For simple functions PSO commonly finds global minimum. As for topologically 

complicated functions PSO algorithm finds bad local minimum. This disadvantage is 

caused by premature convergence of the algorithm. In the following we propose a 

simple modifocation of PSO which eliminates mentioned disadvantage. 

3.2. Essence of the ME-PSO technique 

Proposed ME-PSO algorithm is based on the monitoring of the global optimum 

search performance (herein, for clarity sake, we will refer as minimum of a function). 

The main idea of the novel technique is the following: if the rate of the swarm global 

best reducing is low, then all the swarm particles positions must be reinitialized in a 

random way (the new epoch of the swarm commences). The global best of the swarm 

(in the new epoch) for the first iteration is the same as it was for the last iteration of 

the swarm in the previous epoch. 

Moving on the surface of a function a particle may trap in a minimum that would 

be better than the previous epoch global best. It should be noted that for some number 

of iterations (just after reinitialization of the swarm) the particles move without any 

improvement of the global best. Soon a particle may find the local minimum that is 

better than the current global best. 

We should set a criterion of swarm stagnation. Such criterion may be Global 

Best (GB) reduction rate described by the following expression: 

(3) 1GB GB
,

GB

i i

i

R 
  

where GBi and GBi–1 are global bests of a swarm for the i-th (current) and (i – 1)-th 

(previous) iterations. Equation (3) shows how much the global best of a swarm 

reduces during an iteration. Thus, value of R must be calculated at the end of every 

iteration. If the global best reduction rate is low then the swarm must be reinitialized. 

The condition of the swarm reinitialization is 
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(4) AR  R,  

where AR is Acceptable Rate of the global best reduction (this value must be set by 

ME-PSO user). 

The value of the AR must be set in view of the recommendations: 

 big value of AR causes frequent reinitialization of the swarm and, as a result, 

during many iterations particles move without improving the global best; 

 small value of AR leads to jamming of the particles in local minima and 

stagnation of the swarm (note, if the AR=0 ME-PSO reduces to canonical PSO). 

The issue of assigning AR value is still open for discussions and it is necessary 

to investigate it in the further studies. In the following we set AR=0.01. Such value 

of AR provides quite good balance between function exploration and reinitialization. 

Other criteria, which may be used for the swarm reinitialization, are presented 

in the Table 1. They should be checked at the end of the each iteration as well. 

Table 1. Possible criteria which may be used as condition of a swarm reinitialaization 

Formula Description 

GB GB , 1, ..., ,i i q q Q   

where Q is the number of the iterations 

which must be set before run of the 

algorithm 

If the value of the global best has not been changed 

during Q iterations this may mean that the particles 

have been trapped in local minima and they cannot 

leave it. The number Q may be set as a fraction of the 

total number of iterations N. For instance, 

Q=N(0.01…0.10) 

1

1
LB (0.99...0.90)GB ,

E
e

i i

eE 

  

where E is some quantity of particles which 

is lesser than the swarm population;  

LB is the Local Bests of the particles. 

Subscript means the i-th iteration, 

superscript means a number of the particle 

If the E particles are close to the best particle in a 

swarm that mean they have a little chances to find the 

minimum that would be better than the current global 

best. In order to avoid swarm stagnation about the 

global best it is necessary to reinitialize the swarm. The 

number E must be set as an integer, for example, 

E=SP(0.1…0.5), where SP is the Swarm Population 

 

In the article we use only (1) and (2) expressions as condition of the swarm 

reinitialization. Note, all or just only one of the described criteria (Table 1) may be 

used for this purpose. 

In order to provide the high search ability of particles we propose to eliminate 

their inertial feature. This requires to set inertia coefficient equal to zero w=0. It 

causes rapid movement of particles on a function surface and, as a result, the bigger 

area of the function domain may be explored. 

The novel ME-PSO technique can be clarified within the support of the 

following pseudocode: 
 

Set the parameters c1, c2, SP, stop criterion (number of iterations, cost function value, 

etc.) and AR; 

Initialize particles positions and velocities; 

Calculate global best; 

Do 

Update the particles positions and velocities; 

For each particle check the excess search domain condition; 
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Calculate personal bests and global best; 

Calculate R; 

If R≤AR then 

Reinitialize particles positions and velocities; 

Until stop condition is met. 
 

