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Abstract: Head pose estimation plays an important role in face recognition. 
However, it faces vast challenges on account of the initialization, facial feature 
points’ location accuracy and so on. Inspired by the observation that head pose 
angles change smoothly and continuously, we present a method based on a robust 
convolutional neural network for head pose estimation. The proposed network 
architecture consists of three levels and each level has three convolutional neural 
networks. The first level is a global one; it predicts the head pose quickly as a 
preliminary estimation. The following two levels are local ones; they refine the 
estimation achieved from the previous level step by step. Higher and higher 
resolution image with different input regions are taken as input in our network. At 
last, a multi-level regression is employed to combine the estimations from each 
level. The whole process is conducted in a cascade way to improve the head pose 
estimation performance directly with three angles together. We perform large 
experiments on nine challenging benchmark datasets. The experimental results 
demonstrate that our method performs better than the compared methods.  

Keywords: Head pose estimation, convolutional neural network, cascade network, 
multi-level regression, deep learning. 

1. Introduction 

Head pose estimation is defined as the process to predict the orientation parameters 
or the Euler rotation angles of the face in images. Generally speaking, there are two 
models for head pose, i.e., face orientation model and Euler rotation angle model  
as demonstrated in Fig. 1. Recently, due to the broad application of head pose 
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estimation in face recognition, facial feature analysis and human computer 
interaction, it becomes a hot topic in pattern recognition and computer vision [1]. 
 

 
                                                                
 

Fig. 1. Two description models of head pose. The left one is face 
orientation model (a); the right one is Euler rotation angle model (b) 

Accordingly, a lot of head pose estimation approaches have been proposed. 
These approaches can be classified into two categories [1], i.e., one is based on the 
traditional machine learning method and the other is based on the deep network. 

Traditional approaches contain detector array method [2], nonlinear regression 
method [3], manifold embedding method [4], flexible model method [5], geometric 
method [6], tracking method [7] and hybrid method [8]. These approaches have 
ability to dynamically construct model of the human face in image, and generate a 
new model or adapt the existing model relying on an initialized position and pose. 

However, there are many limitations of these approaches [1]. Firstly, they rely 
on the initialization and facial feature points’ location accuracy. But good 
initialization and high accuracy are still a challenging problem in the real scene, 
especially with extreme pose, illumination, expressions, or occlusions and so on. 
Secondly, they mostly estimate head pose with one or two angles, or avoid head 
pose estimation with extreme angles. 

Recently, deep convolutional neural network and other deep model methods 
have been used in computer vision and machine learning, such as face detection, 
pose estimation [9], face parsing [10], image classification [11], facial point 
detection [12], depth map [13] and so on. However, there are few such methods 
used for head pose estimation. K a n  et al. [14] propose a deep progressive auto-
encoder network for head pose estimation. It achieves great success by learning the 
non-linear function from the non-frontal human face images to the frontal ones. 
However, the estimation result is limited to [–45°, 45°], it works not well when the 
image with extreme angles. As shown in Fig. 2, we can see that it is still a 
challenging problem when samples are perturbed with extreme pose, illumination, 
expressions, or occlusions. 

In order to solve the problems mentioned above, we propose a new approach 
for head pose estimation based on a robust deep convolutional neural network with 
three carefully designed levels. The head pose estimation is formulated as the multi-
level regression problem towards three Euler rotation angles. 

(a) (b) 



 135 

The primary contributions of the proposed method are as follow: 
1. A new method based on a robust convolutional neural network is proposed 

for head pose estimation. The designed network estimates head pose step by step 
with one global level and two local levels. 

2. The three angles are estimated together from the face images directly 
without the initialization and facial feature points’ location accuracy. 

 

 
Fig. 2. Examples of head pose estimation. The top text: the labelled angles of images. The first row: 
roust rough estimations of our first global level networks. The second and the third rows: the tuned 

estimation results of our second and third local levels of the proposed networks. Obviously, the results 
are improved step by step. In addition, we can see our method is not sensitive to illumination, 

expression, etc. 

