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Abstract: In this paper, fault tolerant task scheduling algorithms are proposed for 

mapping task graphs to heterogeneous processing nodes. These scheduling heuristics 

that we propose are redundancy-based software to tolerate hardware faults. We 

consider only processor permanent failures with a fail-silent behavior. The proposed 

heuristics generate automatically a real-time fault distributed schedule of dependent 

and independent tasks into heterogonous multiprocessors architecture. The 

heuristics are based on active and passive redundancy. 
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1. Introduction 

Embedded real-time systems are now present in all areas of everyday life, from public 

domain applications (consumer electronics, automotive, …) to critical applications 

(space, nuclear, …) where a system failure can cause catastrophic consequences (loss 

of time, money or worse – loss of human life) [2]. Since faults are inevitable and can 

appear at any time, so systems must be dependable [3]. Dependability is defined as 

property which allows its users to place confidence in the service that it delivers to 

them [4]. Several methods are proposed in the literature to guarantee it. Fault 

tolerance is the most used (or the best) one. Fault tolerance allows the system to 

continue to deliver the same service expected in the presence of failures [5]. As 

failures can be caused by both hardware and software, in this paper we concentrate 

on hardware faults and exactly processor faults. 

Redundancy is one of methods used to achieve fault tolerance, it can be active, 

passive or both. The active replication consists in executing the same task in parallel 

on several distinct processors [6]. The passive replication consists in replicating each 

task on n replicas, and only one of the n replicas executes, called primary, and the  

n – 1 other replicas are waiting and are executed only when the primary fails [6]. In 

real-time systems, fault tolerance is provided by physical, and/or software 
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redundancy. As we are targeting embedded systems, we rely on the distributed 

architectures which allow redundancy of software components on different 

processors to meet their specifications. 

Faults can be classified according to their duration as: Permanent faults, 

intermittent faults or transient faults. Permanent faults are persistent, they continue 

to exist until the faulty component is repaired or replaced. These faults can be caused 

by catastrophic system failures such as processor failures. Transient faults arise once 

and then vanish. For example, a network message does not reach its destination but 

later the message is successfully retransmitted. Intermittent faults are characterized 

by a fault happening, then vanishing, then happening again, then vanishing again, etc. 

They are difficult to be defined, but their effects are strongly correlated. A loose 

connection is an example of this kind of fault [15]. We concentrate on permanent 

faults of one processor. 

In this paper, we investigate the integration of fault-tolerance in real-time 

distributed embedded systems by starting from a data-flow algorithm and a 

heterogeneous distributed architecture with multi-point links. Our goal is to produce 

automatically a fault-tolerant distributed schedule of the algorithm onto the 

architecture. The faults considered are single processor permanent failures with a fail-

silent behavior. To achieve this, we present two new heuristics based on the software 

redundancy, which generate a static fault tolerant schedule. By taking into account 

the execution duration of all tasks on all processors, and the communication durations 

of all data-dependencies on communication links, we are able to compute the total 

execution time of the obtained schedule, both in the presence and in the absence of 

failures. The heuristics proposed, which are an extension of the Algorithm 

Architecture Adequation (AAA) of the SynDEx tool [22, 10], try to find solutions 

that satisfy real-time, distribution and fault-tolerance constraints. 

The work is organized as follows: In Section 2 the related works are briefed, in 

Section 3 the problem specification of the system are described and the proposed 

methodologies are discussed in Section 4. Experimental evaluation with respective 

observation is depicted in Sections 5 and 6, finally conclusion is made in Section 7. 

2. Related works 

A large number of fault tolerant scheduling algorithms for real-time embedded 

systems have been proposed in the literature. In [11], authors use software 

redundancy solutions based on both active and passive backup copies to tolerate only 

one bus fault in multi-bus heterogeneous architectures. In [12], they overcome the 

faults in the sensor network and distribute the provided task rationally by using a 

technique called P/B, it uses passive backup copies overlapping methodology to 

monitor the mode of backup copies adaptively through scheduling primary copies 

early and backup copies delayed. In [13], authors presented a scheduling algorithm 

for tolerating Weibull distributed failures of grid resources in spite of commonly 

adopted assumption of Poisson failure distribution. The algorithm is applied for 

dependent and independent tasks, it uses rollback recovery via checkpoint/restart for 

improving system dependability and reliability. In [14], authors proposed scheduling 
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algorithms for tolerating permanent and transient failures in real-time embedded 

systems. These algorithms attempt to provide low-cost solutions for fault tolerance, 

graceful performance degradation, and load shedding in such systems by exploiting 

trade-offs between space and time redundancy. They place tolerant scheduling 

algorithms fault in three categories: dynamic scheduling, offline or static planning 

and programming inaccurate calculations. 

