
 101 

BULGARIAN ACADEMY OF SCIENCES 
 

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 17, No 5 
Special issue with selected papers from the workshop  
“Two Years Avitohol: Advanced High Performance Computing Applications 2017” 

Sofia  2017 Print ISSN: 1311-9702; Online ISSN: 1314-4081 
DOI: 10.1515/cait-2017-0059 

 
 

On the Use of Large Intel Xeon Phi Clusters for GEANT4-Based 
Simulations 

Nevena Ilieva1, Elena Lilkova1, Leandar Litov2, Borislav Pavlov2, 
Peicho Petkov2 
1Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 1113 Sofia, 
Bulgaria 
2Sofia University “St. Kl. Ohridski”, Physics Faculty, 1000 Sofia, Bulgaria  
E-mails:  nevena.ilieva@parallel.bas.bg     helen.lilkova@yahoo.com     Leandar.Litov@cern.ch 
Borislav.Pavlov@cern.ch       peicho@phys.uni-sofia.bg      

Abstract: GEANT4 is the basic software for fast and precise simulation of particle 
interactions with matter. Along the way towards enabling the execution of GEANT4 
based simulations on hybrid High Performance Computing (HPC) architectures with 
large clusters of Intel Xeon Phi co-processors, we study the performance of this 
software suit on the supercomputer system Avitohol@BAS, Some practical scripts 
are collected in the supplementary material shown in the appendix. 
Keywords: Co-processors, multithreading, acceleration, hybrid architecture, 
particle-matter interactions, simulations.  

1. Introduction 

GEANT4 [1] (GEometry ANd Tracking) is a software toolkit for simulation of the 
interactions of particles with matter. It exploits the object-oriented technology to 
achieve transparency of the physics implementation, as well as openness to extension 
and evolution. GEANT4 encompasses a wide set of tools for all the domains of 
detector simulation, including geometry modeling, detector response, run and event 
management, tracking, visualization and user interface. An abundant set of physics 
processes handles the diverse interactions of particles with matter across a wide 
energy range, as required by GEANT4 multi-disciplinary nature. The GEANT4 
source code, libraries and user documentation are freely available [2-4].  

GEANT4 is the successor of the FORTRAN-based GEANT series of software 
toolkits [5], which dates back to 1978. GEANT4 is the first version developed using 
object-oriented technology and is implemented in C++. GEANT4 can be used as a 
stand-alone tool or linked as a library. For example, in applications like CMSSW [6] 
(high-energy physics) and GATE [7] (medical physics), GEANT4 is accessed 
through a complex framework. 



 102 

The High Performance Computing (HPC) approach used is based on GRID 
technology. The largest research facilities in HEP (High-Energy Physics) use the 
Worldwide LHC Computing Grid (WLCG) infrastructure to perform such 
simulations. In this approach, different computers simulate different events. The 
events are fully independent, so no data transfer between different computers is 
needed. The problems along this way are two-fold: 

 With the increasing data volumes, the resources become more and more 
insufficient, even with structures like WLCG. 

 The largest HPC community worldwide does not use new architectures like 
those involving large number of Intel Xeon Phi accelerators efficiently. 

At present, GPU usage in these large-scale computations is not foreseen due to 
the necessity for severe modifications of the code. For Intel Xeon Phi platform, 
however, there is no need for doing so in native mode. This is also the mode 
recommended by the developers [8]. Our long-term goal is relaxing the resources 
insufficiency bottleneck by opening the emerging HPC hybrid architectures with Intel 
Xeon Phi co-processors for GEANT4-based simulations.  

2. Test architecture 

A pilot implementation of the service “GEANT4 on MIC” was realized on the Sofia 
HPC system Avitohol@BAS [9], with 300 CPU Intel Xeon E5-2650v2, 300 co-
processors Intel Xeon Phi 7120P, 9.6 TB memory and LINPACK performance of 
264.2 TFlop/s. The operating system is Red Hat Enterprise Linux release 6.7. The 
co-processors run MPSS version 3.6. GEANT4 package requires a number of 
additional libraries and packages being configured and installed in a specific way in 
advance. File-transfer options will be discussed elsewhere, here we shall focus on the 
installation, compilation and performance of GEANT4 on this particular 
heterogeneous system. 

3. GEANT4 installation 

The multithread enabled GEANT4.10.00.p04 library has been installed on Avitohol 
supercomputer as well as the CMAKE-3.3.2 utility needed to set up and compile user 
code linked to the GEANT4.  Several test programs were compiled and run 
successfully in multithread version in order to test and validate the correctness of the 
installation. 