The rest of the work is arranged as follows. Section 2 displays the robust 
convolutional neural networks in detail. Section 3 shows the implementation 
details. Section 4 presents the experiment results. Section 5 draws the conclusion. 

2. The proposed network 

In this section, we present a method for head pose estimation. Firstly, we will give 
an overview of the proposed network in the first part. Secondly, we will describe 
the components of the framework in details in the second, third and fourth parts. 
Finally, we will illustrate the motivation of selecting this deep convolutional neural 
network and give some discussions in the fifth part. 
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2.1. Model overview 

In this work, we will use Euler rotation angle model to describe head pose. 
Therefore, three angles will be estimated, i.e., the roll, the pitch and the yaw. As 
shown in Fig. 3, in our work, three levels are carefully designed, i.e., one global 
level and two local levels. The estimations of these levels are combined by a multi-
level regression. Furthermore, in order to prevent errors to be amplified in the 
network with deeper and deeper level, discriminant conditions are introduced to 
control these errors in each level. 

 
Fig. 3. Overview of the robust network for head pose estimation. The input human face image is 2D  

 
In Fig. 3, the first global level networks are denoted as CNN11, CNN12, and 

CNN13. Networks in this level predict a preliminary estimation P0. Networks in the 
following levels are local, they refine the previous estimation in a cascade way. 
Networks in the second level are denoted as CNN21, CNN22 and CNN23 which 
predict the deviations between the current estimation and the ground truth. 
Networks in the nth level are denoted as CNNn1, CNNn2 and CNNn3 and their 
actions are similar to networks in the second level. Black shaded areas of face 
images are the abandon parts. With the deepening of the network, the resolution of 
the input image is higher and higher. 

The first level of the network (denoted as the global level) emulates a roughly 
approximate head pose from low resolution human face images with different input 
regions. There are three convolution neural networks in the first global level, and 
these networks have similar structure, as shown in Fig. 3. All of these networks 
have an input layer, two convolutional layers, two pooling layers and an output 
layer, respectively (as shown in Fig. 4). The only difference between them is the 
input layer, i.e., the input region of human face image. Three input regions of the 
global level network are the whole human face image (CNN11), the top and middle 
part of face image (CNN12) and the middle part and the bottom part of face image 
(CNN13) respectively. Due to these three CNNs with different input regions, our 
network will be more robust to obtain initial head pose estimation namely P0. 

After getting the robust preliminary head pose estimation P0 from the global 
level, successive levels networks (denoted as the local levels) endeavour to refine 
this preliminary head pose estimation by regressing the deviations P between the 
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current estimation and the ground truth data step by step. There are also three 
convolution neural networks with similar structure in each local level. In order to 
characterize these tiny variations, higher-resolution human face images are taken as 
input. Furthermore, these three head pose angles are estimated and are refined 
together rather than separately in each level. 

Last, a multi-level nonlinear regression is employed to combine the 
estimations from the global and local levels. Apparently, this regression has two 
parts which correspond to the rough and adjustment estimations separately.  

2.2. The global level of the network 

Let dx R  indicates the human face image of d pixels, 3)( RxPg  denotes the 
ground truth of the normalized head pose angles respectively. In our work, the goal 
of the head pose estimation is to learn a mapping nonlinear relationship F from the 
human face image space to the head pose space directly: 
(1)    g: ( ).x P xF   

Generally speaking, to model the complex and nonlinear function F, the head 
pose estimation problem is formulated as minimizing the mean square error of the 
following objective: 
(2)   * 2

g 2|| ( ) ( ) || ,arg min P x x 
F

F F  

where  1 2, , , , ,i kf f ... f ... fF , fi is the complex mapping function of i-th CNN 
network. There is also an activation function  in each network, and  is a 
tanh function in our work, the output range of this function is  [–1, 1]. 

One of the most remarkable things is that the objective of the global level 
optimizes the difference between Pg(x) and fj(x), while the objective of the local 
level optimizes the difference between P(x) and fj(x) in the local levels, where 
Pg(x) is the difference between Pg(x) and the current head pose which is learned 
from the previous level, fi(x) and fj(x) represent the nonlinear mapping of the 
network in each local level. In other words, F)(xf i  in the global level learns 
head pose estimation, while in the local level it learns the deviation. 

