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Abstract: According to traditional rough set theory approach, attribute reduction 
methods are performed on the decision tables with the discretized value domain, 
which are decision tables obtained by discretized data methods. In recent years, 
researches have proposed methods based on fuzzy rough set approach to solve the 
problem of attribute reduction in decision tables with numerical value domain. In 
this paper, we propose a fuzzy distance between two partitions and an attribute 
reduction method in numerical decision tables based on proposed fuzzy distance. 
Experiments on data sets show that the classification accuracy of proposed method 
is more efficient than the ones based fuzzy entropy. 

Keywords: Fuzzy rough set, fuzzy equivalence relation, fuzzy distance, decision table, 
attribute reduction, reduct. 

1. Introduction 

Attribute reduction is an important issue of data preprocessing steps in data mining 
and knowledge discovery. The aim of attribute reduction is eliminated redundant 
attributes to enhance the effectiveness of data mining algorithms. Rough set theory 
of Pawlak is an effective tool to solve the attribute reduction problem in decision 
tables and the one that researchers has performed for a long time. Rough set based 
attribute reduction methods are performed on decision tables with discretized value 
domain [2-4]. In fact, the attribute value domain of decision tables often contains 
numerical values and continuous values. For example, the attribute of body weight 
and blood pressure in patient data tables is usually numerical value, continuous value. 
When performing attribute reduction methods based on rough set, data needs to be 
discretized. However, these discretized methods do not preserve the initial difference 
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between objects in the original data, so it reduces the classification accuracy after 
attribute reduction. To solve the issue of attribute reduction in decision tables with 
numerical value and continuous value, in recent years, researches have proposed new 
methods based on fuzzy rough set approach. 

D u b o i s  and  P r a d e  [1] proposed fuzzy rough set theory is a combination 
of rough set theory and fuzzy set theory in order to approximate fuzzy sets based on 
fuzzy equivalence relation. The fuzzy equivalence is determined by the attribute 
value domain. Traditional rough set based on similarity relation to approximate sets. 
In rough set theory, two objects are called equivalent on the attribute set (the 
similarity is 1) if their attribute values are equal on all attributes. Conversely, they are 
not equal (the similarity is 0). The fuzzy rough set theory has used the fuzzy 
equivalence relation to replace the equivalence relation. The value similarity in the 
range [0, 1] shows the close or similar properties of two objects. Therefore, the fuzzy 
equivalence preserves the difference or the similarity of objects. Attribute reduction 
methods based on fuzzy rough set approach has the potential to preserve the 
classification accuracy after implementing attribute reduction methods. 

In recent years, the topic of the attribute reduction based on fuzzy rough set has 
attracted many researchers [5-14]. With attribute reduction issue directly on the 
decision table based on fuzzy rough set, these related researches are concerning in 
two main directions: fuzzy positive region approach and fuzzy entropy approach. 
Based on fuzzy positive region, H u, X i e and Y u [8] proposed FAR-VPFRS 
algorithm to find one fuzzy positive region reduct which use the fuzzy membership 
function. The experimental data sets show that the classification accuracy of FAR-
VPFRS algorithm is better than the one of algorithm which use the membership 
function according to traditional rough set. Q i a n  et al. [14] proposed FA_FPR 
algorithm, which is an improvement of FAR-VPFRS [8] in terms of executed time. 
According to fuzzy entropy approach, H u, Y u and X i e [7] proposed the fuzzy 
entropy which is based on entropy Shannon and introduces FSCE to find one reduct 
using fuzzy entropy. D a i  and X u  [6] proposed fuzzy gain ratio based on fuzzy 
entropy and introduces GAIN_RATION_AS_FRS to find one reduct using fuzzy 
gain ration. The experimental data sets show that the classification of FSCE, 
GAIN_RATION_AS_FRS algorithms are better than the ones based on traditional 
rough set. Q i a n  et al. [14] who proposed FA_FSCE algorithm, is an improvement 
of  FSCE algorithm [7] in terms of executed time. In both direction approaches, 
authors in [14] have never evaluated the classification accuracy after implementing 
improved algorithms FA_FPR, FA_FSCE. With direct reduction attribute on the 
decision table based on fuzzy rough set, the aim of this paper is to propose a new 
method which improves the classification accuracy more than the previous ones. 