Another mechanism of fault tolerance is presented by K. H a s h i m o t o,  

T. T s u c h i y a  and T. K i k u n o  [20]. This mechanism makes it possible to tolerate 

the faults of a single processor by using the active duplication of software 

components. Their algorithm, called HBP partitions all tasks as a first step into groups 

according to their size and in a second time, it calls a basic algorithm that allows to 

order and duplicate each task of each group on condition that each task is scheduled 

after its predecessors in the same processor and its replica in a different processor.  

Y. O h  and S. H. S o n  [21] proposed a fault tolerance scheduling heuristic called 

1TFT for independent and non-preemptive tasks. Heuristics are an off-line 

scheduling that assures the deadlines of each task, even in the presence of arbitrary 

failures of a single processor based on passive redundancy. H. K a l l a  [1] presents a 

heuristic called AAA-TB, based on Hybrid redundancy to tolerate arbitrary faults in 

processors and communication buses in a reactive system. Hybrid redundancy 

consists, in this case, on the one hand replicate the operations of the software 

architecture into multiple actively placed copies on multiple separate processors, and 

on the other hand to replicate data dependencies in multiple replicas of which only 

one executes and the others remain inactive until the appearance of bus failures or 

processor implanting the primary copy. 

3. Specifications of the problem 

A hard-real-time system is modeled by software architecture (the set of tasks and 

messages),  a hardware architecture  (physical runtime support)  and a faults’  models.  

3.1. Algorithmic specification 

Our algorithm is modelled by a data flow graph [7], which is an oriented and valued 

hyper graph called algorithm graph. The set of nodes T= {ti, tj, …, tn} corresponds to 

the tasks components of the system, and the set of edges C  T  T represents the 

data-dependences between tasks (messages exchanged by the tasks by intra-processor 

or inter-processor communication). A task is distinguished in the algorithm graph by 

two types: the computation task and the input/output task [1].  

 

 
Fig. 1. Example of an algorithm graph 
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Our algorithm also can represented by a hyper graph without edges called 

algorithm graph without precedence constraints (data dependencies). 
 

 
Fig. 2. Algorithm graph without data dependencies 

3.2. Hardware specification 

The hardware specification is a heterogeneous multiprocessor architecture 

(processors have different characteristics). It is presented by an undirected graph 

whose nodes denote processors and edges denote physical links between processors, 

we considered a multipoint network (bus).  
 

 
Fig. 3. A multipoint connexion 

3.3. Faults models  

The failure constraints give assumptions about the maximum number of processor 

faults that the system can tolerate. In this paper, we assume only permanent faults of 

only one processor with a fail-silent behaviour, i.e., either it works and gives a result, 

or it does not work so does not give any result. We assume also that the 

communication bus is fault-free, i.e., reliable. 

3.4. Distribution, execution time and real-time constraints 

The distribution constraints [8] are the hardware preferences. They define the 

exclusion relationship between some hardware and some software components. As 

the architecture is heterogeneous, the execution time of each task can vary from one 

processor to another. The temporal constraints [8] define the worst execution times 

and the worst communication times respectively of the tasks and data communication 

on the architectures’ components (processors and communication bus). 

4. Proposed methodologies 

4.1. Methodology AAA-FAULTIDT 

The objective of this methodology is to optimize the automatic generation of 

distribution and scheduling in real-time of independent tasks and also to tolerate 

permanent faults of a single processor. Fault tolerance is achieved in this case into 

two phases using hybrid of active and passive redundancy. The first step is to 

transform the algorithm graph ALG of a set of independent tasks [9] on a new graph 

ALGN in which each task is replicated into two copies (primary and backup), linked 
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by a conditional dependency [16, 17]. The second phase consists on placing this new 

redundant graph on the hardware architecture where every replicated task is actively 

executed (run both) on two different processors. At the end of execution of the 

primary copy, this last one sends a message to her replica to ignore her execution in 

order to reduce the overhead on the global time of system execution. This heuristic 

benefits the both advantages of passive and active replication [18]. This methodology 

consists of three phases: transformation phase, matching phase and the fault tolerance 

phase.  