The GEANT4 pre-requisites are as follows: 
 GEANT4 Version 10.0 patch-04; 
 Intel C/C++ Version 16.X or higher. We used ICC and ICPP Version 16.0.2 

(compatible with gcc Version 4.4.7); 
 Intel MPSS (Manycore Platform Support Stack) Version 3.4; 
 CMake Version 3.3 or higher; 
 C++ Compiler and Standard Library supporting the C++11 standard; 
 Linux: GNU Compiler Collection 4.8.2 or higher. 



 103 

We refer to the corresponding section of the Best Practice Guide Intel Xeon Phi 
v2.0 [11] for performing the following steps: 

 GEANT4 configuration and installation; 
 GEANT4 cross compilation as a native Xeon Phi application; 
 GEANT4 user code compilation and execution on CPU; 
 GEANT4 user code compilation and execution on Xeon Phi in native mode. 
In the Appendices, some useful scripts are given as supplementary material. 
The new version of the suite – GEANTV, which aims for complete 

parallelization and which is still under development – needs  many specific packages 
to be pre-installed, most of them to be compiled and installed from scratch. The 
installation order is determined by the package dependencies and the compilation 
options have to be explicitly specified. The default system compiler on Red Hat 
Enterprise Linux Release 6.7 is not sufficient to compile GEANTV and even the 
GNU compiler should be compiled from scratch, together with some libraries needed 
by the compiler. Any version above 4.8.0 should be sufficient. We tested that  
Version 4.8.5 works. Performance of GEANTV will be studied separately.  

Prior to GEANTV compilation, the following packages have to be properly 
configured and installed: 

 ROOT6 (https://root.cern.ch/); 
 Vc (https://github.com/VcDevel/Vc)GE; 
 VecGeom (https://gitlab.cern.ch/VecGeom/VecGeom); 
 Pythia8 (http://home.thep.lu.se/~torbjorn/Pythia.html); 
 HepMC3 (https://hepmc.web.cern.ch/hepmc/); 
 Xerces-c (http://xerces.apache.org/xerces-c/); 
 GEANT4 (https://geant4.web.cern.ch/geant4/). 

4. Performance analysis 

Different numbers of events (1000, 10 000, 100 000 and 1 000 000) were simulated 
using 1, 8 and 10 threads on the CPU and 1, 60 and 240 threads on the co-processor. 
A beam of positive muons with energy of 1 TeV has been sent to a fixed lead target 
and the primary and secondary particles were traced through an experimental setup 
containing five detector disks. The lead target is 5 cm thick, while the detectors are 
20 cm thick ionization chambers filled with Xenon. The distance between the center 
of the target and the first chamber is 80 cm. The distance between centers of 
neighboring chambers is also 80 cm. The bulk space is filled with air.  

The tests were performed on 1, 8, and 10 threads for the CPU and 1, 60, and 240 
threads for the co-processor. Comparing one thread on the CPU to one thread on the 
co-processor aims to reveal the intrinsic performance of the corresponding 
architectures. Eight threads correspond to the number of physical cores of the CPU 
at the test architecture, and 240 is the maximal number of threads for the co-
processor. We performed also tests with 60 threads on the co-processor, 
corresponding to one thread per physical core (one core is kept for system functions). 
The results are presented in Fig. 1. The times per event for different number of threads 
are given in Table 1 and Table 2 and depicted in Fig. 2. 



 104 

 
Fig. 1. Execution time vs. number of events for different number of threads on the CPU  

and on the co-processor 
 

Table 1. Time per event (s) for the CPU 
Threads 1K events 10K events 100K events 1000K events 

1 0.006 0.0052 0.000488 0.004858 
8 0.003 0.0008 0.00068 0.000672 

10 0.003 0.0008 0.00056 0.000539 

Table 2. Time per event (s) for Intel Xeon Phi 
Threads 1K events 10K events 100K events 1000K events 

1 0.109 0.0895 0.09043 0.0448 
60 0.072 0.0097 0.00251 0.001633 

240 0.251 0.0283 0.0038 0.001101 
 

 
Fig. 2. Time per event (s) (double log scale) for Intel Xeon (left) and for Intel Xeon Phi (right) 

 
We observe that the speedup through multithreading is limited both for the CPU 

and the co-processor and shows dependence on the number of physical cores (8 for 
the CPU and 60 for the co-processor) though slightly shifting towards higher threads 
number with the increasing of the simulated particles number. A close-up on the two 
computing units separately reveals a dependence, which has to be accounted for when 



 105 

selecting the computing environment for particular physical tasks. For high number 
of simulated events, the speedup (inverse execution time ratio) through 
multithreading is generally higher. For simulations on the CPU, it is recommended 
to keep to the limitation imposed by the physical cores number. For the co-processor, 
however, the situation is different. For medium-size problems, the same limitation 
(60 threads in this case) leads to better performance results and only large-scale 
problems (106 events and more) are better suited for the maximal threads number – 
240 (Figs 3, 4). 
 