In this paper, we propose the heuristic algorithm to find a best reduction of the 
decision table with numerical attribute value domain using a fuzzy distance. The 
fuzzy distance is constructed between two partitions. The experimental results in data 
sets from UCI [17] show that the classification accuracy of proposed algorithm is 
better than FA_FSCE and FA_FPR algorithms [14]. The structure of this paper is as 
follows. Section 2 presents some basic concepts of fuzzy rough set theory. Section 3 
presents the method of constructing the fuzzy distance between two attribute sets. 
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Section 4 presents an attribute reduction method using fuzzy distance measure. 
Section 5 presents experimental results. Finally, Section 6 gives a conclusion of this 
paper and subsequent developments. 

2. Basic concepts 

In this section, we introduce some concepts in rough set theory, fuzzy rough set 
theory and some related concepts in fuzzy partition space. 

A decision table is a pair  DS ,U C D  , where U  be a non-empty finite set; 
C is called conditional attribute set,  D is called decision attribute set with .C D   
DS is called the numerical decision table where the value domain of c C  is the 
numerical for any c C .  

Pawlak’s traditional rough set theory [15] used an equivalence relation to 
approximate sets. A subset P C  determines equivalence relation on attribute value 
domain, denote by IND(P), 

        IND , , ,P u v U U a P a u a v       

 a v is denoted as the value attribute a in object v; IND(P) determines the partition 

on U, denoted by  / INDU P  and the equivalence class of u, denoted by  P
u . The 

lower approximation set and the upper approximate set of X U  related to P C

is defined as   P
PX u U u X    and   P

PX u U u X    . 

D. Dubois and others proposed the fuzzy rough set which used fuzzy equivalent 
to approximate the fuzzy sets. The decision table with numerical attribute domain 

 DS ,U C D  , the relation R  defined on U  is called fuzzy similarity relation if 
it satisfies the following conditions [14]: 

1) Reflectivity:  , 1R x x  . 
2) Symmetry:    , ,R x y R y x . 
3) Max-min transitivity:       , min , , ,R x z R x y R y z , for any 

, , .x y z U  
Let U  be a non-empty finite set and PR  và QR  be a fuzzy equivalence relation 

on U if for any , ,x y U  we have: 

1)    , ,P Q P QR R R x y R x y   , 

2)       , max , , ,P Q P QR R R R x y R x y R x y    , 

3)       , min , , ,P Q P QR R R R x y R x y R x y    , 

4)    , ,P Q P QR R R x y R x y   . 



 16 

The relation matrix of PR  denoted by ( ) [ ]P ij n nM R p   is defined as 

11 12 1

21 22 2

1 2

...

...
( )

... ... ... ...
...

n

n
P

n n nn

p p p
p p p

M R

p p p

 
 
 
 
 
 

, 

where  ,Pij i jp R x x is the fuzzy relation value of ix  and jx on P,  0,1ijp  . 

Let  DS ,U C D   be a decision table with numerical attributes and 

, .P Q C  According to [11] we have P aa PR R   and P Q P QR R R   , it 

means that       , min , , ,P Q P QR x y R x y R x y   for any , .x y U  Suppose that 

 P ij n n
M R p


    and ( )Q ij n n

M R q


    are relational matrices of PR , QR
corresponding, then the relational matrix on the attribute sets S P Q   is defined 
as 

 ( )S P Q ij n n
M R M R s


      with  min ,ij ij ijs p q . 