An average estimation P0 is calculated from the first level as the initial:  

(3)    11 1 1 2 1
0

1

( ) ( ) ... ( )
,nP P P

P
n

  
  

where 
1

)~( 1 nP  is the estimation from the global level, in this work, 31n . After this 
stage, a rough but robust estimation is obtained. Thus, it is easy to calculate the 
deviation between the current estimation P0 and the ground truth, and the deviation 
is regarded as the ground truth data for the next local level. 

2.3. The local level of the network 
Once the initial estimation P0 is obtained, several successive local levels networks 
are employed to improve P0. These successive levels iteratively estimate the 
updates )(~ xPj  between the current estimation )(1 xPj  and the ground truth  Pg(x). 
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With the high resolution input face image x , the objective of each CNN in the 
first local level learns a function 1L  from image space to the deviations )(1 xP  as 
follows: 
(4)    .||)()(||minarg 2

211 xxP LL

1
L

*

1    

where 1 g 0( ) ( ) ( )P x P x P x   . 

With the average estimation update 1
~P  from the first local level, we obtained 

the new estimation 101
~PPP  . 

Then for the k-th successive local level, the goal is to optimize the new 
deviation g 1( ) ( ) ( )k kP x P x P x    between the predicted current (k – 1)-th 
estimation )(1 xPk  and the ground truth data Pg(x). The objective of each CNN in 
the k-th local level is shown as follows: 
(5)     .||)()(||minarg 2

2
* xxP kkk

k

LL
L

  

After getting the last tiny update nP~  from the n-th local level, then we update 
the new estimation in a cascade way as follows: 
(6)    .~...~

10 nn PPPP   

2.4. The multi-level regression 

The different size of input regions of network in first global level can cover many 
possible conditions, it not only provides a robust initial estimation but also gives a 
very useful prior for the following estimations. The initial estimation is robust, but 
it is not accurate enough, so as an effect, the following local levels networks are 
proposed to learn the refined tiny steps between the current estimation and the 
ground truth. But few local levels are required because the steps are not large. 
Therefor these local levels network are only allowed to refine the initial prediction 
in a very tiny range (Fig. 4). 

 
Fig. 4. The structure of the first convolutional neural network in the first level. Sizes of input regions, 
convolution, max pooling and the vector of the output layers are illustrated by cuboids whose length, 
width, and height denote the number of maps and the size of each map respectively. Local receptive 

fields of neurons in different layers are illustrated by small squares in the cuboid 
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We adopt a multi-level regression to combine the estimations of different 
levels and it effectively improves the estimation. Finally, the predicted head pose 
estimation is formulated in a cascade way as follows: 

(7)   1 21 1 1 2 1 1 2

21 2

( ) ( ) ... ( ) ( ) ( ) ... ( )
,

n
n k k k n

n
k

P P P P P P
P

n n

        
   

for a cascade with ni predicts at level i. In our work, 3in n .   Obviously, the first 
average term of (7) is the value of the first global level, i.e., the absolute head pose 
estimation, while the second term is the sum of the average steps in each local level, 
i.e., the refined improvements. Obviously, (6) and (7) are equivalent. 

2.5. Network structure selection and discussion 

Network structure selection. There are three leading factors about selecting this 
network for head pose estimation. First, estimating head pose is a difficult task and 
needs deep level network. The network increases the nonlinearity of the features 
and represents the relationship between image space and the head pose space. 
Second, the network is necessary since the estimation of the single level network is 
rough and inaccurate. Third, the structure of the network in each level based on two 
considerations, i.e., different input regions and low to high resolution version input 
image, which can effectively improve the performance. 

Differences with traditional methods. Our proposed approach is clearly 
different from the traditional methods, their two main differences: Firstly, the 
traditional methods adopt linear function mapping from feature space to head pose 
space, while our network learns a highly nonlinear multi-level regressor. Secondly, 
the traditional methods employ the mean value or a random value as the initial 
estimation, while our proposed network estimates head pose step by step without 
initialization and facial feature points. 

