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Abstract: We investigate the effect of inserting extra linearity in the Data 

Encryption Standard (DES) through appropriate nonsingular linear encodings of 

the output of the individual S-boxes. More specifically, we examine the general 

situation when the output of each S-box of the DES is precoded separately into a 

properly constructed copy of the inherent even-weight code of length 4. The study is 

focused on finding multi-round linear characteristics for thus modified DES ciphers 

having maximal effectiveness. Depending on the particular encodings, it turns out 

that the effectiveness of interest may be larger but in most cases is smaller than that 

one for the original DES with the same number of rounds. The latter means that the 

complexity of successful linear cryptanalysis against these ciphers will mainly 

increase comparing to the DES itself. The present research extends in a natural 

way our previous work [Linear Cryptanalysis and Modified DES with Parity Check 

in the S-boxes, LNCS 9540 (2016), pp. 60-78]. 
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1. Introduction 

The DES is the first publicly available block encryption algorithm which was also 

adopted as an (nowadays former) USA standard. It is well-known that the strength 

of DES lies in its only non-linear part – the so-called S-boxes. However, at the 

beginning (in 1970’s, due to some reasons concerning national security) design 

criteria for the S-boxes of DES were classified what arose out many controversies. 

Later on, in the paper [4] some of the original design criteria were published and it 

became clear that the chosen S-boxes were much more resistant to differential 

cryptanalysis (a general cryptanalytic technique already known in the public 

domain from [2]) than if they had been picked up at random. Although the main 

topic of [4] is to show some of the safeguards against differential cryptanalysis built 

into the algorithm from the beginning, its author has pointed out as well a design 

criterion which is related to the just developed (at that time) new method known as 
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“linear cryptanalysis” [8]. Hereinafter, for the reader’s convenience we recall that 

criterion in its stronger form (S – 2′) [4, p. 250]: 

No linear combination of output bits of an S-box should be too close to a 

linear function of the input bits. (That is, if we select any subset of the four output 

bit positions and any subset of the six input bit positions, the fraction of inputs for 

which the XOR of these output bits equals the XOR of these input bits should not be 

close to 0 or 1, but rather should be near 1/2.) 

Fortunately, this criterion (more precisely, the weaker form for a single output 

bit) was among the original requirements for DES and almost achieved in its final 

specification (see, also [6]). That is why, as pointed out in [4], the standard resisted 

in practice this new linear attack. 

An extremal particular case of the aforementioned criterion is the following: 

The XOR of the four output bits of any S-box must not be a constant. 

But, what if this constraint is violated artificially? For instance, when setting 

an output bit of original S-box of the DES to be the parity check of the other three 

output bits which are kept unchanged. 

What can be said at first glance about an S-box obtained in this way? Of 

course, considering such a box as a vector Boolean function, it is not onto the 

ambient binary space 
4

2F  taking as values only even/odd weight 4-bit tuples. Also, 

its nonlinearity in terms of the definition given in [11] vanishes.  However, an  

S-box of this kind possesses single error-detection capability and therefore it is 

immune (to a certain extent) against fault-injection attacks during the execution 

time of the algorithm. In addition, such S-box satisfies automatically the criteria 

concerning spectrum of Hamming distances between its outputs, relevant in case of 

differential cryptanalysis (see, for details [4] or in summary [7, p. 301]). 

In [3], we investigated the resistance against linear cryptanalysis of modified 

DES ciphers having S-boxes of the described type with parity check in a fixed (the 

same for all of them) position. It turns out that some-how in contrast to the common 

belief, the complexity of successful analysis of that kind increases (in three out of 

four possibilities) compared to the case of original DES. After the presentation of 

[3] at BalkanCryptSec 2015, Prof. K. Nyberg asked what would be the behaviour of 

such DES-like ciphers in the general situation when the described modifications are 

applied separately for each individual S-box. The results of our efforts in that 

direction are reported in the present paper. 

In Section 2 we give some background notions and summarize our results 

from [3]. The motivation for this research is explained in Section 3. Sections 4 and 

5 are devoted to our new results concerning the wider family of modified DES 

ciphers under consideration. 