For P C ,  1,..., nU x x , the fuzzy partition   / PP U R   on U can be 

generated from the fuzzy equivalence relation PR : 

         11
/ ,...,

P P P

n
P P i nR R Ri

R U R x x x


   , 

where   1 1 2 2/ / ... /
Pi i i in nR

x p x p x p x     is a fuzzy set, is called a fuzzy 

equivalence of object ix . The membership function of objects is determined by 

       , ,
Pi RP

Pj i j i j ijx Rx x x R x x p     for any jx U . Then, the cardinality of 

fuzzy equivalence  
Pi R

x is calculated [11] as  

 
1

.
P

n

i ijR
j

x p


  

Let  is called a set of all of fuzzy partitions on U which determined by fuzzy 
equivalence on attribute sets. Then  is called a fuzzy partition space on U. Thus, 
the fuzzy partition space is determined by fuzzy equivalence relation which chose 
from the attribute value domain. Let       1 ,...,

P P
P nR R

R x x  be a fuzzy 

partition where   1 1/ ... /
Pi i in nR

x p x p x   . Specially, if 0,ijp   , ,i j n  then 

  0
Pi R

x   and the fuzzy partition  PR  is called the finest one, write as    . 

Then,       1 ,..., nx x
 

    where   1
/ , , , 0.

n
i ij j ijj

x x i j n


 


    If 
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1ijp  , , ,i j n  then   ,
Pi R

x U  i n , and the fuzzy partition  PR  is called 

the coarsest one, write as    . Then,       1 ,..., nx x
 

    where 

  1
/ , , , 1.n

i ij j ijj
x x i j n


 


    

is a fuzzy partition space on U,  for  PR ,  QR  , the partial order 

relation  
:         , , , ,

P Q
P Q i i ij ijR R

R R x x i n p q i j n         

denoted by P QR R . Furthermore,  

        , , , ,
P Q

P Q i i ij ijR R
R R x x i n p q i j n         

denoted by P QR R ; 

       P Q P QR R R R     and    P QR R  , 

denoted by P QR R . 
Example 1. Let  

 1 2,U x x ,       1 2,
P P

P R RR x x  ,       1 2,
Q Q

Q R RR x x  , 

      1 2, ,
S S

S R RR x x   where  1 1 20.1/ 0.2 /
PRx x x  , 

 2 1 20.2 / 0.3 /
PRx x x  ,  1 1 20.2 / 0.3 /

QRx x x  ,  2 1 20.3 / 0.4 /
QRx x x  , 

 1 1 20.3 / 0.4 /
SRx x x  ,  2 1 20.4 / 0.6 / .

SRx x x   
Then we have 

 1 0.1 0.2 0.3
PR

x    ,   2 0.2 0.3 0.5
PR

x    ,  1 0.2 0.3 0.5
QR

x    , 

 2 0.3 0.4 0.7
QR

x    ,   1 0.3 0.4 0.7
SR

x    ,  2 0.4 0.6 1
SR

x    , 

   1 1 0.3
P QR R

x x  ,     2 2 0.5
P QR R

x x  ,    1 1 0.5
Q SR R

x x  , 

   2 2 0.7
Q SR R

x x  ,    1 1 0.3
P SR R

x x  ,    2 2 0.5
P SR R

x x  . 

3. Fuzzy distance between two fuzzy partitions and its properties 

3.1. Fuzzy distance between two fuzzy sets 

Firstly, we have proposed a distance measure between two fuzzy sets, called a fuzzy 
distance. 

Lemma 1. Let  a, b, m be three real numbers with .a b  Then, we have 
   min , min ,a b a m b m   . 
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P r o o f: It is easy to see that    min , min ,a b a m b m    satisfies: 
, ,m a b m a m b    . This completes the proof. 

Lemma 2. Let , ,A B C  be three fuzzy sets on the same universe U. Then, we 
have: 

1) If A B  then B B C A A C     . 

2) If A B  then C C A C C B     . 