 The transformation phase: In this phase we transform the non-redundant 

graph algorithm ALG into a new redundant graph ALGN, where: 

o Each task is replicated into two copies, primary 𝑇𝑖
p
 and secondary 𝑇𝑖

b; 

o A new dependency is added to the new ALGN between each task and its 

backup (𝑇𝑖
p
𝑇𝑖

b), there time execution is null; 

 The matching phase: The proposed heuristic maps the new graph ALGN and 

the hardware architecture ARC to achieve an optimal schedule. 

 The fault tolerance phase: consists in detecting the processor failure and then 

updating the scheduling of its tasks. 

In active redundancy all redundant tasks are in operation and are sharing the 

load with the main task. Upon failure of one task, the surviving tasks carry the load. 

The redundant or back-up tasks in passive or standby, systems start operating only 

when one or more fail, the back-up tasks remain dormant until needed. 

Our methodology is based on the combination of the two redundancies. For each 

new system execution, the active replication is applied. After a time T, each replica 

receives a message of its primary copy indicating its successful execution; in this 

case, execution of these replicas is stopped until next cycle or a random stop of their 

primary tasks, which is the mechanism of passive replication. 

In this methodology, error detection is not necessary. In case of failure of a 

processor, replicas of tasks located there will not receive a message from their 

primary copies, while pursuing their implementation and cover this failure. 

The principle of this methodology is presented as follows: 

Begin  

Active execution of all tasks (primary and secondary) by order of execution  

For each primary task & after time t 

 𝑻𝒊
𝐩

 send message to its reply 𝑻𝒊
𝐛 

 𝑻𝒊
𝐛 ignore its execution and locks 

If  𝑻𝒊
𝐛 did not receive this message then 

 𝑻𝒊
𝐛 continue execution and mask the failure of 𝑻𝒊

𝐩
 

end  

This heuristic profit the both advantages of passive and active replication. In 

fact, it has small recovery delay after failures and small execution delay without 

failures. The following example illustrates the effect of this methodology: 

Taking software architecture ALG (Fig. 4) which consists of three independent 

tasks: 𝑡1, 𝑡2 and 𝑡3, and hardware architecture ARC (Fig. 5) composed of three 

heterogeneous processors connected via a bus. Runtimes of tasks on these processors 
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are respectively: (1, 3), (2, 1) and (2, 4). ALG is transformed into ALGN in which 

each node is replicated in two copies with its execution times on different processors, 

the communication duration between nodes is null. 

 

 
Fig. 4. Software architecture 

 

 

 
Fig. 5. Hardware architecture 

 

After applying the AAA-FAULTIDT methodology on this specification, before 

and after the occurrence of a failure of one processor, we obtained the results 

summarized in Figs 6 and 7. 
 

 

 
Fig. 6. Distributed schedule with absence of failure 

 

Upon failure, 𝑝1for example, 𝑡3
𝑏 does not receive a message from 𝑡3

𝑝 
, then  

it continues to execute and mask its failure. Thus distributed schedule is shown in 

Fig. 7. 
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Fig. 7. Distributed schedule with failure of 𝑝1 

4.2. Methodology AAA-FAULTDT 

In this methodology, fault tolerance is based on the passive redundancy which 

requires a mechanism for detecting errors [19]. Therefore, we insert in ALG a new 

task called watchdog and denoted w. this methodology consists of three phases: 

transformation phase, matching phase and the fault tolerance phase.  

 Transformation phase: In this phase we transform the non-redundant graph 

algorithm ALG into a new redundant graph ALGN, where: 

o Each task is replicated into two copies, primary 𝑡𝑖
p
 and secondary 𝑡𝑖

b; 

o A new task 𝑤𝑖  is added between each primary task 𝑡𝑖
p

 and its replica 𝑡𝑖
b; 

o Three new dependencies are added to the new ALGN: (𝑡𝑖
p
→ wi),  

(wi → 𝑡𝑖
b) and (𝑡𝑖

b→ tj); where tj  is the successor of ti. 

