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Abstract: Using 3-Dimensional (3D) sound sources as secondary sources to  
2-Dimensional (2D) sound field reproduction, it is termed 2.5-Dimensional (2.5D) 
sound field reproduction which is currently drawing broad interest in acoustic 
signal processing. In this paper we propose a method to reproduce a 2D sound 
field, using a circular array of 3D High Order (HO) loudspeakers, which provides 
a mode matching solution based on 3D wave field translation. Using the spherical 
addition theorem, we first obtain a spherical harmonics representation of a 2D 
sound field reproduced by an array of HO loudspeakers. Then, the corresponding 
relationship between the reproduced sound field and the desired sound field is 
established by spherical/cylindrical harmonic expansions. Finally, the modal 
weights of HO loudspeakers are designed by using a least squares method. 
Simulation results show that the proposed method extends the reproduction region 
and significantly reduces the required minimum number of loudspeakers over the 
other referenced methods. 

Keywords: 2.5D reproduction, sound field, high order loudspeaker, circular 
loudspeaker array. 

1. Introduction 

Spatial sound field reproduction is a fundamental topic in acoustic signal 
processing. The aim of the sound field reproduction is to reproduce a desired sound 
field in a given region of space. Using an array of loudspeakers, the sound field 
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reproduction system can give listeners the impression of being immersed in a 
realistic, yet virtual sound environment. According to psychoacoustic theory, the 
human ear is sensitive to the horizontal sound field at the same height. Hence, the 
reproduction technique of 2-Dimensional (2D), or height invariant, sound fields is 
more efficient in practical situations. In the existing commercial sound field 
reproduction systems, such as Dolby Surround [1], all loudspeakers are positioned 
in the horizontal plane at a height approximately to the level of the listener’s ears. 

In earlier studies of 2D sound field reproduction, line sources that exhibit 2D 
transfer functions [2-4] were theoretically employed as secondary sources for 
reproduction. However, the spatial properties of the actual loudspeakers can be 
more accurately modelled by 3-Dimensional (3D) sound sources or loudspeakers 
rather than line sources. Using 3D sound sources (or loudspeakers) as secondary 
sources, the 2D sound field reproduction has been termed as 2.5-Dimensional 
(2.5D) sound field reproduction [5]. 

Several techniques of 2.5D sound field reproduction have already been 
proposed, which are based on distinct representations of a sound field. One 
technique is the Spectral Division Method (SDM) [6, 7], which establishes the 2.5D 
reproduction equation in a wave number domain with the employment of linear 
distribution of secondary sources. Another technique is the Wave Field Synthesis 
(WFS)-based method [3, 5], in which two separate stationary phase approximations 
are employed by using the Kirchhoff-Helmholtz integral equation. The reproduction 
is accurate only for large distances of the virtual source or the listener’s location to 
the secondary source positions [2, 5]. Meanwhile, the aperture between the 
loudspeakers is limited by the spatial sampling process [8]. However, one 
characteristic in 2.5D WFS and SDM reproduction is that large numbers of 
loudspeakers are required for reproduction over large areas. Therefore, Higher 
Order Ambisonics (HOA) has been related to the implementation of 2.5D sound 
field reproduction recently [9], where HOA is based on the cylindrical/spherical 
harmonic representations of a sound field. In this method, 3D point sources are 
employed as secondary sources, which provide a continuous the loudspeaker 
concept solution in a reproduction model. Therefore, better reproduction accuracy 
can be achieved. Implementation of 2.5D HOA has practical significance in 
combination with the development of the spatial sound. However, for high 
frequencies over large areas in 2.5D HOA, a great number of loudspeakers is 
required, as minimum, in order to accurately reproduce a height invariant sound 
field. In addition, in a 2.5D HOA system, the radius of the reproduction region is 
smaller than that of the loudspeakers array region, which results in waste of space.  