3) A A B C C A C C B        . 
P r o o f:  
1) Because of A B , for any ix U  we have    .i iB Ax x   According to 

Lemma 1, we have 
             min , min ,i i i i i iB A B C A Cx x x x x x           

        

    

1 1 1

1

min ,

min ,

U U U

i i i iB A B C
i i i

U

i iA C
i

x x x x

x x

   

 

  



   

 

  


 

.B A B C A C B B C A A C             

2) Because of A B , for any ix U , we have  
   i iB Ax x           min , min ,i i i iB C A Cx x x x      

             min , min ,i i i i i iC A C C B Cx x x x x x          

      
1 1

min ,
U U

i i iC A C
i i

x x x  
 

      

≥       
1 1

min ,
U U

i i iC B C
i i

x x x  
 

  C C A C C B      . 

3) From A C A  ,  according to property 1) we have  
(*)  .A A B A C A C B        

Furthermore, from A B A  , according to property 2) we have 
(**)  C C A B C C A      . 

From (*) and (**) we have 
A A B C C A A C A C B C C A               

C A B C C C A       . 
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Proposition 1. Let  ,A B  be two fuzzy sets on the same universe U. Then, 

 , 2d A B A B A B     is a distance measure between A  and B . 

P r o o f: Obviously, from A A B   and B A B   to  , 0d A B  . 

Furthermore,    , ,d A B d B A . We need to prove the triangle inequality; without 

loss of generality, one needs to prove      , , ,d A B d A C d B C  . According to 

Lemma 2 (Part 3), we have: 
(***)  A A B C C A C C B        , 

(****)  A A C B B A B B C        . 
It is inferred from (***) and (****), we have 

   2 2 2A B A B A C A C B C B C           , similarly 

     , , ,d A B d A C d B C  . 

Therefore,  ,d A B  is a distance measure between fuzzy set A  and fuzzy set 

,B  called fuzzy distance. We have proposed a distance between two fuzzy partitions 
based on fuzzy distance. 

3.2. Fuzzy distance between two fuzzy partitions and its properties 

Theorem 1. Let  DS ,U C D   be a decision table, where  1 2, ,..., nU x x x  and 

 PR ,  QR
 
be two fuzzy partitions induced by two fuzzy equivalence PR , QR  

on ,P Q C . Then 

(1)       
       

1

21, P Q P Q
n i i i iR R R R

P Q
i

x x x x
D R R

n n
 



   
 


 
 
 

  

is a fuzzy distance between  PR , and  QR . 

P r o o f: Obviously,     , 0P QD R R    and  

         , ,P Q Q PD R R D R R    . 

We need to prove the triangle inequality, without loss of generality, for any 

     , ,P Q SR R R    , and we prove  

              , , ,P Q P S Q SD R R D R R D R R       . 
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It is inferred from Proposition 1, for any ix U  we have  

              , , ,
P Q P S Q Si i i i i iR R R R R R

d x x d x x d x x  . 

Then 

         , ,P Q P SD R R D R R    =

       

1

21 P Q P Q
n i i i iR R R R

i

x x x x

n n

   
 

 
 
 
 



       

1

21 P S P S
n i i i iR R R R

i

x x x x

n n

   
  
 
 



         
1 1

, ,1 1P Q P S
n ni i i iR R R R

i i

d x x d x x

n n n n 

   

    
    

1

,1 , .Q S
n i iR R

Q S
i

d x x
D R R

n n
 



   

It is easy to see that  

    , 0P QD R R       P QR R  ; 

    , 1P QD R R         PR    and    QR   , (or     ,PR    

and    QR   ). Therefore,     0 , 1P QD R R   . 

Proposition 2. Let  PR   be a fuzzy partition on .  Then, we have 

         , , 1P PD R D R       . 

P r o o f: Suppose that         1 2, ,...,
P P P

P nR R R
R x x x  . Then

      2
1

1,
P

n

P i R
i

D R x
n

  


  ,        2
1

1,
P

n

P i R
i

D R K n x
n

 


  . Then, 

we have          , , 1P PD R D R       . 

