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Abstract: The studies presented in this paper deal with traffic control in case of
missing data and/or when the loop detectors are faulty. We show that the traffic
state estimation plays an important role in traffic prediction and control. Two
approaches are presented for the estimation of the main traffic variables (traffic
density and mean speed). The state constructors obtained are then used for traffic
flow control. Several numerical simulations show very promising results for both
traffic state estimation and control.
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1. Introduction

The freeway traffic control and the advent of the Intelligent Transportation Systems
(ITS), which are able to provide continuous forecasting of the traffic and allow
alleviating the daily congestion phenomena, are closely related to the ability to have
the whole needed information about the traffic behaviour and then the traffic state
evolution. This information is usually provided by a set of loop detectors or any
other sensors, such as video camera and others, already installed along the freeway
infrastructure. Nevertheless, like any other device, such sensors face several
problems, such as failure, usury and default, as well as the high cost of installation
and maintenance. In addition, the loop detectors could also undermine the road
paved and accelerate the deterioration of the infrastructure. The state estimation and
reconstruction of the missing data for a faulty detector play an important role for
both traffic forecasting and control.



The amount of attention devoted to the development of an estimation strategy
using a traffic flow model has been relatively small compared to the modeling
stage. Among these works, Nahi and Trivedi [18] shows an interesting method
for data processing and estimation of the traffic density closely in homogeneous
situations. Notice that the most widely used tools for traffic state estimation are
Kalman filters and their extensions. Thus, Gazis and Knapp [10], Knapp [12]
have proposed a Kalman filtering techniques for data processing. Such a method is
based on time series of the mean speed and flow data from each detector and then it
generates crude estimates of the vehicle counts. In [21] an extended Kalman filter
method was utilized for traffic state estimation, using second order models.
Kohan [13] has designed a first order sliding mode state estimator for the
estimation of both speed and density. Although the proposed method is robust
against bounded modeling errors and various disturbances, it suffers from chattering
phenomena. Sun et al. [20] have derived a density estimator at unmonitored
locations along a freeway, from the so-called Switching Mode Model (SMM). Sun
et al. have proposed an estimator based on a Mixture Kalman Filter (MKF)
algorithm using also the SMM. Mihaylova and Boel [17] have used a
particle filter for density estimation/prediction. Most of these works have dealt with
state estimation for traffic prediction and forecasting.

In this paper we propose a combination of the state estimation for traffic flow
control purpose. Two approaches are provided. The first one aims at solving the
problem of the chattering phenomena using high order sliding mode techniques.
The second method is based on new setting of numerical differentiation. The
obtained estimators are then used for freeway traffic flow control.

Our paper is organized as follows. Section 2 recalls the used macroscopic
model. The sliding mode and algebraic methods are presented in Section 3 and then
applied to the state estimation. Section 4 details the developed traffic flow control
algorithm using the state estimation. Numerical simulations and results are provided
in Section 5. Finally, the last section summarizes some conclusions and further
works.

2. A macroscopic traffic flow model

2.1. A modified second order continuum model

As an illustration consider the following simple freeway stretch divided into three
segments.

The studied system is governed by the following space discretized equation,
called a conservation law
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1) pi(t):ﬁ[qifl(l)_qi(t)—i_airi(t)_bipi(t)]’
where: p,(¢) in (veh/km per lane) is the traffic density in segment 7; ¢,(¢) denotes
the traffic volume in (veh/h); L. and 4, are the segment length and the number of



lanes in segment i, respectively; @, and b, are binary variables which indicate
respectively the presence or the absence of an on-ramp r,(¢) and an off-ramp p,(z).
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Fig. 1. Example of freeway stretch with three segments

The traffic volume ¢,(z) is related to the traffic density and the mean speed
v,(¢) thanks to the following expression borrowed by Hilliges and Weidlich
[11] (see also [13]):
(2) qi(1) = avia()pi(0) + (1 = &) pra()visa(2),
fori=1, ..., N—1and gx(?) = pn()va(f), where 0 < o < 0 represents an appropriate
weighting factor, which generally needs to be identified. Since the number of
vehicles leaving section i is mainly defined as a function of segment states rather
than the traffic conditions further downstream, this parameter is assumed to be close
to 1.

The mean speed is defined thanks to the following differential equation

3) Vi (t) = %[Ve (pi (t)) Vi (t)] + Livi (t)[vi—l(t) Vi (t)] - i[pml(t) ~ P (t)]’

i i

where V,(p,(1))=v,,exp —i[&J is the so-called “fundamental diagram”
a 1

c,i

(see, e.9., [15]); vy is the free-flow speed, a is a model parameter and p., represents
the critical density of the segment i.