During initialization and reinitialization, all components of particles’ positions 

should be set as random numbers in the search domain and all components of a 

particles’ velocity should be set equal to zero. The approach described allows to use 

computational resources more efficiently. Further study will make possible to 

establish how ME-PSO copes with the different optimization problems. 

3.3. Experiment 

In order to show advantages of the ME-PSO numerical experiments have been 

performed. We choose ten benchmark functions: uni- and multimodal (Table 2). All 

of the chosen functions have different topology features but each function has global 

minima which are equal to zero. 

Table 2. Ten benchmark function for numerical experiment 

Benchmark 

function 
Formula 

Search 
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


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In order to establish how benchmark functions Dimensions (D) influences to 

ME-PSO performance, experiments were carried out for numbers of D: 10, 30, 50 

and 200 (for the last experimental series). As indicators of the algorithms efficiency 

average and median values were used. Standard Deviation (SD) indicates dispersion 

of the reached minima in relation to average values. All calculations were carried out 

for PSO, IA-PSO [16] and ME-PSO techniques. Comparison of different approaches, 

which are implemented in the ME-PSO and IA-PSO algorithms, will give the 

information about the efficiency of overcoming the premature convergence. 

In all experiments the number of iterations N as a stop criterion was used. 

In order to obtained proper statistical results each numerical experiment has 

been run 100 times. In each run the particles’ positions were random. Parameters of 

the swarm were the same for all experiments (Table 3). 

 

Table 3. Swarm parameters for all numerical experiments 

Parameters of the swarm Value 

c1 1.19 

c2 1.19 

w 0.72 

Swarm population 30 

Connection topology Full 

4. Results and discussion 

Results of the first series of experiments (N=250) allow to determine the algorithms’ 

performance at early stages of the exploration (Table 4).  

In Table 4 and further tables the best values of average and median are in bold. 

Table 4 shows that on early stage of exploration ME-PSO has reached not good 

minima values for almost all benchmark functions. The only one exception is the 

function f5. The best performance in this experimental series relates to IA-PSO 

technique. For D=10 it allows to find local minima which are very close (in topology 

sense) to the global minimum of the functions f1, f2, f3, f10. 

The worst results ME-PSO has shown for the functions f4 and f8. It is caused by 

small number of iterations. Thus, there is a need to study how ME-PSO works with 

big number of N. It was the purpose of the second series of experiment in which 

N=5000 (Table 5). The calculations were carried out for the most difficult functions 

to minimize. 

Comparison of data in Table 4 and Table 5 supports the statement that an 

increasing of the iteration number N makes it possible to reduce the average and 

median values of reached minima. Moreover, for some cases ME-PSO has reached 

almost computer zero (function f5 with D=10). 
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Table 4. Results of the first experimental series 

Functions 
PSO IA-PSO ME-PSO 

Average Median SD Average Median SD Average Median SD 

D=10 

f1 1.1110–17 2.2610–18 2.7810–17 4.0910–30 4.8910–32 1.6910–29 1.0210–7 4.0210–8 1.7010–7 

f2 8.69101 1.3010–10 8.62102 1.1110–30 3.9810–33 1.0110–29 5.0010–1 4.2610–1 4.5210–1 

f3 2.1410–6 1.6910–8 9.8510–6 7.2110–11 1.7510–14 4.3210–10 2.2010–2 1.4210–2 2.4410–2 

f4 1.16101 4.59100 3.37101 7.35100 7.12100 9.3910–1 2.04101 7.63100 3.10101 

f5 1.42101 1.29101 6.42100 1.58101 1.47101 6.77100 5.68100 5.05100 2.27100 

f6 1.0110–1 8.7310–2 6.5310–2 2.5710–1 2.3910–1 1.4110–1 1.6910–1 1.4310–1 1.0010–1 

f7 2.4110–3 1.6710–5 1.5710–3 1.09100 7.3310–1 1.07100 3.3710–3 9.0710–4 7.5810–3 

f8 4.03102 4.03102 1.86100 4.10102 4.10102 1.13100 4.13102 4.12102 3.7110–1 

f9 3.0010–1 4.7310–9 5.9810–1 1.60100 2.04100 1.33100 2.0510–3 6.5810–4 7.2510–3 

f10 8.4010–2 4.4710–2 9.5110–2 7.9010–3 1.4010–16 3.8910–2 8.3010–3 1.4710–3 2.3110–2 