To address the above issues, since the High Order (HO) loudspeakers can both 
radiate sound with multiple radiation patterns [10-12] and achieve better 
improvements for sound field reproduction than monopole loudspeakers, i.e., point 
sources, we apply 3D HO loudspeakers to 2.5D sound field reproduction. In this 
paper, based on spherical harmonic expansions, a method is proposed to reproduce 
2D or height invariant sound fields with a circular array of HO loudspeakers. 
Firstly, spherical harmonics representation of 2D sound field reproduced, by an 
array of HO loudspeakers is obtained, based on the spherical addition theorem. 
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Secondly, the corresponding relationship between the reproduced sound field and 
the desired sound field is established by spherical/cylindrical harmonic expansions. 
Finally, the modal weights of HO loudspeakers are designed by using the least 
squares method. Simulation results show that the method proposed outperforms the 
other referenced methods 

The remainder of this paper is organized as follows. Section 2 presents a 
detailed description for the decomposition of the desired sound field using 
cylindrical harmonics. Section 3 introduces the proposed 2.5D sound field 
reproduction approach. Simulation results are presented in Section 4. 

2. Cylindrical harmonics analysis of the desired sound field 

This paper mainly concentrates on the reproduction of 2D or height invariant sound 
fields which are considered as desired sound fields. At physical level, the 2D sound 
field can be represented by acoustic pressure within a given region of space. In this 
section the cylindrical harmonic analysis [3] for the desired sound field will be 
discussed.  

In cylindrical coordinates, propagation of acoustic pressure perturbations  
pd(r, φ, z, t) in a homogeneous medium is represented by the wave equation, which 
is defined as [13]: 

(1)    
2

2
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where t, r, φ and z represent the time index, radius, azimuth and height of an 
arbitrary observation point, respectively; c = 340 m/s is the speed of sound 
propagation and 2∇  is the Laplace operator. After converting the time domain wave 
equation to the frequency domain, the representation of a 2D, height invariant, 
sound field can be written in the following form via separation of the variables [5]: 
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where Pd (x, k) denotes the acoustic pressure of a given sound field at an 
observation point x = (r, φ); k is the wave number satisfied k = 2πf/c, where f is the 
frequency and c is the speed of sound; αm(k) are a set of harmonic expansion 
coefficients, and Jm(·) is the m-th order Bessel function of the first kind. For a 2D 
wave source of a unit strength located at yv = (rv, φv) (where rv > r), based on the 
Jacobi-Anger expression and the addition property of the Hankel function [3], the 
expansion coefficients αm(k) of a plane wave or a cylindrical wave can be derived as 
follows: 
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where Hm
(2)(·) is the m-th order Hankel function of the second kind. The 

representation (2) has an infinite number of orthogonal modes, which is not possible 
to be achieved. Therefore, due to the properties of the Bessel function, we can 
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truncate this series expansion to a finite number within the region of interest, i.e., a 
region within a circle of radius rl (∀ ≤ lr r  ). Hence, (2) can be truncated to M terms 
as: 

(4)      ( , ) ( ) ( ) ,
M

im
d m m

m M
P k k J kr e φα

=−

= ∑x    

where the truncation order / 2= ⎡ ⎤⎢ ⎥lM ekr , Jm(kr)eimφ is the basis function of cylindrical 
harmonic expansion. 

From (4) it can be observed that a desired 2D sound field can be determined by 
2M + 1 cylindrical harmonic coefficients. Therefore, the key issue of the sound field 
reproduction is to use loudspeakers to describe the expansion coefficients αm(k). 

3. Proposed method of 2.5D sound field reproduction 

In practical applications, considering the cost of equipment and the complexity of 
design, we always employ a limited number of loudspeakers in the sound field 
reproduction systems. To avoid spatial aliasing [14] which is caused by the 
discretization processing of the continuous loudspeakers distribution, the minimum 
required number of the monopole loudspeakers Q should be satisfied with the 
condition Q ≥ 2M+1. Hence, a large number of loudspeakers is needed for the 
reproduction of high frequencies over significant areas. According to the properties 
of HO loudspeakers [11, 12, 15], it can be observed that HO loudspeakers can 
radiate a sound with multiple radiation patterns. Using such HO loudspeakers, we 
can obtain further improvements in sound field reproduction than monopole 
loudspeakers. Meanwhile, the array of loudspeakers made up of HO loudspeakers 
occupies a smaller space. 

Based on the above advantages, HO loudspeakers are introduced to 2.5D 
sound field reproduction in this section, where in subsection 3.1, a spherical 
harmonics representation of 2D sound field reproduced by an array of HO 
loudspeakers is obtained. Then, the modal weights of HO loudspeakers are designed 
in subsection 3.2. 