2.2. Initial conditions

From the example in Fig. 1 we assume that the traffic volume and the mean speed
(¢, (2), v, (¢)) are usually measured from the loop detector located at the uppermost

boundary of the freeway section. We assume also stationary conditions at the exit
segment. Then, for the last downstream segment N, p, (t)= py .. (¢)

We consider then the following initial conditions:

® 4o = {iny Vo = Vin

° pozﬂv vo #0,
Vo
® ON= PN+l



3. Nonlinear traffic state estimation

The main objective of the traffic state estimation is to design an observer for a
freeway stretch described by Equations (1), (2) and (3).

For a freeway stretch divided into N segments, the set of state variables that
govern the studied system are: [o1v1, ..., ova] € R?™. We can easily observe that
the system consists of 2V equations with 2N segment variables. Assume, following
[21], that a set of traffic measurement devices, such as loop detectors, video
cameras, etc., are installed along the freeway stretch at a separation of several
kilometers, i.e., at the end of every m segment and at on-ramps. Such devices
provide measurements of the traffic flow, space mean speed and occupancy at every
T seconds. (For simulation purpose the occupancy rate in % is converted into traffic
density.) The measurements provided by the sensors allow the designed
reconstructor to estimate the main traffic state variables for each segment. Having
the freeway stretch with N segments and m sensors, the freeway system can be
subdivided into approximately M = N/m subsystems. Such systems subdivision is
achieved in such a way that the subsystem /+1 has little influence on the dynamics
of the mainstream subsystem /, I = 1, 2, ..., M — 1 [13]. To reach this requirement,
the length of the last segment of the sub- system [ must be small compared to the
first segment of the downstream subsystem / + 1. This condition means that the
effect of the anticipation term in expression (3) for the last segment of the
subsystem [ is negligible and one can consider the decentralized problem of the
state estimation for each subsystem at a time.

3.1. A sliding mode observer for traffic state estimation

The sliding mode technique is related to the Variable Structure Systems (VSS)
theory. It is essentially based on the resolution of differential equations with
discontinuous right hand side, which was introduced by [4]. Historically, the
twisting mode algorithm is the first 2nd order sliding mode algorithm known [5]. It
features twisting around the origin of the 2nd order-sliding plane. The trajectories
perform an infinite number of rotations while converging in a finite time to the
origin [9, 19].

0.

1

Fig. 2. Super-twisting algorithm phase trajectory where e represents the error



In the super-twisting algorithm, the trajectories of the 2nd order-sliding plane
are also characterized by twisting around the origin (Fig. 2; e.g., [14] for a short
review on the Super-twisting sliding mode observer and its application to traffic
flow estimation).

Fig. 3 illustrates the structure of a super-twisting observer algorithm.
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Fig. 3. Structure of the super-twisting observer

In the following lines we consider the example of Fig. 1 to show the design of
the state estimation algorithm. In this example we assume that the output vector is
F=[FiF2]" = [pva] .

In terms of macroscopic modeling the studied freeway stretch of Fig. 1 is
described as follows:

) 1
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As above mentioned, in expressions (4) and (5), o3 and vs, are assumed to be
known. It should be underlined that gout = poutvour fOrms the output measurements
variables. If po<p., then pou = ps, €lse pout = o In addition, vy, vo, v3 < vy

The main objective of the observer is to estimate the traffic variables: pi, v,
1., vo. Consider then that p and v are the estimated values of p and v, respectively.

Then, the observer errors can be defined by ¢, =p -5, and e, =v—v. Thus the
proposed super-twisting observer can be expressed as:



X 1 ~ A "
P =L_[‘]in —apv, _(1_0‘),02"3 + ”1]'
1

A 1 ~a ~
(6) P2 = L_[apl"z + (1_ O‘)Pz"s - (1_ O‘)PSVS]JF Z52
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3

(7) P2 =7,8190(55 = p3)

1
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Analogically, the mean speeds estimation are obtained via the following
observer:

~ 1 “ ~ ~ n “ “ o -

V1 :_[Ve(pl)_vl]-i'évl[vin _Vl]_L[pZ(t)_pl(t)]__rlvl'
r L, L L,

(8) ‘;2 =; e(ﬁz)_§2]+§2‘;2[‘71_Gz]_LLZ[zaa(t)_ﬁz(f)]szvza

v, = zsign(v, —v,),

1
Z, =ﬂ2|v2 —v2|2sign(v2 - vz).
The output injections are of the form:

~ 1 ~ ~ AT~ A ~
V3 :;[Ve(Ps)—Vs]"'Li"s[Vz —Vs]—LL[pout(t)—Ps(t)]"‘ Zy3
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(9) v, =7zvsing(172 _‘32)1

ro .
Z,3= ﬁ|v3 —\33|2 sin g(v3 - Vs)-

3.2. Numerical differentiation for traffic state estimation

Numerical differentiation is a very important but difficult ill-posed theoretical
problem [16]. This algebraic technique starting in [5, 6], (see also, e.g., [7, 8]),
provides a powerful tool for the estimation of the derivatives of a noisy signal. Its
applications to traffic flow state estimation and control are still in their preliminary
phase. In this section we will show how the use of such a method provides a very
interesting alternative to the existing methods for state estimation, using the second
order macroscopic model described in Section 2. The principle of proposed
numerical differentiation was already described in [1].

Without loss of generality, consider the freeway stretch depicted in Fig. 1. The
efficient design of the proposed estimator is made possible thanks to the
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observability definition given by Diop and Fliess [2, 3].

Definition. A nonlinear input-output is observable if, and only if, any system
variable, a state variable for instance, is a differential function of the control and
output variables, i.e., a function of those variables and their derivatives up to some
finite order. We will say more generally that an unknown quantity may be
determined if, and only if, it is expressible as a differential function of the control
and output variables.

From this definition the state variables in the freeway stretch of Fig. 1, are
defined as S = [on, vi, P2, o, o3, va]' € R°. For the sake of simplicity, we assume
that all segments are with the same length: L=L;i=1, 2, 3.

Let F; = p3 be the measured variable output. The remaining variables p; and p,
can be expressed in term of F; and its time-derivatives up to two £, and F:

L . l-a 1
(10) P2 Z_EI._( )F;I._’__qout'
av, a av,
2 . LBa-2). v-af L . 1-2a
(11) p1: 2 F;L+ ( 2 )Fi.+ 3( 2 ) F;L+ 2 qout_ 2 qout'
avyvy a‘v, a‘v, a‘vyvy a‘v,

If we consider that F», = v; is measured, then v; and v, can be expressed as
follows:

(12) v2=££—£&+FZ+£,

SF, ¢tF, gt

2L LV, LF, LF, LV
V1=F2+———L2+— 2 =72 ZPe |

st §oy ¢F, So (&
LD Vol — 2 )+ By, WLE,
cfzz'Fzzal aétF,o,
L LF, LV,
where o, =F, + —+——% - —%
st ¢ F, J
Although the traffic Equations (10)-(13) are somewhat complex, the principle
of the algebraic methods permits to approximate the measured outputs (ps and vs)
by introducing its truncated Taylor polynomial expansion. In this way it is not
necessary to design the derivative estimator from a specific dynamic model of the
traffic flow. Then, for the generation in time of the measured outputs ps(¢) = Fi(7)
and v3(f) = F»(¢), consider for example, a 4th order approximation of these smooth
signals, Fi(7), i =1, 2,

(13)

d’F,
14 L=0.
(14) dt*
In the operational domain [22] Equation (14) is written as
(15) s'F (s)-5°F(s)- s°F;(0) - s£,(0)- F¥(0)=0.

The algebraic manipulations as described in [1] and transformation of the
obtained expressions in the time domain provide approximations of the first and
second order time-derivatives of F,(¢),

11



d_F} =—24(J':3)Fij+96(ﬁ)t_z ( j ;2([t—z F)+12(e - )3F
srl] 24([ +96[ )Fl.j—.36((t—tj)ZF)JrS(t—t/.)g[EL
| dr® } (’_[1)4 |

Notice, that for the second order time derivative estimate requires the outcome of
the evaluation of the first derivative estimate. This is in complete agreement with
the announced triangular structure of the generating system of equations, where
t—1t;>0 is the estimation period. (See [8] and [16], for more details and the

principle of resetting when the denominator becomes close to 0.) Using the above
formulas allows obtaining the derivative estimations of the traffic density and mean
speed.