Example 2. Continuing from Example 1. According to Theorem 1, we have  

    , 0.1P QD R R   ,     , 0.125,Q SD R R    

    , 0.225.P SD R R    

 
 
 



 21 

Therefore:  

              , , , ,P Q Q S P SD R R D R R D R R        

              , , , ,P Q P S Q SD R R D R R D R R      

              , , , .Q S P S P QD R R D R R D R R        

4. A fuzzy distance based attribute reduction method in decision tables 
with numerical attributes 

In this section, we introduce a fuzzy distance based attribute reduction method which 
performs directly on the decision tables with numerical attributes. The new fuzzy 
distance is defined between two fuzzy partitions (see Section 3). 

Let  DS ,U C D  be a decision table with numerical attributes, 

 1 2, ,..., nU x x x . We use a fuzzy equivalence relation defined on conditional 

attributes. For any p C , the following fuzzy equivalence relation pR  is often used 

to construct relational matrix  p ij n n
M R p


    [6] 

(2)   
       

max min max min
1 4 , 0.25,

0 otherwise,

i j i j

ij

p x p x p x p x
p p p p p

  
  

   



 

where  ip x  is the value of the attribute p in object ix ; max min,p p are maximum value, 
minimum value of the attribute p, corresponding. 

We use an equivalence relation  IND D  and an equivalence matrix 

  IND ij n n
M D d


    on the decision attribute set, 1ijd 

 if  j i D
x x  and 0ijd   

if  j i D
x x . In other words, an equivalence class  i D

x  can be seen as a fuzzy 

equivalence class, denoted by  i D
x , the membership function     1

i D
jx x 

 
if  

 j i D
x x  and     0

i D
jx x   if  j i D

x x . 

Then, the fuzzy partition denoted by  

         11
,...,

n
i nDD Di

D x x x


  . 

Based on the fuzzy equivalence relation, we propose a fuzzy distance between 
the conditional attribute set and the decision attribute set. In Section 3, the attribute 
set P C  determined a fuzzy partition  PR . Thus, for simplicity we replace the 

concept fuzzy distance between two partitions with the concept fuzzy distance 
between two attribute sets. 
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Definition 1. Let  DS ,U C D   be a decision table with numerical 

attributes,   ,PR   QR  be two fuzzy partitions induced by two fuzzy equivalence 

relations ,PR  QR  on ,P Q C . Then, fuzzy distance between P and Q, denote by 

 NF ,d P Q , is defined a fuzzy distance between two fuzzy partitions  PR  and 

  ,QR  it means that       NF , , .P Qd P Q D R R   

Proposition 3. Let  DS ,U C D   be a decision table with numerical 

attributes, where  1 2, ,..., nU x x x  and R  be a fuzzy equivalence relation 
determined on conditional attributes. Then, fuzzy distance between two attribute sets 
C and C D  which is determined as 

(2)    
     

NF
1

1, .C C
n i i iR R D

i

x x x
d C C D

n n

  
  
 
 

  

P r o o f: From Definition 1 and Theorem 1, we have: 

      NF , ,C C Dd C C D D R R    

       

1

21 C C D C C D
n i i i iR R R R

i

x x x x

n n
 



   
  
 
 



     

1

1 C C D
n i i iR R R

i

x x x

n n

  
  
 
 



         

1

21 C C D C D
n i i i i iR R R R R

i

x x x x x

n n

    
  
 
 


 

     

1

1 .C C
n i i iR R D

i

x x x

n n

  
 
 
 

  

It is easy to see that  NF
10 , 1d C C D
n

    ;  NF , 0d C C D  

   CR D   and  NF
1, 1d C C D
n

       CR    and    i iD
x x  for 

1 i n  . 
Proposition 4. Let  DS ,U C D   be a decision table with numerical 

attributes, where  1 2, ,..., nU x x x , B C  and R  be a fuzzy equivalence relation 

determined on conditional attributes. Then,    NF NF, , .d B B D d C C D    



 23 

P r o o f:  From ,B C  according to [14]  we have    C BR R  , which 

means that it can be inferred from    
C Bi iR R

x x  that    
C Bi iR R

x x
 
for 1 .i n   

For any xi  U, we have: 