2. Background 

Regarding modified DES ciphers, we advise the readers preferring mathematical 

description to check, e.g., [5, Ch. 7.5.1], while those who are interested more in 

implementations to consult [13] about details of the DES algorithm. 
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2.1. Some basics of linear cryptanalysis 

Linear cryptanalysis is a powerful technique for cryptanalysis of the modern block 

ciphers developed in the early 1990s. The attack in its full form was introduced in 

1993 by M a t s u i  [8] and was first applied to the DES. Speaking in brief, this 

attack relies on the existence of linear probabilistic approximations of the cipher 

having the form: 

P[χP] + C[χC] = K[χK], 

where P, C and K denote the plaintext, the corresponding ciphertext and the secret 

key, respectively, while B[χB] stands for 
mbbb BBB  

21
 with  

χB = {b1, b2, …, bm} a subset of positions in the bit array B. Among these relations 

(also called characteristics), the most valuable for cryptanalysis are those, effective 

ones, that hold true with probability deviating significantly from 1/2. In practice, for 

the iterative block ciphers based on S-boxes, e.g., Feistel or SP networks, effective 

characteristics can be obtained by fixing the generic firmed correlations between the 

inputs and outputs of the individual S-boxes at first, and then concatenating these 

local 1-round linear dependencies through the involved round functions in multi-

round ones. 

A bit more formally, when a linear approximation holds with probability 

2/1p  for randomly given plaintext P and the corresponding ciphertext C, the 

magnitude of the bias 2/1p , represents the effectiveness of that approximation. A 

linear characteristic is called best characteristic when the effectiveness of 

corresponding linear approximation is maximal. 

It is deserved mentioning that the number of plaintext/ciphertext pairs needed 

for a linear attack with sufficiently high probability of success, is proportional to 
2e , where e denotes the effectiveness of the exploited characteristic. So, the 

effectiveness influences directly on the complexity of this kind of attacks.  

The following definition, given for arbitrary S-box, is of vital importance for 

our considerations: 

Definition 1 (see, e.g., [12]). For given nm  S-box regarded as mapping 
nm

S 22 FF : , and given integers  and β, such that 0 ≤  ≤ 2m–1 and 0 ≤ β ≤ 2n–1, 

let NS(, β) be the number of times when the XOR-sum of the input bits masked by 

 coincides with the XOR-sum of the output bits masked by β. The table, where the 

vertical and the horizontal axes indicate  and β respectively, and each entry 

contains the “centred” value 

1LS( , ) NS( , ) 2m       

is referred to as Linear Approximation Table (LAT) for the S-box S. 

Note that in case of the DES there are eight S-boxes, S1,…,S8, m = 6 and n = 4. 

The effectiveness of a linear approximation of an S-box is deduced directly 

from its LAT, while the effectiveness of a round approximation which involves two 

or more S-boxes can be computed applying the following lemma in suitable way. 
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Lemma 1 (Pilling-up Lemma [9]). Let Zi, 1 ≤ i ≤ r,  be independent random 

variables whose values are 0 with probability pi or 1 with probability 1 – pi. Then 

the probability that Z1  Z2  …  Zr = 0 is 

1

1

1 1
2 .

2 2

r
r

i

i

p



 
  

 
  

The next proposition, stated as lemma by Matsui (see, e.g., [9]), expresses the 

main properties of the LATs in the DES. 

Proposition 1. Let Sk be a S-box of the DES. 

(i) NSk(, β) is even. 

(ii) If  = 1, 32 or 33, then  NSk(, β) = 32 for all β. 

Apart from analyzing the properties of those LATs in his seminal papers  

[8-10], Matsui has found best linear characteristics for 3 to 20 rounds of the DES 

algorithm, and demonstrated different approaches (Algorithm 1 and Algorithm 2) 

for mounting attacks against various number of rounds of the cipher. The first 

experimentally verified cryptanalytic attack against the original (16-round) DES 

[10] was an improved variant of Algorithm 2 using two best statistically 

independent 14-round linear characteristics both having effectiveness of 21219.1  . 

This maximal effectiveness is one amongst the other numerical results for 3-20 

rounds [9, p. 33] which should be compared with the maximal effectiveness 

obtained for the same number of rounds in modified DES ciphers considered here. 