Differences with deep auto-encoder network [14]. Both deep auto-encoder 
network and our proposed network are used to estimate head pose. The differences 
between them are mainly on two reasons: Firstly, auto-encoder network for head 
pose estimation is limited in some angles of yaw. Our network can estimate three 
angles. Secondly, in deep auto-encoder network, the yaw angle is limited to  
[–45°, 45°]. The estimation may be not very robust when the angle changes to large, 
such as in [–90°, 90°]. Our network can predict three angles together even if with 
extreme angles. 

3. Implementation details 

The input image of our network is grey, recorded as x(h, w), where h and w are the 
height and the width respectively. The convolutional layer is denoted by  C(k, m),  
k is the size of the square convolutional kernels and m is the number of map 
features. Let (h, w, m) represents m maps from the previous layer of size h by w, 
then the convolutional operation is namely C(k, m),  
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(8)   
1 1 1

( , )
, ,

0 0 0
tanh ,

m k k
t r r t t
i j i u j l u ,l

r u l
y x

  

 

  

 
   

 
 W b  

where x and y are the output of the previous and current layers, respectively, 
0,1, 2,..., ,i h k    0,1, 2,..., ,j h k   W is weight, b  is offset term, and tanh  presents 

the activation function which is usually nonlinear. Most generally, tanh  is defined 

as tanh( )
x x

x x

e ex .
e e









 

In a general way, m maps in the previous layer are concerned with m square 
convolutional kernels. An activation function tanh is used after making sum of the 
output maps and the bias b. In different convolutional level, the sets of the kernels 
and the bias are different, respectively. 

The pooling layer is denoted as P(s), where s is the size of the square pooling 
regions. In principle, there are two kinds of pooling operation, i.e., the mean 
pooling and the max pooling. In our work, the max pooling is employed. The 
coefficients in this layer are organized in a similar way as weights in the previous 
convolutional layer. The pooling results are multiplied with a gain coefficient g and 
shifted by a bias b, and a tanh non-linear activation function is used after taking the 
max pooling operation. The pooling operation P(s) is formulated as following: 
(9)    ).}{maxtanh( ,

,0
,

ti
lsjusi

slu

tt
ji xy bg  



 

The fully connected layer is denoted as F(n), where n and m are the numbers 
of neurons in the current layer and previous layer, respectively, 

(10)    
1

0
tanh( ) 0,1, 2, , 1

m

j i i , j j
i

y x w b , j ... n .




      

Input ranges and parameter setting. The normalized input ranges of CNNs 
in the first level are shown in Fig. 4. As can be seen in Fig. 3, the input regions and 
the convolutional operations of the network are demonstrated in Table 1. 

Table 1. Settings of the network. I(.,.) demonstrates the region of input image, C(.,.) draws the 
convolutional operation, P(.) represents the max pooling and F(.) denotes the output vector 

Level Network Layer0 Layer1 Layer2 Layer3 Layer4 Layer5 

L1 
CNN11 I(39, 39) C(6, 6) P(2) C(6, 12) P(2) F(3) 
CNN12 I(31, 39) C(6, 6) P(2) C(6, 12) P(2) F(3) 
CNN13 I(31, 39) C(6, 6) P(2) C(6, 12) P(2) F(3) 

L2 
CNN21 I(60, 60) C(9, 10) P(2) C(9, 20) P(2) F(3) 
CNN22 I(48, 60) C(9, 10) P(2) C(9, 20) P(2) F(3) 
CNN23 I(48, 60) C(9, 10) P(2) C(9, 20) P(2) F(3) 

L3 
CNN31 I(80, 80) C(13, 10) P(2) C(13, 20) P(2) F(3) 
CNN32 I(64, 80) C(13, 10) P(2) C(13, 20) P(2) F(3) 
CNN33 I(64, 80) C(13, 10) P(2) C(13, 20) P(2) F(3) 

 
With the purpose of training a reliable and robust network, we perturb the train 

images by changing the translation, rotation and scaling. Head pose estimation need 
to be learned of the robust network including the weigh W, the gain g and the  
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bias b. These parameters are initialized by a random function and learned by 
stochastic gradient descent algorithm. Learning rate   is also an important 
parameter which need to manually set, we set  =0.0001 according lots of 
experiments. What is more, numepoches=100 and batchsize=100. 