                  
1 1

min , ,
C C i i iR R DC C

n n

i i i j j jx x xR R D
j j

x x x x x x  
 

    
 

                  
1 1

min , .
B B i i iR R DB B

n n

i i i j j jx x xR R D
j j

x x x x x x  
 

    
 

(1) For any  j i D
x x  we have     1

i D
jx x  , therefore 

           0 .
C C B Bi i i i i iR R D R R D

x x x x x x       

(2) For any  j i D
x x  we have     0

i D
jx x  , therefore 

         
C C C Bi i i i iR R D R R

x x x x x           .
B Bi i iR R D

x x x   
From (1), (2) we have:  

           
B B C Ci i i i i iR R D R R D

x x x x x x     

           

1 1

1 1 C CB B
n n i i ii i i R R DR R D

i i

x x xx x x

n n n n 

     
   
  

   

  

 
   NF NF, ,d B B D d C C D    . 

It is easy to see that    NF NF, ,d B B D d C C D       
B Ci iR R

x x
 
for 

any .ix U  
In next part, we present an attribute reduction method of the decision table using 

the fuzzy distance measure in Proposition 3. Our method includes: defining the reduct 
based on fuzzy distance, defining the importance of the attribute and designing a 
heuristic algorithm to find the best reduct based on the importance of the attribute. 

Definition 2. Let  DS ,U C D  be a decision table with numerical attributes, 

B C  and R  be a fuzzy equivalence relation determined on conditional attributes. 
If 

1)    NF NF, ,d B B D d C C D   , 

2)      NF NF, ( , ) ( , ),b B d B b B b D d C C D        

then B is a reduct of C  based on fuzzy distance. 
Definition 3. Let  DS ,U C D   be a decision table with numerical 

attributes, B C  and b C B  . The importance of attribute b  with respect to B  
is defined as 

        NF NFSIG , , .B b d B B D d B b B b D       
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From Proposition 4, we have  SIG 0B b  . The importance of  SIGB b
characterizes the classification accuracy of attribute b with respect to decision 
attribute D. It is used as the attribute selection criterial for heuristic algorithms to find 
the best reduct. 

Algorithm F_DBAR (Fuzzy distance based on attribute reduction): A heuristic 
algorithm to find the best reduct by using fuzzy distance. 

Input: Decision table with numerical attributes  DS ,U C D  , fuzzy 

equivalence relation R . 
Output: The best reduct B  
Step 1. B  ;  ( ) 1B n n

M R


 ; 

Step 2. Calculate relation matrix ( )CM R , calculate equivalence matrix 

  INDM D , calculate fuzzy distance  NF ,d C C D ; 

//Adding gradually to B an attribute having the greatest importance 
Step 3. While    NF NF, ,d B B D d C C D    do 
Step 4. Begin 
Step 5.        For each a C B   calculate  

        NF NFSIG , ,B a d B B D d B a B a D      ; 

Step 6.         Select ma C B   so that     SIG Max SIGB m Ba C B
a a

 
 ;   

Step 7.         mB B a  ; 
Step 8. End; 
//Remove redundant attribute in B 
Step 9. For each a B  
Step 10. Begin 
Step 11.        Calculate     NF ,d B a B a D   ; 

Step 12.         If       NF NF, ,d B a B a D d C C D      then  B B a  ; 
Step 13. End; 
Step 14. Return B; 
Example 3. Let  DS ,U C D 

 
be a decision table with numerical attributes 

(Table 1) where  1 2 3 4 5 6, , , , ,U u u u u u u ,  1 2 3 4 5 6, , , , ,C c c c c c c , the fuzzy 

equivalence relation R  is defined in the Formula (2). 
Table 1. The decision table with numerical attributes 

ci 
ui 

C1 C2 C3 C4 C5 C6 D 

u1 0.8 0.2 0.6 0.4 1 0 0 
u2 0.8 0.2 0 0.6 0.2 0.8 1 
u3 0.6 0.4 0.8 0.2 0.6 0.4 0 
u4 0 0.4 0.6 0.4 0 1 1 
u5 0 0.6 0.6 0.4 0 1 1 
u6 0 0.6 0 1 0 1 0 
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By using steps of F_DBAR algorithm to find the best reduct, we have 
B  ;  ( ) 1B n n