3.1. Spherical harmonics representation of the reproduction sound field 

In the spherical coordinates, given an observation point x=(r, θ, φ), a 3D HO 
loudspeaker positioned at xl = (rl, θl, φl) of a circular region in the horizontal plane 
will radiate a sound field as given below: 
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where r, θ and φ denote the radius, elevation and azimuth, respectively; Pl (x, k) is 
the acoustic pressure at the observation point x; N̂ is the order of HO loudspeaker, 

ˆ ˆ, ( )n mw k are complex amplitudes which represent the modal weights; ˆ 0' ( )nh kr  
denotes the first-order derivative of the spherical Hankel function of the first kind, 
r0 is the radius of the HO loudspeaker; e–iωt is the time factor with respect to the 
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angular velocity ω and the time t (only static situation t = 0 is considered), and || ||⋅
represents the vector 2-norm. Due to the fact that xl and x are in the same horizontal 
plane, the elevation of x equals to that of xl in the spherical coordinates, which is 
π/2; ˆ ( / 2, )l ly π φ=  is the direction vector of yl  and yl = x − xl. 

The spherical harmonics can be defined as [14]: 
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where ˆ ˆ,| | ( )⋅n mP is the associated Legendre function. Note that ˆ
ˆ ( ) e φφ = lim
m lE holds the 

orthogonality property. ˆ ˆ,n mA is defined as follows: 
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From (5) we can find that the 3D polar patterns of the spherical harmonics 
carry the directional information, and thus not all polar patterns of the weighted 
spherical harmonics are on the horizontal plane. Only when ˆ ˆ= −m n  and ˆ ˆ=m n , the 
response to the 3D HO loudspeakers will have a contribution to the reproduction of 
the 2D sound field. Then we can rewrite (5) as 
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We employ L number of such HO loudspeakers in a circular discrete array, 
where the l-th (l = 1, 2, ... , L) loudspeaker is located at xl=(rl, φl). Therefore, the 
sound field can be represented as   
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According to the spherical addition theorem for the spherical Hankel function 
[16], ( )ˆ ˆ ˆ, ˆ|| || ( )−n l n m lh k Yx x y

 can be represented as 
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where ˆ ( / 2, )π φx =  is the direction vector of x, jn(·) is the first kind spherical Bessel 
function of n-th degree. 

By substituting (10) with (9), we have 
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in which ˆ ( / 2, )π φl lx =  is the direction vector of xl. The symbol * denotes the 
complex conjugate operation. W1, W2 denote Wigner 3-j symbols which are defined 
by 
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By changing the summation order of (11), the sound field can be represented 
as 
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Due to the high pass nature of spherical Bessel functions [14], the infinite 
representation (13) can be replaced by a finite sum, and then substituting (6) with 
(13), we can obtain the sound field as follows: 
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where M is the truncation order which denotes the number of the highest nonzero. 

3.2.  2.5D sound field reproduction 

The key issue in the 2.5D sound field reproduction is to design the modal weights 
of HO loudspeakers. Hence, this subsection will establish the corresponding 
relationship between the desired sound field and the sound field reproduced by (14).  

Note that the summation over n in (14) reduces it to a single term with n = |m|. 
If the modal weights ( )

ˆ ˆ, ( )l
n mw k  satisfy the condition that (14) equals to the expansion 

of (4), an array of L HO loudspeakers located in a circular region of radius rl, can 
exactly reproduce the desired sound field at all observation points < lr r . Therefore, 
by minimizing the least squares errors between the desired sound field and the 
reproduced field sound field, i.e., |Pr(x, k)–Pd(x, k)|2, we have: 
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In (15), given a certain r, a set of modal weights ( )
ˆ ˆ, ( )l
n mw k  can be achieved. To 

guarantee the minimum reproduction error and obtain the optimal modal weights, 
let r tends to zero [17], and then we have 
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According to the application of L’Hôpital’s theorem [18], we can obtain 
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where sgn(·) represents the sign function. By substituting (16) and (17) with (15), 
we can obtain 
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According to the theorem of matrix multiplication, (18) can be represented as 
(19)   HA=α,  
where A=[G(1), G(2),…, G(L)]T is a ˆ[ (2 1) 1]+ ×L N vector representing the modal 

weights of HO loudspeakers with 
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α=[α–M(k), α–M+1(k),…, αM(k)]T is a vector representing the desired field coefficients. 
The translation matrices  H=[T(1), T(2),…, T(L)], T(l), l = 1, 2, …, L, are attained as 
follows: 
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. According to H and α, the required 

modal weights of HO loudspeakers can be obtained by 
(21)    A=H# [HH#+γI]-1α, 
where # represents the Hermitian Transpose, and I is a [(2M+1)×(2M+1)] identity 
matrix. Note that γ is the regularization control parameter and γ = 0 indicates the 
minimum energy solution of (21).  