4. Experiments 

In this section, face datasets, methods for comparisons and evaluation strategy are 
introduced in detail primarily, then the performance of each step of the deep model 
is studied, and finally the experiment results of our method compared to other 
existing methods are demonstrated. 

4.1. Datasets, methods for comparison and evaluation strategy 

The set used for our proposed network contains 14144 images, due to some links of 
the datasets have failed, so some database only part. The training set of our network 
contains 1120 images of FERET [15], 242 images of Imm_face [16], 974 images of 
ORL [17], 2800 images of FEI [18], 576 images of INDINA[19], 1092 images of 
Weizmann, 1167 images of MultiPIE (14%) [20], 2232 images of Pointing’04 [21], 
1065 images of UMIST [22] and 282 images of Multifacepose [23]. The testing set 
contains 837 images of Pointing’04 (20%), 280 images of FERET (20%) and 1027 
images of MultiPIE (9%). 

The output vector is expressed as the roll angle (in-plane rotation), the yaw 
angle (left-right rotation) and the pitch angle (up-bottom rotation). In our 
experiments, each image in the training set is manually labelled with three angles. 
The 181 roll angles {–90°, –89°, –88°,..., 0°,..., 88°, 89°, 90°} are labelled by 
computing the angle between two facial feature points of eyes, 13 yaw angles are 
re-labelled as {–90°, –75°, –60°, –45°, –30°, –15°, 0°, 15°, 30°, 45°, 60°, 75°, 90°} 
and 9 pitches angles are re-labelled as {–90°, –60°, –30°, –15°, 0°, 15°, 30°, 60°, 
90°} according to the labelled datasets, and all of these angles are normalized to  
[–1, 1], we set the angle to 0 if this angle is not labelled in the datasets. 

We will compare our proposed method to the existing methods as follows. 
Softmax is a classification method. Neural Networks (NN) [24] estimates head pose 
by minimizing conditional probability function. SPAE [14] progressively converts 
the non-frontal face images to the frontal ones. The experimental result of this 
method is better than many algorithms. 

The each level performance of the network is measured with the Root Mean 
Squared Error (RMSE). The performance of the network is measured the 
classification accuracy of the estimated head pose. It includes seven measures, one 
for the yaw angle, one for the pitch angle, one for the roll angle, one for both of the 
yaw and the pitch angle, one for both of the yaw and the roll angle, one for both of 
the roll and pitch angle, one for all of them. 
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4.2. Investigation of each stage 

Our proposed network consists of three levels. Therefore, we investigate how 
convolution neural networks in each level contribute to the performance 
improvement for the estimation. The experiments are expressed on two datasets in 
terms of average RMSE of three Euler rotation angles. The assessments of 
performance are shown in Figs 5 and 6, where “stage 1, 2, 3” represent the 
estimation result in each level respectively. 

 
                                             (a)                                                                         (b) 
Fig. 5. The comparison of each step on FERET and Pointing’04 Databases; (a) and (b) demonstrate the 

RMSE of the three angles in each step 

 
                                  (a)                                                                             (b) 

Fig. 6. The comparison of each step on FERET and Pointing’04 Databases. Both (a) and (b) 
display the RMSE of each dimension and their combinations of the three angles vector in each step 

As shown in (a), (b) of Fig. 5, we compute the average RMSE of the angle 
vector at each step of the networks which is improved clearly. As can be seen, on 
FERET datasets, the RMSE improvements of Level 1 and Level 2 are tiny, but 
result of Level 3 is improved a lot. On Pointing’04 datasets, the improvements are 
smooth at each stage. Because we use the preliminary estimation rather than a 
random initial estimation at Stage 1, the RMSE of the estimation is improved up to 
about 2%. 