M R


 ;  NF , 0.375,d D    
and we calculate some relation matrices  

1 2 3 4 5 6( ), ( ), ( ), ( ), ( ), ( ), ( )c c c c c c CM R M R M R M R M R M R M R , 

and the equivalence matrix   INDM D : 

1

1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1

(

0 0 1 1 1

)

0

cM R

 
 
 
 

  
 
 
 
  

, 
2

1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1

(

0 0 0 1 1

)

0

cRM

 
 
 
 
 
 
 
 
  

 , 

3

1 0 0 1 1 0
0 1 0 0 0 1
0 0 1 0 0 0
1 0 0 1 1 0
1 0 0 1 1 0

(

0 0 0 0 1

)

1

cM R

 
 
 
 

  
 
 
 
  

, 
4

1 0 0 1 1 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 1 0
1 0 0 1 1 0

(

0 0 0 0 1

)

0

cRM

 
 
 
 
 
 
 
 
  

 , 

5

1 0 0 0 0 0
0 1 0 0.2 0.2 0.2
0 0 1 0 0 0
0 0.2 0 1 1 1
0 0.2 0 1 1 1
0 0.2 0 1 1 1

( )cRM

 
 
 
 
 
 
 
 
  

 , 
6 ,

1 0 0 0 0 0
0 1 0 0.2 0.2 0.2
0 0 1 0 0 0
0 0.2 0 1 1 1
0 0.2 0 1 1 1
0 0.2 1 1

( )

0 1

cRM

 
 
 
 
 
 
 
 
  

  

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 1

) ,

0

(

0

CM R

 
 
 
 

  
 
 
 
  

  

1 0 1 0 0 1
0 1 0 1 1 0
1 0 1 0 0 1
0 1 0 1 1 0
0 1 0 1 1

(IND

0
1 0 0

) .

1 0 1

M D

 
 
 
 

  
 
 
 
  

 

Calculate  
 NF , 0,d C C D       NF 1 1 0.166667, ,d c c D   

    NF 2 2 0.166667, ,d c c D       NF 3 3 0.166667, ,d c c D   

    NF 4 4 0.111111, ,d c c D       NF 5 5 0.122222, ,d c c D   

    NF 6 6 0.122222, ;d c c D    1 0.20833SIG 3333,B c    2 0.20833SIG 3333,B c   
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 3 0.20833SIG 3333,B c    4 0.26388SIG 8889,B c    5 0.25277SIG 7778,B c   

 6 0.25277SIG 7778.B c   

Attribute  4c is selected.  
Similarity,  NF 4 1 4 1{ , },{ , 0}d c c c c D  , checked  

   NF 4 1 4 1{ , },{ , } , 0Fd c c c c D d C C D    , 
the algorithm finished and  4 1, .B c c  Consequently,  4 1,B c c  is the best reduct 
of DS . 

5. Experiments 

We select eight data sets with numerical attributes from the UCI repository [17] to 
test proposed algorithm in Table 2. Environmental testing is PC with Pentium 
Core i3, 2.4 GHz CPU, 2 GB RAM, using Windows 10 operating system. 