2.2. Summary on linear cryptanalysis of DES with embedded parity check into the 

S-boxes 

The goal of our previous work [3] was to clarify more comprehensively the 

intuition behind the claim that embedding parity check in the outputs of the S-boxes 

of DES will weaken this cipher facilitating significantly a linear cryptanalysis in the 

spirit of Matsui’s classic one.  

Before describing the results from [3] we recall some necessary conventions 

and notations. Without loss of generality we may assume even parity embedding. 

Parity bit masks can take values 1, 2, 4 and 8 or their 4-bit representations. For 

instance, the mask 1000 (or mask with value 8) shows presence of a parity bit at the 

left-most position in the output of some S-box. Also, we will denote by LS( ; , )    

the LAT’s values of the S-box obtained through embedding a parity bit with mask π 

into the box S. 

The next proposition summarizes main properties of the considered S-boxes. 

Proposition 2 [3]. Let Sk be an S-box of DES, π be a parity bit mask, and & 

denotes tuple-wise AND operator. Then if 0  and 0  it holds: 

(i) LS ( ; , ) LS ( , )k k      for all   and   such that 0&  ; 

(ii) LS ( ; , ) NS ( ,15 )k k       for all   and 15  such that 0&  ; 

(iii) LS ( ; ,15) 0k     for all  ; 

in addition, it holds: 

(iv) LS ( ; 0, ) 0k     for all  : 015   ; 

(v) LS ( ; 0,15) 32k    and LS ( ; 0, 0) 32;k    
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(vi) LS ( ; , 0) 0k     for all 0 . 

Proposition 2 (i)-(ii) mean that the new LAT is symmetric, in a sense, the half 

of its columns (where the parity position does not participate) is preserved and the 

remaining half of columns is replaced with a mirror copy of the preserved one. 

Also, by contrast to the original DES, Proposition 2 (v) shows the existence of an  

1-round linear characteristic with zero input mask and non-zero output mask having 

non-zero bias. However, since this characteristic is deterministic it cannot be 

utilized in practice within the framework of a linear cryptanalysis with at most one 

active S-box per round. We would like to stress that, like our previous [3], the 

present article is focused on this narrow sense linear cryptanalysis, because its 

primary goal is to compare the results with those obtained for the original cipher [9] 

and the modified DES ciphers from [3] in that particular case of interest.  

The next theorem proven in [3] shows the decreasing effectiveness for 

modified DES ciphers with small number of rounds having S-boxes of parity check 

in the same position. 

Theorem 1. Every parity mask applied to the S-boxes of DES leads to a 

reduction of the maximal effectiveness of the 1-round and 3-round linear 

characteristics for that cipher. 

To explore the behaviour of thus modified ciphers for larger number of rounds, 

we developed our own search algorithm for finding best multi-round characteristics. 

This algorithm incorporates some specific features of the considered ciphers (e.g., 

the so-called modified Knudsen observation), and has very efficient C++ 

implementation. In summary, the experiments based on the created tools show that 

multi-round linear cryptanalysis towards those ciphers has varying magnitude of 

complexity depending on the chosen parity position. Also, when comparing to that 

against the DES itself with the same number of rounds, the complexity can diminish 

but mostly grows. For instance, in case of 16 rounds, the complexity of successful 

linear attacks increases in three out of the four possibilities. For details of the 

developed algorithmic technique and the yielded results, we refer to [3]. 

3. Motivation and statement of the current research 

The question pointed in the Introduction motivated us to perform an examination in 

the following two directions: 

1. Studying the behaviour (from the perspective of linear cryptanalysis) of a 

wider family of modified DES ciphers whose parity check position into each 

individual S-box is picked up arbitrarily and independently from those into the 

others. 

2. Comparing the yielded results to those already known for the original DES 

cipher and the modified ciphers studied in [3]. 

Of course, when attacking a given cipher by the method of linear 

cryptanalysis, the effectiveness of the best linear characteristics is of crucial 

importance. Lower effectiveness implies worse probability for success of the linear 

attacks, although conversely larger one does not always provide better conditions 

for mounting these attacks. However, from the designer's point of view, the 



 8 

resistance of cipher towards these particular attacks increases in the former case and 

therefore its cryptographic strength will grow as whole. Rephrasing that, an 

additional goal might be of interest in respect to the modified DES ciphers 

considered here. Namely, to choose the pattern of parity checks in such a way that 

maximal effectiveness is on the desirable level. 