The new dependencies are of two types: two data dependencies and a 

conditional dependence, one of the data dependencies transfers a signal from the 

primary task 𝑡𝑖
p

indicating its execution to the task wi and the other one transfers the 

result of the secondary task 𝑡𝑖
b to its successor tj. The conditional dependence which 

transfers awakening message since the task w towards the replica of each task, it is 

called conditional dependence as its execution depends on the state of the processor 

(faulty or not). 

 The matching phase: the proposed heuristic maps the new graph ALGN and 

the hardware architecture ARC to achieve an optimal schedule. 

 The fault tolerance phase: consists in detecting the processor failure and then 

updating the scheduling of its tasks. 

Passive redundancy requires an error detection mechanism; we propose a new 

task to be created called watchdog and denoted w to be added as a successor to each 

task in the architecture graph. The role of the task w is to receive a signal indicating 

the execution of its predecessor (task ti). So, after some time  if no signal is detected 

then the processor 𝑝𝑖 that executes the task ti is down, therefore it wakes up the 

secondary copy of the task ti located on another processor by sending a wake-up 

message through the bus or via an intra-processor communication.  

The body of the task w has the following form: 

If    (wi does not receive a signal of 𝑡𝑖
p

 after time ) then 

Send a wake-up message to the replica 𝑡𝑖
𝑏 to update scheduling. This message    

also applies to other replicas located on 𝑝𝑖 . 

End if  



 55 

The example below shows a distribution/scheduling algorithm of an algorithm 

graph on an architecture graph in which tasks (respectively communications) are 

represented by boxes whose height is proportional to their execution time 

(resppectively of communications). 

Let be the following heterogeneous material architecture: P = {P1, P2, P3},          

L = {Bus}, and the algorithm graph architecture ALG transformed into ALGN in 

which each node is associated with its execution times on different processors, and 

each arc is associated with the communication duration between nodes that it links 

(Fig. 8). 
 

 
 

Fig. 8. Transformation scheme of ALG 

 

The fault-tolerant distribution/scheduling is outlined as follows, where 𝑝𝑖
v 

(virtual processor) which indicate the passive placement of the replicas of the tasks 

awaiting activation on processor 𝑝𝑖, and L is the length of distribution/scheduling 

with absence of failures (Fig. 9). 
 

 
Fig. 9. Distributed schedule with absence of failure 

 

In case of a failure, 𝑝1 for example, wi does not receive data of 𝑡𝑖
p
, then after the 

time out , wi wake the backup 𝑡𝑖
b located on 𝑝3 by running the conditional 

dependence c, the wake-up message is received too by the task 𝑡𝑗
b. So, the failure of 

𝑝1 is masked as it is shown in Fig. 10. 
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Fig. 10. Distributed schedule with presence of failure 

 

Then 𝑡𝑖
b will be activated and executed on 𝑝3, it sends the result xb to 𝑡𝑗

b by inter-

processor communication to be performed and provide the results. The processor 

𝑝1will be excluded from the material architecture. Finally, the execution of the 

system in subsequent cycles follows this new distribution/scheduling (Fig. 11). 

 

 
Fig. 11. New distributed schedule after failure 

5. Evaluation of the methodology AAA-FAULTDT  

We have based on the methodology AAA (Adequation Algorithm Architecture) to 

schedule tasks on processors, it is based on a cost function called scheduling pressure, 

denoted 𝜎𝑇𝑖,𝑃𝑗

𝑛  [1]. 𝑇𝑖,𝑃𝑗

(𝑛)
 = St𝑇𝑖,𝑃𝑗

(𝑛)
+ st̅𝑇𝑖

(𝑛)
 − 𝑅

(𝑛−1)
 where: 

St𝑇𝑖,𝑃𝑗

(𝑛)
 represents the earliest start date of Ti on Pj, from the beginning [15]; 

st̅𝑇𝑖

(𝑛)
 represents the latest start date of Ti, since the end [15]; 

𝑅
(𝑛)

 is distribution/scheduling length of an algorithm graph on an architecture 

graph. 
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5.1. Evaluation parameters  

We have applied AAA-FAULTDT heuristic to a set of random algorithm graphs with 

a set of parameters that affect our results. Processors number P, tasks number N and 

the factor CCR (ratio of the average communication time and the average execution 

time) are the parameters that we have modified to test the effectiveness of our 

methodologies in the absence/presence of failures.  