To avoid spatial aliasing, the required number of HO loudspeakers L of the 
proposed method needs to satisfy ˆ(2 1) (2 1)⋅ + ≥ +L N M . And in reference to [9], the 
number of monopole loudspeakers Q for sound field reproduction meets  
Q ≥ (2M+1). Hence, for a given frequency f and a radius of the reproduced region rl, 
the minimum required number of HO loudspeakers will be decreased by a factor 

ˆ1/(2 1)+N  compared to the monopole loudspeakers, i.e., ˆ/ (2 1)= +L Q N . 

4. Simulation results 

In order to evaluate the performance of the proposed scheme, three simulation 
experiments are considered in this section. Firstly, we test the performance of the 
proposed method in various orders of the HO loudspeakers. Secondly, the 
comparison experiment results are given over a referenced method. Finally, we 
evaluate the reproduction errors of the sound field for various frequencies. In these 
experiments, L HO loudspeakers are used, which are equally distributed in a 
circular array of radius rl = 3 m. The HOA method [9], based on point sources for 
2.5D reproduction is employed as the referenced approach. 

A) The first experiment: For convenience of the illustration purposes, a 
monochromatic plane wave and a cylindrical wave are chosen as desired sound 
sources. It should be noted that the proposed method is not limited to reproducing 
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plane wave and cylindrical wave sound fields. We simulate a 2D plane wave and a 
cylindrical wave of frequency 1 kHz, deriving from φv = π/4 (and rv = 4m for the 
cylindrical wave source) in this experiment. This is equivalent to krl  = 55.412, and 
according to / 2= ⎡ ⎤⎢ ⎥lM ekr , we can get M = 76. Thus the minimum number of HO 
loudspeakers is L = 31. Simulations are carried out in three cases, i.e., ˆ 2=N , ˆ 3,N =  
and ˆ 4=N . The reproduced pressure fields are shown in Fig.1. These figures are 
calculated at 300×300 points and displayed as a “density plot”, meaning that the 
acoustic pressures are represented by various shades of gray. The pressures greater 
than 1 are black, the pressures less than −1 are white, and the pressures between −1 
and 1 are appropriately shaded. The HO loudspeakers are shown as “x” marks. 
From Fig. 1 it can be observed that the desired interior sound field is exactly 
reproduced within the array of HO loudspeakers. In addition, the reproduction 
errors in the exterior sound field distinctly decrease when increasing the order of 
loudspeakers. Furthermore, the radius of the reproduction sound field is close to 
rl  = 3 m. 

    

    
Sound field for ˆ 2=N             Sound field for ˆ 3=N                  Sound field for ˆ 4=N  

Fig. 1. Reproduction of a 2D plane wave from φv =π/4 (upper row) and a cylindrical wave from  
φv =π/4, rv=4 m (lower row) for different orders. The HO loudspeakers are equally placed on a circle 

of radius 3m. The HO loudspeakers are shown as “x” marks 

B) The second experiment: A plane wave and a cylindrical wave deriving 
from φv=π/4 (and rv=4m for cylindrical wave) are simulated by the proposed 
method and the referenced method, respectively. Considering that the reproduction 
error of the proposed method in the second order case (i.e., ˆ 2=N ) is 0.0142 
calculated by (22), it agrees well with the expected value of 0.04 in [3]. So the 
second order case was chosen for the evaluation comparison. In this experiment, 31 
HO loudspeakers are required in the proposed scheme and 53 point sources 
(monopole loudspeakers) are used in the referenced method for 2.5D reproduction. 
The reproduced sound fields are shown in Fig. 2. From Fig. 2a and Fig. 2b it can be 
seen that the reproduced 2.5D sound field based on HO loudspeakers matches well 
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with the desired field within the circle region. By comparing Fig. 2b and Fig. 2c, it 
can be observed that the area of the reproduction region of the proposed method is 
much larger than that of the referenced method (i.e., the interior circle in Fig. 2c) 
with the same radius of the loudspeaker array. Meanwhile, the number of the 
loudspeakers used in the proposed method is slightly fewer than in the referenced 
method.  