Table 2. Data sets in the exprimental analysis 

Id Data sets Number of conditional 
attributes 

Number 
of objects 

1 Ecoli 7 336 
2 Ionosphere 34 351 
3 Wdbc (Breast Cancer Wisconsin) 30 569 
4 Wpbc (Breast Cancer Wisconsin) 32 198 
5 Wine 13 178 
6 Glass 9 214 
7 Sonar (Connectionist Bench) 60 208 
8 Heart 13 270 

We select FA_FPR algorithm (Finding Reduct based on Fuzzy Positive Region) 
and FA_FSCE algorithm (finding reduct based on fuzzy entropy) in [14] to compare 
with F_DBAR proposed algorithm on the classification accuracy of reduct. The 
FA_FPR algorithm is an impovement of FAR-VPFRS algorithm in [8] on executed 
time, the FA_FSCE is an impovement of FSCE algorithm in [7] on executed time. 
According to fuzzy rough set approach, the classification accuracy of  FAR-VPFRS 
algorithm [8], FSCE algorithm [7] are almost higher than the ones in rough set 
approach after discretized data. However, authors [11] have not evaluated the 
classification accuracy for algorithms FA_FSCE, FA_FPR. For testing, we perform 
the following tasks: 

1) Code FA_FPR, FA_FSCE and F_DBAR algorithms by program C#. 
Algorithms used the fuzzy equivalence relation defined by the formula (2). 

2) Execute three algorithms on eight data sets by environment testing. 
3) Use C4.5 algorithm in WEKA [18] to evaluate the classification accuracy of 

three algorithms by selecting 2/3 first objects as training set and the remainder objects 
as testing set. 
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Table 3 shows the testing results of eight data sets where |U| is the number of 
objects, |C| is the number of the conditional attribute, |R| is the number of attribute of 
the reduct for each algorithm. 

 
Table 3. The exprimental result of three algorithms FA_FSCE, FA_FPR, F_DBAR 

Id Data set |U| |C| 

FA_FSCE Algorithm FA_FPR Algorithm F_DBAR Algorithm 

|R| 
Classification 
accuracy of 
C4.5 (%) 

|R| 
Classification 
accuracy of 
C4.5 (%) 

|R| 
Classification 
accuracy of 
C4.5 (%) 

1 Ecoli 336 7 6 81.50 7 82.45 7 82.45 
2 Ionosphere 351 34 11 88.72 13 91.52 15 94.25 
3 Wdbc 569 30 16 95.2 17 90.46 19 92.84 
4 Wpbc 198 32 16 65.32 17 73.60 18 74.60 
5 Wine 178 13 5 88.72 9 91.57 10 89.25 
6 Glass 214 9 6 80.15 7 81.56 7 81.56 
7 Sonar 208 60 8 75.40 12 70.60 13 76.25 
8 Heart 270 13 8 74.62 9 76.95 10 78.65 

The average classification 

accuracy of C4.5 

 
81.2  82.33  83.73 

 

Fig. 1. The classification accuracy C4.5 of FA_FSCE, FA_FPR and F_DBAR  

The exprimental results in Table 3 and Fig. 1 show that the average classification 
accuracy of  F_DBAR (used the fuzzy distance) is highest, next to FA_FPR (used 
fuzzy positive region) and FA_FSCE  is lowest (used fuzzy entropy). For each data 
set, the classification accuracy of three algorithms are different. Consequently, the 
classification accuracy of algorithm F_DBAR is the best one of three algorithms. 

6. Conclusion 

The aim of attribute reduction in the decision table is to improve the accuracy of 
classification model. Among attribute reductions in the decision table with 
numerical value domain, related researches show that attribute reduction methods 
based on fuzzy rough set approach have the classification accuracy more higher 
than one based on traditional rough set. In this paper, we propose an attribute 
reduction method on the decision table with numerical attribute value which uses 
fuzzy distance based on fuzzy rough set. Our research includes: proposing a new 
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fuzzy distance between two fuzzy partitions, defining reduct and  importance of 
attributes based on fuzzy distance, proposing a heuristic algorithm to find the best 
reduct. The experimental results from data sets show that the classification accuracy 
of fuzzy distance method is higher than that of the ones using fuzzy positive region 
and fuzzy entropy. Our further research approach issue is finding the relation 
between reduct obtained by different methods to subgroup and overall evaluation 
of methods based on fuzzy rough set approach. 
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