Following Kalla’s Cheme [1], a random algorithm graph is generated (Fig. 12) 

by several levels (≥ 2). Each level i is composed of several nodes (tasks), and each 

node of level i has at least one predecessor lower level j such that i > j.  Fig. 12 shows 

the process of generating random graphs ALG. This generator is based on three 

parameters: 

 N – the graph size n; the number of nodes in the graph (each node corresponds 

to the task). 

 H – the height of the graph; the maximum number of levels in the graph; 

 L – the width of the graph; the maximum number of independent nodes in a 

level graph. 

The node generation phase itself is performed in two steps. First, we draw 

randomly n nodes in a matrix of dimensions (L  H), L and H affect the shape of the 

graph. Next, we construct the N levels of the graph; each level consists of k nodes on 

the same horizontal line in the matrix. In the generation phase of arcs, we generate 

the arcs in two steps. First, we choose randomly for each node of level i one or more 

nodes as predecessors of level j, with j = i – 1. Next, we choose randomly for each 

node of level i zero or more nodes as predecessors of level j, with j < i – 1. 

 

 
 

Fig. 12. Stages of random graph generation 

5.2. Results 

We have plotted in Figs 13, 14 and 15 the schedule length L as a function of N, P and 

CCR. The orthogonal axis in all figures shows the schedule length obtained by the 

execution of our methodologies on a desktop computer with moderate capacities, also 
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the values of the execution costs of the tasks on the processors and the communication 

durations are taken randomly from an interval of integer values from 1 up to 10 then 

they do not reflect the actual values of the microprocessor execution time nor the 

communication time between them. In reality, they are incomparable; of course, very 

much better (it’s a simulation). 

 
Fig. 13. Effect of N on AAA-FAULTDT for p=5 and CCR=2 

 

Fig. 13 shows that the schedule length increases with N that they are more 

replicated. 

 
Fig. 14. Effect of number of processors on AAA-FAULTDT  for N= 40 and CCR=1 

 

Fig. 14 shows that the schedule length decreases with P. This is due to the 

number of processor available to tolerate failures. 
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Fig. 15.  Effect of CCR on AAA-FAULTDT for P = 6 and N =50 

 

Fig. 15 shows that the schedule length increases for CCR<1 and decreases for 

CCR>1. This is due to the performance of heuristics when the communication cost is 

important. 

Regardless of tasks number, execution duration and communication duration 

which increase the schedule length, results in obtained proof of the effectiveness of 

our methodology in the case of processor failure. In fact even the scheduling 

distribution length increases, it does not exceed the deadline. So, the expected service 

of the system is provided on time in all cases. 

6. Evaluation of the methodology AAA-FAULTIDT 

Due the principle of this methodology which combines the advantages of passive and 

active redundancy, results obtained compared to the previous ones are better. We 

have applied it to a set of random algorithm graphs with a set of parameters. We 

denote by: 

L is the length of distribution and scheduling real-time of dependent tasks  

 (AAA-FAULTDT). 

L′ is the length of distribution and scheduling real-time of independent tasks  

 (AAA-FAULTIDT). 

* denotes DT or IDT 

By varying the number of tasks on a random algorithms architecture and 

hardware architecture, we obtain the following results (Fig. 16). 
 

 
Fig. 16.  Effect of N on AAA-FAULT* for p=5 and CCR=2 

By varying the number of processors on random algorithm architecture of 50 

tasks, we obtained the following results in Fig. 17. 
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Fig. 17. Effect of number of processors on AAA-FAULT* for N= 40 and CCR=1 

Results of this methodology show that it is better than the previous. In fact, as 

we have already said, it has small recovery delay after failures and small execution 

delay without failures. 

7. Conclusion  

Dependability of critical real-time system is a crucial property which must be taken 

into account in conception process. Our work is based on the processors fault 

tolerance techniques in a multi-component heterogeneous non-preemptive system 

connected by a bus. Our solutions can minimize the schedule length on the 

absence/presence of faults in the case of dependent or independent tasks. Simulations 

results show the performance of our proposed approaches. Currently, we are 

performing extensive benchmark testing of our heuristics on heterogeneous 

architectures with several failures. The first results show that the overheads increase 

with the number of failures.  
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