 
Fig. 3. Speedup vs number of events for different multithreading options on the CPU  

and on the co-processor 
 

 
Fig. 4. Speedup with the number of threads for a simulation with 128,000 events on the co-processor 

 
In all cases, the CPU outperforms the co-processor, however the test data in 

Tables 1 and 2 justifies the increasing efficiency (nominal, as well as in different 
processing configurations) of the co-processor for high number of simulated events, 
where the performances of the selected configurations are comparable. In Fig. 5, the 



 106 

relative speedup (inverse execution time ratio for different processing configurations) 
for 60 and 240 Intel Xeon Phi threads w.r.t. 1 and 8 CPU threads is shown. As it can 
be seen, performing simulations on the co-processor with the maximal number of 
threads becomes competitive with increasing the number of the simulated events. 

 

 
Fig. 5. Relative speedup vs number of events for different processing configurations 

 
Finally, we consider an example with different particles – protons, though in the 

same experimental setup, and draw a parallel to the muon case studied so far. The 
important difference (in this context) is the way these particles interact with matter. 
Muons produce only a few secondary particles, while protons generate a whole 
shower. The results – presented in Fig. 6 – confirm the expectations. For muons, the 
execution times reach a minimum at 32 threads and then increase again, while for 
protons we observe a rapid decrease up to 32 threads and only a minor decrease 
afterwards. Thus, in the muon case, the advantages through the increased number of 
threads cannot compensate the increased setup time. For the larger number of events, 
however, the muon curve does not exhibit a minimum, but a saturation, already at 
half the maximal number of threads per co-processor (Fig. 2, right panel, green). 

 

 
Fig. 6. Execution time vs. number of threads on Intel Xeon Phi for different particles:  

10 000 events (left); 128 000 events (right) 
 



 107 

Our results are qualitatively in a very good agreement with those reported in 
[11, 12]. However, a direct quantitative comparison is not possible, because of the 
different benchmarks used in these three studies and the different hardware. Our 
study is performed on Intel Xeon Phi 7120P [13], while the results reported in  
[11, 12] are obtained on Xeon Phi 5110P [14]. 

5. Conclusions 

We studied the performance of GEANT4 simulations on a hybrid cluster with Intel 
Xeon Phi co-processors. The results show an essential speedup with the number of 
threads for increasing number of simulated events in all tested configurations. The 
performance depends on the particular physical case. The benefits of multi-threading 
are evident for large number of particles, no matter if secondary or primary ones. The 
scaling behavior can be well understood in the context of the particle properties. The 
results suggest choosing a high number of threads if the simulation produces a high 
number of secondary particles. For cases with a smaller number of secondary 
particles, a performance increase can be achieved in two ways:  

 by finding the optimal number of threads and keeping to it for the given class 
of simulations; 

 by performing the simulation with a sufficiently high number of primary 
particles (at least 1000) per thread. 

Formally, the co-processor does not outperform the CPU, but for a large number 
of simulated events (which is the real case) the Xeon Phi performance is comparable 
with the CPU performance. Porting an extremely large package like Geant4 to a new 
architecture is a nontrivial task. Thus, this option is not considered by the developers 
for Nvidia CUDA as the code requires essential changes. On the contrary, the source 
code needs little or almost no changes in order to be compiled and executed on Intel 
Xeon Phi, which is a remarkable advantage, making it the only hybrid platform able 
to run GEANT4. In fact, GEANT4 is not optimized for parallel computations. The 
fully parallelized version of the suite, GEANTV, which is still under development, 
will expectedly provide an overall performance enhancement, including that on co-
processors of the series Intel Xeon Phi. With the energy efficiency in mind, such 
heterogeneous architectures are a promising candidate for offloading to them part of 
these important and computationally expensive simulations. 
 
Acknowledgments: This work was partly supported by the PRACE project funded in part by the EU’s 
Horizon 2020 Research and Innovation Programme (2014-2020) under grant agreement No 653838. 

R e f e r e n c e s 

1. https://geant4.web.cern.ch/geant4/ 

2. A g o s t i n e l l i, S., et al. GEANT4 − A Simulation Toolkit. − NIM, Vol. A506, 2003, No 3,  
pp. 250-303. 

3. A l l i s o n, J., et al. GEANT4 Developments and Applications. – IEEE Transactions on Nuclear 
Science, Vol. 53, 2006, No 1, pp. 270-278. 