     

      
                       (a)                                                 (b)                                               (c) 

Fig. 2. Reproduction of a 2D plane wave from φv =π/4 (upper row) and a cylindrical wave from  
φv =π/4, rv= 4 m (lower row) for frequency of 1 kHz. The loudspeakers are equally placed on a circle 
of radius 3 m. The loudspeakers are shown as “x” marks: Desired sound field (a); 2.5D reproduction 

by the proposed method (b); 2.5D reproduction by the referenced method (c) 

C) The third experiment: Additionally, in order to evaluate the reproduction 
performance of the proposed method for different frequency sound sources, the 
normalized reproduction error is also computed. The normalized reproduction error 
is defined as follows:    

(22)   

2 2
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where rr is the radius of the reproduction region, k=2πf/c; Pd(x, k) and Pr(x, k) 
represent the desired sound field and the reproduced sound field, respectively. 
According to (22), a more general representation of the reproduction performance is 
given in Fig. 3 where the normalized reproduction errors are shown as a function of 
frequency f.  

In Fig. 3 the reproduction errors of the proposed method and the referenced 
method for a plane wave are represented. In these two methods, the radius of the 
reproduction region rr = 3 m, and according to / 2= ⎡ ⎤⎢ ⎥rM ekr , we can determine  
M = 76. In the proposed method, the order of HO loudspeakers is 2, i.e., ˆ 2=N . 
Thus, 31 HO loudspeakers are required in the proposed scheme. However, 153 
point sources are used in the referenced method for 2.5D reproduction. In Fig. 3 it 
can be seen that the reproduction errors of the proposed method are close to those of 



 14

the referenced method. However, the required number of loudspeakers in the 
referenced approach is approximately ˆ2 1N +  times than that of the proposed 
method. This means that the proposed method results in a significant reduction in 
the number of loudspeakers. Furthermore, we note that the system designed at a 
particular frequency (i.e., 1 kHz in the experiment), can provide accurate sound 
field reproduction performance for numbers fewer than the designed frequency. At 
large f beyond the designed frequency, the reproduction errors become significant 
and monotonically increase with f, which validates the general principle [3] for 
choosing the required truncation order of (4). 

 
Fig. 3. Normalized reproduction error as a function of frequency f 

5. Conclusion 

In this paper, based on spherical harmonic expansions, we propose a method to 
reproduce 2D or height invariant sound fields with a circular array of HO 
loudspeakers. Based on the spherical addition theorem, a spherical harmonics 
representation of a 2D sound field reproduced by an array of HO loudspeakers is 
obtained. The modal weights of HO loudspeakers are designed by using the least 
squares method. Simulation results show that the proposed method extends the 
reproduction region and significantly reduces the minimum number of 
loudspeakers. Therefore, compared to the traditional methods, the implementation 
of the proposed method in commercial applications is more feasible and efficient. 
 
Acknowledgments: This work has been supported by the National Natural Science Foundation of 
China (No 61231015, 61201197), Specialized Research Fund for the Doctoral Program of Higher 
Education of the Peoples Republic of China (No 20121103120017), the Scientific Research Project of 
Beijing Educational Committee (No KM201310005008) and the 13th Postgraduate Science 
Foundation of Beijing University of Technology (No ykj-2014-11552). 

 

200 400 600 800 1000 1200 1400 1600 1800 2000
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Sound field frequency/Hz

R
ep

ro
du

ct
io

n 
er

ro
r(d

B
)

 

 

2.5D reproduction by the proposed method
2.5D reproduction by the reference method



 15

R e f e r e n c e s 

1. Dolby Laboratories. Dolby Surround 7.1: Technical Information for Theaters.  
http://www.dolby.com/us/en/technologies/dolby-surround-7-1-for-theater-tech-
paper.pdf 

2. S p o r s, S., R. R a b e n s t e i n, J. A h r e n s. The Theory of Wave Field Synthesis Revisited. – 
In: Proc. of 124th Convention of the Audio Engineering Society, AES, Amsterdam, 
Netherlands, 2008, pp. 413-431.  

3. W u, Y. J., T. D. A b h a y a p a l a. Theory and Design of Sound Field Reproduction Using 
Continuous Loudspeakers Concept. – IEEE Transactions on Audio, Speech, and Language 
Processing, Vol. 17, 2009, No 1, pp. 107-116.  