Based on the above reasoning, we set to our study two additional targets: 

 to look for some reasonable criteria for optimality; 

 to search for patterns of parity check positions (among all possible 

combinations of them into the S-boxes) satisfying these criteria. 

4. Optimal linear characteristics for small number of rounds 

In the general case of many (more than 3) rounds the number of possibilities for 

internal chaining of the 1-round characteristics increases prohibitively enough. 

However, for small number of rounds we obtain a clear and precise understanding 

without computer assistance. 

Clearly, the effectiveness of the best 1-round characteristics for the DES-like 

cipher of considered type is determined by the maximal magnitude of the elements 

in its LATs. In order to derive the effectiveness of interest, we perform a thorough 

analysis of the LATs of the original DES which in turn allows some deductions 

about the modified ones. 

We distinguish one kind of elements in these tables defined as follows. 

Definition 2. The entry LS ( , )k   , 0 ≤  ≤ 63, 1 ≤ β ≤ 14, from the LAT of  

an Sk of the DES is called invariant when parity check is applied (or simply 

invariant) if 

| LS ( , ) | | LS ( ; , ) |k k       for every parity mask π. 

Obviously, Proposition 2 (i)-(ii) imply that LS ( , )k    is invariant if and only if 

when | LS ( , ) | | LS ( ,15 ) | .k k      

Let I be the set of all invariant entries from LATs and  ILLM I  |:|max: . 

The next proposition shows the reasoning for Definition 2. 

Proposition 3. Let πk be a parity mask applied to Sk of the DES, 1 ≤ k ≤ 8. 

Then 

 
, ,

max | LS ( ; , ) | ,I k k
k

M
 

    

where the maximum is on all values 1 ≤ k ≤ 8, 1 ≤ α ≤ 63 and 1 ≤ β ≤ 14. 

P r o o f :  The equalities | LS ( , ) | | LS ( ; , ) |k k k      for invariant entries 

LS ( , )k    imply that the set  ILL |:|  coincides with the union 

 
8

1

| LS ( ; , ) |: LS ( , )k k k

k

I    


 . The latter is, of course, a subset of the whole 

 
8

1

| LS ( ; , ) |k k

k

  


, and the assertion follows. ■ 

In other words, the above proposition says that the maximum of magnitudes of 

the invariant elements determines a lower bound on the effectiveness of the best  
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1-round characteristics of a modified DES cipher. As an immediate consequence, 

we obtain the following corollary. 

Corollary 1. Under the assumptions of Proposition 3 and 
1 2 8( , , , )    , we 

have 

 
, ,

min max | LS ( ; , ) | .k k I
k

M
  

     

Let us remind that we deal by default with a linear cryptanalysis in narrow 

sense, i.e., with no more than one active S-box per round. 

Theorem 2. Let π7 be the parity mask applied to the S-box S7 of the DES. 

Then: 

(i) The maximal possible effectiveness of the best 1-round characteristics for 

modified DES cipher is obtained if 47  . There are two unique elements of the 

LATs in this case possessing the highest magnitude 18. 

(ii) If 47   then the effectiveness of the best 1-round characteristics for such 

a DES-like cipher is of minimal possible value 0.25. 

(iii) The corresponding extremal effectiveness of the best 3-round 

characteristics is achieved at the same assumptions. These effectiveness are 

2(18/64)2 ≈ 0.1582 and 0.1250, respectively. 

P r o o f :  (i) The highest magnitude of an element of the LATs of DES is 20 

and there is a unique such element, namely 
5LS (16,15) 20  . On the other hand, by 

Proposition 2(iii) this element is eliminated (vanishes) from the LAT of S5 

whenever a parity check is embedded. The next two (by magnitude) values are 

1 7LS (16,15) LS (59, 4) 18   . The former vanishes by the same reason as above, 

while the latter preserves its value if 47   according to Proposition 2 (i)-(ii) (note 

that 
7LS (59,11) 2 ). We also have 

7 7 7 7LS ( ; 59,11) LS ( ; 59, 4) 18    , which 

implies that there are two unique elements of the LATs with maximal magnitude 18 

if 47   with corresponding effectiveness 18/64=0.28125. This completes the 

proof. 