D=30 

f1 1.87100 4.0810–1 4.34100 5.1910–8 8.2510–9 3.3710–7 7.9410–2 6.5010–2 5.2310–2 

f2 7.86102 3.35102 1.20102 4.3510–11 5.5310–12 1.3510–10 8.44101 8.14101 3.74101 

f3 3.89101 3.40101 2.37101 3.6210–1 2.5410–1 3.4210–1 1.46101 1.44101 4.10100 

f4 4.78102 2.37102 6.84102 2.83101 2.86101 1.14100 1.47102 1.36102 7.52101 

f5 9.73101 9.84101 2.25101 1.11102 1.09102 2.64101 5.71101 5.77101 1.24101 

f6 3.6710–1 3.1510–1 2.5810–1 3.3610–2 5.1810–8 3.8810–2 3.0510–1 2.3510–1 2.0310–1 

f7 1.89100 1.67100 1.25100 1.23101 1.24101 3.73100 8.0410–1 6.4910–1 5.3710–1 

f8 4.03102 4.03102 2.01100 4.13102 4.13102 1.38100 4.10102 4.10102 3.0910–1 

f9 6.73100 6.45100 1.93100 3.18100 3.47100 1.01100 2.10100 2.10100 5.2610–1 

f10 5.0810–1 5.0410–1 9.9210–2 5.02103 2.07104 4.3610–2 2.0910–1 2.0710–1 6.0610–2 

D=50 

f1 7.08101 5.98101 4.6310–1 2.0110–4 1.7610–4 1.4210–4 2.28100 2.17100 7.9910–1 

f2 7.77103 4.99103 8.73103 7.5810–6 2.8810–6 3.0310–5 6.16102 6.01102 2.15102 

f3 7.08102 6.47102 2.79102 1.18101 1.02101 6.50100 7.25101 7.22101 1.73101 

f4 2.00104 1.96104 5.75102 4.85101 4.85101 5.1810–1 4.72102 4.47102 1.52102 

f5 3.46102 3.52102 6.75101 2.49102 2.46102 4.31101 1.31102 1.28102 2.55101 

f6 1.43100 1.39100 2.3710–11 5.6310–2 1.6910–4 7.5210–2 1.04100 1.04100 2.0210–2 

f7 1.16101 1.16101 3.95100 2.79101 2.77101 6.33100 5.51100 5.12100 2.09100 

f8 4.05102 4.05102 1.0510–1 4.16102 4.16102 5.0010–1 4.15102 4.15102 7.0110–2 

f9 1.70101 1.11101 3.84100 3.21100 3.90100 1.47100 3.77100 3.71100 4.6910–1 

f10 7.0110–1 6.9710–1 8.4510–2 7.8710–3 4.0710–3 1.2110–2 3.5110–1 3.5810–1 5.6910–1 

 

Almost all results that are related to ME-PSO are better than those that were 

obtained with PSO and IA-PSO techniques. The exceptions are functions f3, f4 and 

f8. IA-PSO finds good local minimum of the f3 (with D=50) quite rapid. However, 
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complicated topology of function f4 causes the premature convergence both PSO and 

IA-PSO, especially for D=50. 

 

Table 5. Results of the second experimental series 

Functions 
PSO IA-PSO ME-PSO 

Average Median SD Average Median SD Average Median SD 

D=10 

f4 5.18100 4.33100 6.56100 6.43100 6.22100 1.13100 2.18100 1.84100 1.89100 

f5 1.14101 1.04101 5.54100 7.84100 7.33100 4.55100 8.5510–37 1.9710–47 5.4810–36 

f8 4.15102 4.15102 2.1910–1 4.15102 4.15102 2.1110–1 4.03102 4.03102 1.33100 

D=30 

f4 2.08102 1.71102 1.56102 2.78101 2.79101 1.00100 5.06101 2.72101 3.53101 

f5 5.13101 4.93101 1.77101 4.62101 4.64101 1.58101 9.58100 9.95100 2.45100 

f8 4.03102 4.03102 4.3210–1 4.16102 4.16102 2.3410–1 4.15102 4.15102 1.6110–11 

f9 3.47100 3.28100 9.3210–1 2.58100 2.94100 1.03100 6.3910–12 4.6210–12 6.2810–12 