In Fig. 6, we compute the average RMSE of each angle and their combinations 
in each level of the networks. Compared with Pointing’04 datasets, it is easy to find 
that the improvement on FERET is more obvious. However, the RMSE of the roll 
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angle at Stage 1 on FERET datasets is a little bit larger than at Stage 2, but it does 
not affect the final results. 

This improvement root in two reasons, better global information and feature of 
head pose. The global level network handles large variation integrally and receives 
a good estimation compared to the mean value, networks at Level 2 and Level 3 are 
designed to refine the rough estimation length by length. In order to well capture the 
subtle variation, higher and higher resolution face images are used in Level 2 and 
Level 3, respectively. 

4.3. Comparisons on FERET and MultiPIE datasets 
We compare our method with some methods on both FERET and MultiPIE datasets 
[1]. The accuracy of the yaw angles of the proposed network are shown in Tables 2 
and 3. 

Table 2. Comparison with the existing method on FERET datasets 
Methods Softmax NN SPAE Our method 

Probe 
pose 

–30° 51.6% 37.5% 98% 94.5% 
–15° 54.8% 47.8% 99% 99.2% 

15° 55.2% 48.3% 100% 100% 
30° 52.8% 38.0% 99% 99.2% 

Average 53.6% 42.9% 96.4% 98.5% 
 

In Table 2, Softmax performs the worst because of the limitation of capturing 
complex nonlinearity. NN performs a little better than Softmax. However, both of 
them are still worse than SPAE, it is possibly because SPAE are proposed with deep 
network. Our method outperform the compared SPAE method, it is with an 
improvement by 1.7%. In Table 3, NN performs still the worse. SPAE performs 
better than NN but worse than our method. Our method also outperforms the 
compared methods, and it is with an improvement by 1.8%. In Tables 2 and 3, we 
can see that the estimation with extreme angle is poor; this may be due to the less 
training samples and so on. 

Table 3. Comparison with the existing methods on MultiPIE datasets 
Method NN SPAE Our method 

Probe pose 

–45° 35.2% 84.9% 85.1% 
–30° 46.1% 92.6% 95.5% 
–15° 51.2% 96.3% 98% 

15° 50.3% 96.3% 98.7% 
30° 48.6% 94.3% 96.5% 
45° 35.6% 84.4% 85.7% 

Average 44.5% 91.4% 98.5% 

Table 4. Comparison with the existing methods on Pointing’04 datasets. 

Method 
Accuracy (%) 

Yaw Pitch Roll Yaw+Pitch Yaw+Roll Roll+Pitch Yaw+Pitch+Roll 
Our 

method 71.4 73.5 99.1 52.8 70.2 72.5 52.2 

In addition, we compute the accuracy of the angles and their combinations on 
Pointing’04 datasets in Table 4. Compared with the methods that predict two or one 
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head pose angles only, it is easy to find that the accuracy of our method performs a 
little poorly. This can be understood. This is because the number of estimated head 
pose angles and the accuracy rate are interacting to each other. However, our 
proposed approach still has progress. Firstly, it gives a try to predict all the three 
head pose angles together directly. Secondly, it does not need the initialization and 
facial feature location accuracy. What demand add is, because it is harsh for the 
intervals of the roll angle is 1°, we allow the max error is 5°in our experiments. 

5. Conclusions 

In this paper, we propose a new approach for head pose estimation based on a 
robust convolutional neural network with three designed levels in a cascade way. 
There are two main targets in our approach. The first is to propose a method for 
estimating all the three head pose angles together from images. The second is to 
present a method for estimating the angles without initialization and facial feature 
points’ location. In this way, the proposed deep network not only alleviates the 
problem of estimating three head pose angles, but also gives a resolution of 
predicting head pose without initialization and facial feature points’ location. The 
proposed method is compared with several head pose estimation algorithms on 
challenging datasets. Experimental results show that the proposed method performs 
better than the compared methods. 
Acknowledgments: This work was supported in part by the National Natural Science Foundation of 
China (Grant No 61375038) and Applied Basic Research Programs of Sichuan Science and 
Technology Department (Grant No 2016JY0088). 
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