4. A l l i s o n, J., et al. Recent Developments in GEANT4. – NIM, Vol. A835, 2016, pp. 186-225. 



 108 

5. https://cds.cern.ch/record/118715?ln=en 
6. https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBook 
7. http://www.opengatecollaboration.org/UsersGuide 
8. https://twiki.cern.ch/twiki/bin/view/Geant4/XeonPhiSupport 
9. http://www.hpc.acad.bg/system-1/ 
10. E. Atanassov et al., Eds. Best Practice Guide Intel Xeon Phi V2.0, January 2017. – PRACE.  

http://www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-Intel-Xeon-Phi-1.pdf 

11. F a r r e l l, S., A. D o t t i, M. A s a i, P. C a l a f i u r a, R. M o n n a r d. Multi-Threaded GEANT4 
on the Xeon-Phi with Complex High-Energy Physics Geometry. E-print: arXiv:1605.08371v1 
[physics.comp-ph].  
https://arxiv.org/abs/1605.08371 

12. S c h w e i t z e r, P., S. C i p i è r e, A. D u f a u r e, H. P a y n o, Y. P e r r o t, D. R. C. H i l l,  
L. M a i g n e. Performance Evaluation of Multi-Threaded Geant4 Simulations Using an Intel 
Xeon Phi Cluster. – Scientific Programming, Vol. 2015, 2015, Article ID 980752. 10 p. 
http://dx.doi.org/10.1155/2015/980752 

13. https://ark.intel.com/products/75799/Intel-Xeon-Phi-Coprocessor-7120P-16GB-1_238-GHz-

61-core 
14. https://ark.intel.com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1_053-GHz-

60-core 

Appendix A. Test-Code Compilation for the CPU and the  
Co-Processor 

The test-code compilation for both cases is as follows: 

source /opt/soft/geant4/mic/non-mic/scripts/geant4_compilers_setup_nonmic.sh  
mkdir ~/test_cpu 
cd ~/test_cpu 
mkdir B2a 
cd B2a 
cmake -DCMAKE_LINKER=${LD} -DCMAKE_AR=${AR} -
DCMAKE_TOOLCHAIN_FILE=/opt/soft/geant4/mic/non-
mic/geant4.10.00.p04//mic-toolchain-file.cmake -
DGeant4_DIR=/opt/soft/geant4/mic/non-
mic/geant4.10.00.p04/geant4.10.00.p04-build/   
/opt/soft/geant4/mic/non-
mic/geant4.10.00.p04/geant4.10.00.p04/examples/basic/B2/B2a/ 
make -j 40 
 

source  /opt/soft/geant4/mic/scripts/geant4_compilers_setup.sh  
mkdir ~/test_mic 
cd ~/test_mic 
mkdir B2a 
cd B2a 
cmake -DCMAKE_LINKER=${LD} -DCMAKE_AR=${AR} -
DCMAKE_TOOLCHAIN_FILE=/opt/soft/geant4/mic/geant4.10.00.p04/mic-
toolchain-file.cmake  -
DGeant4_DIR=/opt/soft/geant4/mic/geant4.10.00.p04/geant4.10.00.p04-build/  



 109 

/opt/soft/geant4/mic/geant4.10.00.p04/geant4.10.00.p04/examples/basic/B2/B2
a/ 
make -j 40 

Appendix B. GEANT4 User Code Compilation and Execution on 
Xeon Phi in Native Mode 

The following script might facilitate the compilation of the user code and linking it 
to the GEANT4 library: 
 

#!/bin/bash 
#echo $0 usage: user_install_dir user_source_code_dir  
echo usage: user_install_dir user_source_code_dir 
#echo $# #arguments 
if [ $# -ne 2 ] 
   then echo "illegal number of parameters" 
 exit 
fi 
 

/opt/intel/compilers_and_libraries_2016.2.181/linux/bin/iccvars.sh intel64 -arch 
intel64 -platform linux 
export CC=/opt/intel/compilers_and_libraries_2016.2.181/linux/bin/intel64/icc 
export CXX=/opt/intel/compilers_and_libraries_2016.2.181/linux/bin/intel64/icpc 
export LD=/usr/linux-k1om-4.7/bin/x86_64-k1om-linux-ld 
export AR=/usr/linux-k1om-4.7/bin/x86_64-k1om-linux-ar 
export LDFLAGS=-mmic 
export CXXFLAGS=-mmic 
export CFLAGS=-mmic 
export PATH=/opt/soft/geant4/mic/cmake-3.3.2/bin/:${PATH} 
cd $1 
cmake -DCMAKE_LINKER=${LD} -DCMAKE_AR=${AR} -
DCMAKE_TOOLCHAIN_FILE=/opt/soft/geant4/mic/geant4.10.00.p04/mic-
toolchain-file.cmake  -
DGeant4_DIR=/opt/soft/geant4/mic/geant4.10.00.p04/geant4.10.00.p04-build $2 
where the content of  mic-toolchain-file.cmake is given in [8]. The compilation is 
straightforward: 
./compile_user_code_mic.sh $USR_BUILD $USR_CODE 
where the user code is in the directory pointed by the environment variable 
$USR_CODE and the directory to build and store executable is pointed by 
$USR_BUILD. 
For a complete set of compilation and installation scripts, we refer to [10]. 