(ii) As we have already seen there are no invariant entries having magnitude 

larger than 16, however, two entries of this kind are 
4LS (43, 6) 16  and 

4LS (43, 9) 16  . Thus, 16IM , and Corollary 1 implies that the minimum of the 

maximal by magnitude element in modified LATs is not less than 16. Moreover, 

since 16 is the next value (after 20 and 18), the elimination of these two largest 

values will provide its maximum value for some modified DES cipher. But, as 

shown above, this elimination happens if 47  . Finally, the effectiveness of the 

best 1-round characteristics in this case equals, of course, to 16/64 = 0.25. 

(iii) This follows from (i), (ii), and the fact that best 3-round characteristic can 

be constructed using twice a best 1-round non-trivial characteristic (see  

Proposition 4 (ii) in [3]). To compute the effectiveness of those best 3-round 

characteristics, we apply the Piling-up Lemma. ■ 

Remark 1. For completeness, notice that due to the special Feistel structure, 

the task for finding effective linear approximations for 2-rounds of the considered 

ciphers is reduced to the 1-round task for the two halves of the plaintext/ciphertext 
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block. That is why we do not pay special attention to the issues of 2-round linear 

cryptanalysis. 

5. Optimal linear characteristics for many rounds 

In the general case an exhaustive search over all members of the considered family 

of ciphers is carried out in order to find globally optimal best multi-round 

characteristics. Also, let us mention that finding best characteristics for each 

individual cipher is performed by the algorithm from [3] specially designed for this 

purpose. 

5.1. Optimal characteristics with respect to better opportunities for attacking 

Looking for optimal parity mask patterns in this case means searching of 

max max{eff},
l

 

where l is a linear characteristic for the corresponding number of rounds, eff is its 

effectiveness and π is a combination of the eight parity bit masks. 

The results are contained in the Table 1 where the effectiveness of the best 

linear characteristics in three instances is compared.  

Table 1. Maximizing the effectiveness of the best characteristics 

n 
 

DES Equal parity positions Maximizing patterns 

Effectiveness 
Max 

effectiveness 
Mask 

Max 
effectiveness 

Number Pattern 

3 0.781×2–2 0.632×2–2 8 0.632×2–2 49152 11 112 812 
4 0.976×2–4 0.562×2–4 1 *0.765×2–4 4096 11 241 821 
5 0.610×2–5 0.562×2–5 1 *0.765×2–5 4096 11 184 821 
6 0.976×2–8 0.703×2–8 1 *0.717×2–8 2304 11 422 118 
7 0.976×2–9 0.527×2–9 1 0.527×2–9 4096 11 121 418 
8 0.610×2–10 0.703×2–11 1 0.703×2–11 4096 11 121 412 
9 0.953×2–13 0.878×2–13 1 0.878×2–13 4096 11 121 212 

10 0.762×2–14 0.659×2–14 1 0.659×2–14 4096 11 111 114 
11 0.953×2–15 0.988×2–16 1 0.988×2–16 4096 11 111 888 
12 0.596×2–16 0.659×2–17 1 0.659×2–17 4096 11 121 242 
13 0.745×2–18 0.878×2–19 1 0.878×2–19 4096 11 121 218 
14 0.596×2–20 0.617×2–20 1 0.617×2–20 4096 11 121 412 
15 0.596×2–21 0.926×2–22 1 0.926×2–22 4096 11 121 244 
16 0.745×2–23 0.617×2–23 1 0.617×2–23 4096 11 121 411 
17 0.582×2–25 0.772×2–25 1 0.772×2–25 4096 11 121 411 
18 0.931×2–27 0.579×2–26 1 0.579×2–26 4096 11 121 221 
19 0.582×2–27 0.869×2–28 1 0.869×2–28 4096 11 111 842 
20 0.727×2–10 0.579×2–29 1 0.579×2–29 4096 11 121 288 

 

The first is for the original DES algorithm, the second is when the parity bit 

positions are the same for all S-boxes as in [3], and the third is about optimal 

pattern of parity bit positions when the maximal effectiveness of the best 

characteristics is achieved. Examples for optimal masks are given in the second 

multi-column; in the third one, the number of optimal mask patterns is given 

together with examples of patterns. All computations are performed for 3-20 

rounds. The patterns are given as sequences of the values of parity bit masks for all 

S-boxes. 