D=50 

f3 2.19102 2.16102 6.35101 3.7310–11 1.0610–14 3.1410–10 2.29100 2.20100 6.3710–1 

f4 5.35103 3.37103 5.16103 4.79101 4.85101 9.8610–1 9.02101 9.48101 4.08101 

f5 1.94102 1.92102 3.94101 2.50102 2.54102 4.30101 4.30101 4.31101 7.91100 

f7 1.90101 1.89101 5.82100 1.07101 1.03101 4.50100 2.5910–2 1.8010–2 2.5710–2 

f8 4.15102 4.15102 2.2510–1 4.16102 4.16102 1.8710–1 4.15102 4.15102 1.0710–2 

f9 1.16101 1.17101 1.62100 2.00100 2.00100 1.8610–3 6.7810–8 5.3610–8 4.6510–8 

 

In order to compare PSO, IA-PSO and ME-PSO performances the graphs have 

been built (Fig. 1 and Fig. 2). Vertical and horizontal axes of the following graphs 

are presented in logarithmic scale. 
 

 
          a) f4                  b) f5 
 

Fig. 1. PSO, IA-PSO and ME-PSO performances during minimizing of the benchmark functions f4 

and f5 (D=10) 
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             a) f4                  b) f5 

 
            c) f7                  d) f9 
 

Fig. 2. PSO, IA-PSO and ME-PSO performances during minimizing of the benchmark functions f4, f5, 

f7 and f9 (D=50) 

 

The graphs on Fig. 2 (b, c, d) make it obvious that ME-PSO has no premature 

convergence: the algorithm execution provides reduction of the global best during all 

iterations.  

This is the biggest difference between ME-PSO and algorithms PSO and  

IA-PSO. Graphs on the Fig. 1 and Fig. 2 clearly show that PSO and IA-PSO converge 

rather quickly. In contrast, ME-PSO continues to minimize almost all benchmark 

functions during all iterations. 

In order to support that suggestion the third series of experiment was performed. 

All the calculations was carried out with the f4 and f5 functions with D=50.  

We choose f4 because IA-PSO has better than ME-PSO performance for its 

minimization. In order to investigate the impact of iterations number N on the  

IA-PSO and ME-PSO performances we set N=50,000. 

The choice of f5 for third experimental series is caused by the fact of bad 

efficiency of ME-PSO for that function on the previous experimental series. All the 

figures were set to the Table 6. 
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Table 6. Results of the third experimental series 

Func- 

tions 

PSO IA-PSO ME-PSO 

Average Median SD Average Median SD Average Median SD 

f4 1.98104 1.94104 5.61102 4.72101 4.88101 8.9910–1 3.62101 3.79101 2.02100 

f5 3.44102 3.43102 6.66101 2.44102 2.51102 5.301101 3.3410–35 2.5010–36 8.3210–37 
 

Obtained results show that advantages of ME-PSO (especially for complicated 

functions) are revealed at big number of iterations. The graphs on Fig. 3 show the 

bigger N the better ME-PSO performance. 
 

 
  a) f4    b) f5 

 

Fig. 3. PSO, IA-PSO and ME-PSO performances during minimizing of the benchmark functions f4 

and f5 (D=50) 

 

The most difficult benchmark function for all algorithms is f8. None of them 

have found a good solution. At early stages of the exploration these algorithms find 

bad local minima of f8. Even reinitialization of a swarm does not solve the problem: 

all the particles in a new epoch swarm have a great tendency to move toward previous 

global best. They have no time for proper exploration of the f8. This ME-PSO 

weakness (only for some of the complicated optimization problems) causes the 

necessity for further improving of the proposed algorithm.  

One of the possible ways to solve that problem is varying parameter AR during 

optimization process. For instance, AR can be a function of the current global best or 

current iteration. That issue is a matter for further investigations. 

Some optimization algorithms fail when the dimension of the cost function is 

more than 100. That is why the fourth series of experiment was conducted under 

condition D=200. Two benchmark functions (f4 and f7) were chosen for that series. 