(16)

4. Traffic flow control

The traffic flow control represents the only efficient way to overcome the
congestion problems. This section shows the efficiency of the state estimation in
order to alleviate these phenomena by implementing the isolated ramp metering
control. Such control measurement consists of acting on the traffic demand at the on
ramp in order to maintain the traffic density in the merge freeway section close to
the critical one. The proposed algorithm is based on the joint use of the sliding
mode control and differential flatness. From the first term of Equation (4), the
control variable r; can be parameterized in term of the flat output F; = p; and its
time-derivatives up to three:

(17) rl(t): 91]71(3) + 02];—1 + H3Fl + H4éjout + 956]0ut + 9out — Gin»
where
3 2
91= 2L y 92:L_{i_2 3ai|!
a VyVa a | vy V3

63=£|:v3(1—a)+2a_1:|’ 94=2L_, ) =£{i_1 205}
al v, v, av,

a“v,v, *a
Given a desired reference trajectory F;, (usually, the reference trajectory is

taken around the critical density), for the controlled traffic density at the merge

segment, a linearized control law achieving an exponential asymptotic tracking of

the trajectory is given by the following expression:

(18) rl(t) = 01W + HZEL + 03EL + 04ijout + 05‘?0ut + Qout ~ Gin»

where w=Fl(3) is an auxiliary control input. Notice that the control variable in that

equation needs a derivative estimation of the ouput flow. Such estimation is

obtained in the same way as for F; and F,. Using the high order sliding mode
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control principle and assuming that the sliding surface s = F;, — Fy , the auxiliary
control input is

(19) w= —gsign(s + g’|s|isign(s)}

Substituting (19) in (18) provides the control algorithm for isolated ramp
metering.

Simulation results. For the simulation purpose, consider the freeway stretch
depicted in Fig. 1 and assume that the two loop-detectors allowing the measurement
of the traffic densities in segment 1 and 2 are faulty. Using either the sliding mode
observer or the state reconstructor based on numerical differentiation allows the
obtaining of the missing data of (o1, v1) and (o, v,). We have chosen the trapezoidal
traffic demand, which is more or less comparable to real-data (Fig. 4).

2200

20001

1800

1600

1400}

12001

1000}

Traffic demand [veh/h]

800

600

400

200 s . L n n I I
o] 500 1000 1500 2000 2500 3000 3500 4000 4500

Time [sec]

Fig. 4. Example of the used traffic demand

The simulation time is about 1h 25 min. The model parameters are provided in
Table 1.

Table 1. Model parameters

Parameter Value Unit
Critical density 35.86 |veh/km per lane
Free-flow speed 105 km/h
Maximal density 180 |veh/km per lane
Segment Length 0.5 km
a 0.77 -

a (May fundamental diagram) |0.8014 -

¢ (Controller parameter) 0.1 _

é’ (Controller parameter) 0.05 -

In the no-control case, Figs 5a and b show the densities and the mean speeds
evolutions for the measured and estimated state variables.
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Fig. 5. Densities (veh/km) and speed (km/h) time evolution: no-control case

4500

These figures show that after about 12 minutes, the traffic reaches and exceeds
the critical density (Fig. 5a), which means that the freeway stretch is in a congestion
mode. This fact is illustrated by the speed evolution, which decreases consequently

5h).

Remark that the implementation of our control algorithm shows very
encouraging results (Fig. 6), where the densities are maintained around the desired
value. This fact is confirmed by the increase in the speed values.
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Fig. 6. Densities (veh/km) and speed (km/h) time evolution: control case

Fig. 7 illustrates the control variable evolution, where 0.2 <7y < 1.
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Obviously, the implementation of the ramp-metering algorithm leads to the
queue formation depicted in Fig. 8.

Quaue langth [veh]

o 500 1000 1500 2000 2500 3000 3500 4000 4500
Tima [sec]

Fig. 8. Queue length time evolution

5. Conclusion

The studies presented in this paper provide a new way to deal with traffic flow
control in case of missing data or when a loop detector is faulty. Two approaches
for state estimation were proposed to tackle this important problem. The first one is
based on the so-called super-twisting sliding mode technique. The second one,
which provides also robust estimation, is based on the use of newly introduced
algebraic methods. Having this needed information, we applied a ramp-metering
algorithm, which combines the high order sliding mode control and differentially
flat systems concept.

Further on the research will deal with comparative studies of the most widely
used techniques in the traffic area, such as Kalman filters and their extensions. This
fact leads to the proposal of a coordinated ramp-metering algorithm in the future
works, which takes measurements of all the studied freeway networks. In addition,
another study is conducted in order to develop integrated traffic flow control
combining several traffic flow management actions.

Acknowledgement: This paper is partly supported by FP7 project 316087 ACOMIN: “Advance
computing and innovation”.
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