It can be seen that experimentally determined number 78 4449152   of 

optimal patterns for 3 rounds is in agreement with Theorem 2(i). The same holds for 

the computed effectiveness, which is in correspondence with Theorem 2(iii). 
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The effectiveness values that are greater than those for the original cipher are 

given in italic in the table. The presence of only few of them confirms the tendency 

that the effectiveness of the best characteristics for larger number of rounds mostly 

diminish but may even grow depending on the parity bit position. 

The values of (globally) maximal effectiveness are marked by *; they are 

better than the corresponding values for fixed parity position in all S-boxes. The 

existence of such instances leads to the conclusion that independent choice of parity 

bit positions may provide better opportunities for attacking. 

5.2. Optimal characteristics with respect to resistance against attacking 

Here, we consider the task for optimization in opposite direction, i.e. to assure 

maximal resistance against attacking. Using the same notations as in the previous 

subsection the search yields the form 

min max{eff}.
l

 

Correspondingly, Table 2 comprises the results of the performed search. 

Table 2. Minimizing the effectiveness of the best characteristics 

 

n 

 

DES Equal parity positions Minimizing patterns 

Effectiveness Max effectiveness Mask Max effectiveness Number Pattern 

3 0.781×2–2 0.500×2–2 4 0.500×2–2 16384 11 111 141 

4 0.976×2–4 0.820×2–5 2 *0.632×2–5 224 84 148 281 

5 0.610×2–5 0.878×2–7 2 *0.711×2–7 200 81 122 221 

6 0.976×2–8 0.527×2–10 8 *0.738×2–11 330 21 222 281 

7 0.976×2–9 0.820×2–13 2 0.820×2–13 3072 21 112 221 

8 0.610×2–10 0.738×2–15 2 *0.732×2–15 184 81 812 241 

9 0.953×2–13 0.562×2–17 2 *0.861×2–18 464 22 222 888 

10 0.762×2–14 0.562×2–20 2 *0.984×2–21 674 21 212 281 

11 0.953×2–15 0.861×2–22 2 *0.738×2–22 184 81 812 241 

12 0.596×2–16 0.562×2–24 2 *0.791×2–25 560 21 212 281 

13 0.745×2–18 0.711×2–27 2 0.711×2–27 1652 21 212 221 

14 0.596×2–20 0.830×2–30 2 0.830×2–30 2348 21 212 221 

15 0.596×2–21 0.562×2–31 2 *0.922×2–32 1728 21 112 281 

16 0.745×2–23 0.830×2–34 2 *0.791×2–34 184 81 812 241 

17 0.582×2–25 0.968×2–37 2 0.968×2–37 1664 21 224 484 

18 0.931×2–27 0.562×2–38 2 *0.553×2–39 770 22 222 282 

19 0.582×2–27 0.968×2–41 2 *0.830×2–41 184 81 812 241 

20 0.727×2–10 0.889×2–44 2 0.889×2–44 1808 21 212 221 
 

It can be seen again that the experimentally determined number 7416384   of 

optimal patterns for 3 rounds is in agreement with Theorem 2 (ii). The same holds 

in respect to the effectiveness which equals to the already proven in Theorem 2 (iii). 

The values of minimal effectiveness of the best characteristics which cannot be 

reached when the parity bit position is the same for all S-boxes are marked by *. It 

can be seen that there are a lot of such instances. Their existence means that by 

independent choice of parity bit positions one could design ciphers with better 

resistance towards linear attacks. 
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6. Conclusion 

In this work, we have studied a large family of ciphers derivable from the DES and 

having an endowment to thwart differential and some fault-injection attacks. 

Presumably, by their construction these ciphers are suspected to be vulnerable in 

linear attacks. After examining the strength of them against linear cryptanalysis, we 

could conclude that they possess good resistance (in most cases even better than the 

DES itself) towards the primary attacks of indicated type. However, before final 

recommendation, it remains to investigate the behavior of these ciphers against the 

existing more sophisticated forms of linear cryptanalysis. But, in any case, their 

practical utilization has to be preceded by a well-considered preprocessing on the 

primary clear data bearing in mind the lessons from [1]. 
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