They have different features: the first one is unimodal and the second one is 

multimodal. For these high-dimensional problems we set N=50,000. All the obtained 

figures are in Table 7. 

Table 7. Results of the fourth experimental series 

Func- 

tions 

PSO IA-PSO ME-PSO 

Average Median SD Average Median SD Average Median SD 

f4 1.46106 1.42106 2.09104 1.98102 1.97102 7.90100 1.96102 1.94102 5.04100 

f7 1.92102 1.83102 4.90101 7.90101 7.33101 1.01101 1.38101 1.33101 4.22100 

 



 72 

Graphs which related to PSO, IA-PSO and ME-PSO performances for the high-

dimensional optimization problems are shown on Fig 4. 

 

 
                a) f4                b) f7 
 

Fig. 4. PSO, IA-PSO and ME-PSO performances during minimizing of the benchmark functions f4 

and f7 (D=200) 
 

Data in Table 7 and graphs on Fig. 4 clearly prove the superiority of ME-PSO. 

Although for f4 the difference between IA-PSO and ME-PSO is slight.  

Fig. 4a shows the convergence of all algorithms. It is an obstacle for further 

function minimization. In order to prevent it further improvement of ME-PSO should 

be carried out. The ultimate goal is to find a PSO modification which is invariant to 

problem dimensionality and has high exploration abilities. 

5. Conclusion 

In the article we proposed the novel PSO-based technique (ME-PSO). The basic idea 

of it is in reinitialization of the stagnant swarm. The article contains the description 

of the stagnation criteria and one of them has been used in the calculations presented 

above. The criterion used in calculations appeals to the rate of global best reduction. 

If it is low then a swarm should be reinitialized (the new epoch of swarm is 

commencing). 

The value of Acceptable Rate (AR) is a matter for further studies. It is necessary 

to found the connections between AR and parameters of optimization problem: its 

dimensionality, search domain, a function topology, etc. 

The main advantage of the ME-PSO is the following: the greater the number of 

iterations the better the value of a reached extremum of a function. Proposed  

ME-PSO algorithm may be combined with other PSO modifications, which have 

been mentioned in the section „Problem description”. The reasonable combinations 

of ME-PSO and other PSO-based techniques, impact of parameters on the algorithm 

performance are the issues for further studies. 

 



 73 

R e f e r e n c e s 

1. B o z o r g - H a d d a d, O., M. S o l g i, H. A. L o á i c i g a. Meta‐Heuristic and Evolutionary 

Algorithms for Engineering Optimization. Hoboken, USA, John Wiley & Sons Inc, 2017. 

2. K e n n e d y, J., R. C. E b e r h a r t. Particle Swarm Optimization. – In: Proc. of IEEE International 

Conference on Neural Networks, 1995, pp. 1942-1948. 

3. K i r a n y a z, S., T. I n c e, A. Y i l d i r i m, M. G a b b o u j. Evolutionary Artificial Neural 

Networks by Multi-Dimensional Particle Swarm Optimization. – Neural Networks, Vol. 22, 

2009, Issue 10, pp. 1448-1462. 

4. H e o, J. S., K. Y. L e e, R. G a r d u n o-R a m i r e z. Multiobjective Control of Power Plants Using 

Particle Swarm Optimization Techniques. – IEEE Transactions on Energy Conversion,  

Vol. 21, 2006, Issue 10, pp. 552-561. 

5. Z a m a n i, M., M. K a r i m i-G h a r t e m a n i, N. S a d a t i, M. P a r n i a n i. Design of a Fractional 

Order PID Controller for an AVR Using Particle Swarm Optimization. – Control Engineering 

Practice, Vol. 17, 2009, Issue 12, pp. 1380-1387. 

6. C h a n d e r, A., A. C h a t t e r j e e, P. S i a r r y. A New Social and Momentum Component 

Adaptive PSO Algorithm for Image Segmentation. – Expert Systems with Applications,  

Vol. 38, 2011, Issue 5, pp. 4998-5004. 

7. B o r d b a r , S., P. S h a m s i n e j a d. A New Opinion Mining Method Based  on Fuzzy Classifier 

and Particle Swarm Optimization (PSO) Algorithm. – Cybernetics and Information 

Technologies, Vol. 18, 2018, No 2, pp. 36-50. 