4. W u, Y. J., T. D. A b h a y a p a l a. Spatial Multizone Soundfield Reproduction: Theory and 
Design. – IEEE Transactions on Audio, Speech, and Language Processing. Vol. 19, 2011,  
No 6, pp. 1711-1720.  

5. S p o r s, S., J. A h r e n s. Analysis and Improvement of Pre-Equalization in 2.5-Dimensional 
Wave Field Synthesis. – In: Proc. of 128th Convention of the Audio Engineering Society, 
AES, London, UK, 2010, pp. 1789-1805. 

6. A h r e n s, J., S. S p o r s. Sound Field Reproduction Using Planar and Linear Arrays of 
Loudspeakers. – IEEE Transactions on Audio, Speech and Language Processing, Vol. 18, 
2010, No 8, pp. 2038-2050.  

7. A h r e n s, J., S. S p o r s. Applying the Ambisonics Approach to Planar and Linear Distributions 
of Secondary Sources and Combinations Thereof. – Acta Acustica United with Acustica, 
Vol. 98, 2012, No 1, pp. 28-36.  

8. P o l e t t i, M. A. Three-Dimensional Surround Sound Systems Based on Spherical Harmonics. – 
Journal of the Audio Engineering Society, Vol. 53, 2005, No 11, pp. 1004-1025.  

9. Z h a n g, W., T. D. A b h a y a p a l a. 2.5D Sound Field Reproduction in Higher Order 
Ambisonics. – In: Proc. of 14th International Workshop on Acoustic Signal Enhancement, 
IEEE, Juan les Pins, France, 2014, pp. 342-346.  

10. P o l e t t i, M. A., T. D. A b h a y a p a l a. Interior and Exterior Sound Field Control Using General 
Two-Dimensional First-Order Sources. – Journal of the Acoustical Society of America,  
Vol. 129, 2011, No 1, pp. 234-244.  

11. P o l e t t i, M. A., T. D. A b h a y a p a l a. Spatial Sound Reproduction Systems Using Higher 
Order Loudspeakers. – In: Proc. of IEEE International Conference on Acoustics, Speech and 
Signal Processing, IEEE, Prague, Czech Republic, 2011, pp. 57-60.  

12. S a m a r a s i n g h e, P. N., M. A. P o l e t t i, T. D. A b h a y a p a l a. 3D Soundfield Reproduction 
Using Higher Order Loudspeakers. – In: Proc. of IEEE International Conference on 
Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013, pp. 306-310.  

13. D u r a i s w a m i, R., D. Z o t k i n. High Order Spatial Audio Capture and Its Binaural Head-
Tracked Playback over Headphones with HRTF Cues. – In: Proc. of 119th Convention of the 
Audio Engineering Society, AES, New York, USA, 2005, pp. 1186-1201. 

14. W a r d, D. B., T. D. A b h a y a p a l a. Reproduction of Plane Wave Sound Field Using an Array 
of Loudspeakers. – IEEE Transactions on Speech Audio Process, Vol. 9, 2001, No 6,  
pp. 697-707.  

15. P o l e t t i, M. A., T. B e t l e h e m, T. D. A b h a y a p a l a. Comparison of Sound Reproduction 
Using Higher Order Loudspeakers and Equivalent Line Arrays in Free-Field Conditions. – 
Journal of the Acoustical Society of America, Vol. 136, 2014, No 1, pp. 192-200.  

16. S a m a r a s i n g h e, P. N., T. D. A b h a y a p a l a, M. A. P o l e t t i. 3D Spatial Sound Field 
Recording over Large Regions. – In: Proc. of 12th International Workshop on Acoustic 
Signal Enhancement (IWAENC), IEEE, Aachen, Germany, 2012, pp. 1-4. 

17. A h r e n s, J., S. S p o r s. An Analytical Approach to Sound Field Reproduction Using Circular 
and Spherical Loudspeaker Distributions. – Acta Acustica United with Acustica, Vol. 94, 
2008, No 6, pp. 988-999.  

18. S u n, H., S. Y a n, U. P. S v e n s s o n. Optimal Higher Order Ambisonics Encoding with 
Predefined Constraints. – IEEE Transactions on Audio, Speech, and Language Processing, 
Vol. 20, 2011, No 3, pp. 742-754.  