8. H e, Q., Y. L v. Particle Swarm Optimization Based on Smoothing Approach for Solving a Class of 

Bi-Level Multiobjective Programming Problem. – Cybernetics and Information Technologies, 

Vol. 17, 2017, No 3, pp. 59-74. 

9. B a o, G. Q., D. Z h a n g, J. H. S h i, J. Z. J i a n g. Optimal Design for Cogging Torque Reduction 

of Transverse Flux Permanent Motor Using Particle Swarm Optimization Algorithm. – Power 

Electronics and Motion Control Conference, Vol. 4, 2004.  

10. S h u r u b, Y. V., A. O. D u d n y k, D. S. L a v i n s k i y. Optimization of Regulators of Frequency 

Controlled Induction Electric Drives under the Stochastic Loadings. – Journal Tekhnichna 

Elektrodynamika, Vol. 4, 2016, pp. 53-55. 

11. T a h e r, N. A New Fuzzy Adaptive Hybrid Particle Swarm Optimization Algorithm for Non-Linear, 

Non-Smooth and Non-Convex Economic Dispatch Problem. – Applied Energy, Vol. 87, 2010, 

Issue 1, pp. 327-339. 

12. R a o, R. V., V. J. S a v s a n i, D. P. V a k h a r i a. Teaching-Learning-Based Optimization: An 

Optimization Method for Continuous Non-Linear Large Scale Problems. – Information 

Sciences, Vol. 183, 2012, Issue 1, pp. 1-15. 

13. L i u, D., K. C. T a n, C. K. G o h, W. K. H o. A Multiobjective Memetic Algorithm Based on Particle 

Swarm Optimization. – IEEE Transactions on Systems Man and Cybernetics, Part B 

(Cybernetics), Vol. 37, 2007, Issue 1, pp. 42-50. 

14. L o v e i k i n, V. S., Y. O. R o m a s e v y c h. Dynamic Optimization of a Mine Winder Acceleration 

Mod. – Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, Vol. 4, 2017, pp. 55-61. 

15. C l e r c, M. Back to random topology [Electronic resource].  

http://clerc.maurice.free.fr/pso/random_topology.pdf 
16. R i c h a r d s, M., D. V e n t u r a. Dynamic Sociometry in Particle Swarm Optimization. – In: Proc. 

of Joint Conference of Information Sciences, 2003, pp. 1557-1560. 

17. C l e r c, M. Variable PSO [Electronic resource].  

http://clerc.maurice.free.fr/pso/2011-01-20_Variable_PSO.zip 
18. S u r e s h, K., S. G h o s h, D. K u n d u, A. S e n. Inertia-Adaptive Particle Swarm Optimizer for 

Improved Global Search. – Intelligent Systems Design and Applications, 2008. 

19. Y o n g, D., W. W u C h u a n s h e n g, G. H a i m i n. Particle Swarm Optimization Algorithm with 

Adaptive Chaos Perturbation. – Cybernetics and Information Technologies, Special Issue on 

Logistics, Informatics and Service Science, Vol. 15, 2015, No 6, pp. 70-80. 

http://clerc.maurice.free.fr/pso/random_topology.pdf
http://clerc.maurice.free.fr/pso/2011-01-20_Variable_PSO.zip


 74 

20. J o r d a n, J., S. H e l w i n g, R. W a n k a. Social Interaction in Particle Swarm Optimization, the 

Ranked FIPS, and Adaptive Multi-Swarms. – In: Proc. of 10th Annual Conference on Genetic 

and Evolutionary Computation, 2008, pp. 49-56. 

21. P a r s o p o u l o s, K. E. Parallel Cooperative Micro-Particle Swarm Optimization: A Master-Slave 

Model. –  Applied Soft Computing, Vol. 12, 2012, Issue 11, pp. 3552-3579. 

22. G a r g, H. A Hybrid PSO-GA Algorithm for Constrained Optimization Problems. – Applied 

Mathematics and Computation, Vol. 274, 2016, pp. 292-305. 
 

Received 22.06.2018; Second Version 12.08.2018; Accepted 17.08.2018 

 


