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Abstract: The studies presented in this paper deal with traffic control in case of 
missing data and/or when the loop detectors are faulty. We show that the traffic 
state estimation plays an important role in traffic prediction and control. Two 
approaches are presented for the estimation of the main traffic variables (traffic 
density and mean speed). The state constructors obtained are then used for traffic 
flow control. Several numerical simulations show very promising results for both 
traffic state estimation and control. 
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1. Introduction 

The freeway traffic control and the advent of the Intelligent Transportation Systems 
(ITS), which are able to provide continuous forecasting of the traffic and allow 
alleviating the daily congestion phenomena, are closely related to the ability to have 
the whole needed information about the traffic behaviour and then the traffic state 
evolution. This information is usually provided by a set of loop detectors or any 
other sensors, such as video camera and others, already installed along the freeway 
infrastructure. Nevertheless, like any other device, such sensors face several 
problems, such as failure, usury and default, as well as the high cost of installation 
and maintenance. In addition, the loop detectors could also undermine the road 
paved and accelerate the deterioration of the infrastructure. The state estimation and 
reconstruction of the missing data for a faulty detector play an important role for 
both traffic forecasting and control.  
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The amount of attention devoted to the development of an estimation strategy 
using a traffic flow model has been relatively small compared to the modeling 
stage. Among these works, N a h i  and T r i v e d i  [18] shows an interesting method 
for data processing and estimation of the traffic density closely in homogeneous 
situations. Notice that the most widely used tools for traffic state estimation are 
Kalman filters and their extensions. Thus, G a z i s  and K n a p p  [10], K n a p p  [12] 
have proposed a Kalman filtering techniques for data processing. Such a method is 
based on time series of the mean speed and flow data from each detector and then it 
generates crude estimates of the vehicle counts. In [21] an extended Kalman filter 
method was utilized for traffic state estimation, using second order models. 
K o h a n  [13] has designed a first order sliding mode state estimator for the 
estimation of both speed and density. Although the proposed method is robust 
against bounded modeling errors and various disturbances, it suffers from chattering 
phenomena. S u n  et al. [20] have derived a density estimator at unmonitored 
locations along a freeway, from the so-called Switching Mode Model (SMM). Sun 
et al. have proposed an estimator based on a Mixture Kalman Filter (MKF) 
algorithm using also the SMM. M i h a y l o v a  and  B o e l  [17] have used a 
particle filter for density estimation/prediction. Most of these works have dealt with 
state estimation for traffic prediction and forecasting.  

In this paper we propose a combination of the state estimation for traffic flow 
control purpose. Two approaches are provided. The first one aims at solving the 
problem of the chattering phenomena using high order sliding mode techniques. 
The second method is based on new setting of numerical differentiation. The 
obtained estimators are then used for freeway traffic flow control.  

Our paper is organized as follows. Section 2 recalls the used macroscopic 
model. The sliding mode and algebraic methods are presented in Section 3 and then 
applied to the state estimation. Section 4 details the developed traffic flow control 
algorithm using the state estimation. Numerical simulations and results are provided 
in Section 5. Finally, the last section summarizes some conclusions and further 
works.  

2. A macroscopic traffic flow model 

2.1. A modified second order continuum model 

As an illustration consider the following simple freeway stretch divided into three 
segments.  

The studied system is governed by the following space discretized equation, 
called a conservation law 
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where: ( )tiρ&  in (veh/km per lane) is the traffic density in segment I; ( )tqi  denotes 
the traffic volume in (veh/h); Li  and λi, are the segment length and the number of 
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Analogically, the mean speeds estimation are obtained via the following 
observer: 
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The output injections are of the form: 
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3.2. Numerical differentiation for traffic state estimation  

Numerical differentiation is a very important but difficult ill-posed theoretical 
problem [16]. This algebraic technique starting in [5, 6], (see also, e.g., [7, 8]), 
provides a powerful tool for the estimation of the derivatives of a noisy signal. Its 
applications to traffic flow state estimation and control are still in their preliminary 
phase. In this section we will show how the use of such a method provides a very 
interesting alternative to the existing methods for state estimation, using the second 
order macroscopic model described in Section 2. The principle of proposed 
numerical differentiation was already described in [1].  

Without loss of generality, consider the freeway stretch depicted in Fig. 1. The 
efficient design of the proposed estimator is made possible thanks to the 
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observability definition given by D i o p  and F l i e s s  [2, 3].  
Definition. A nonlinear input-output is observable if, and only if, any system 

variable, a state variable for instance, is a differential function of the control and 
output variables, i.e., a function of those variables and their derivatives up to some 
finite order. We will say more generally that an unknown quantity may be 
determined if, and only if, it is expressible as a differential function of the control 
and output variables.  

From this definition the state variables in the freeway stretch of Fig. 1, are 
defined as S = [ρ1, v1, ρ2, v2, ρ3, v3]T ∈ R6. For the sake of simplicity, we assume 
that all segments are with the same length: L = Li, i = 1, 2, 3.  

Let F1 = ρ3 be the measured variable output. The remaining variables ρ1 and ρ2 
can be expressed in term of F1 and its time-derivatives up to two 1F&  and 1F&& : 
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If we consider that F2 = v3 is measured, then v1 and v2 can be expressed as 
follows: 
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Although the traffic Equations (10)-(13) are somewhat complex, the principle 
of the algebraic methods permits to approximate the measured outputs (ρ3 and v3) 
by introducing its truncated Taylor polynomial expansion. In this way it is not 
necessary to design the derivative estimator from a specific dynamic model of the 
traffic flow. Then, for the generation in time of the measured outputs ρ3(t) = F1(t) 
and v3(t) = F2(t), consider for example, a 4th order approximation of these smooth 
signals, Fi(t), i = 1, 2, 

(14)  .04

4

=
dt

Fd i  

In the operational domain [22] Equation (14) is written as 
(15) ( ) ( ) ( ) ( ) ( )( ) .0000 3234 =−−−− iiiii FFsFssFssFs &&&  

The algebraic manipulations as described in [1] and transformation of the 
obtained expressions in the time domain provide approximations of the first and 
second order time-derivatives of ( ),tFi  
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Notice, that for the second order time derivative estimate requires the outcome of 
the evaluation of the first derivative estimate. This is in complete agreement with 
the announced triangular structure of the generating system of equations, where 

jtt − >0 is the estimation period. (See [8] and [16], for more details and the 
principle of resetting when the denominator becomes close to 0.) Using the above 
formulas allows obtaining the derivative estimations of the traffic density and mean 
speed. 

4. Traffic flow control 

The traffic flow control represents the only efficient way to overcome the 
congestion problems. This section shows the efficiency of the state estimation in 
order to alleviate these phenomena by implementing the isolated ramp metering 
control. Such control measurement consists of acting on the traffic demand at the on 
ramp in order to maintain the traffic density in the merge freeway section close to 
the critical one. The proposed algorithm is based on the joint use of the sliding 
mode control and differential flatness. From the first term of Equation (4), the 
control variable r1 can be parameterized in term of the flat output F1 = ρ3  and its 
time-derivatives up to three: 
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Given a desired reference trajectory F1
* (usually, the reference trajectory is 

taken around the critical density), for the controlled traffic density at the merge 
segment, a linearized control law achieving an exponential asymptotic tracking of 
the trajectory is given by the following expression: 
(18)  ( ) ,inoutout5out4131211 qqqqFFwtr −+++++= &&&&&& θθθθθ  
where ( )3

1Fw =  is an auxiliary control input. Notice that the control variable in that 
equation needs a derivative estimation of the ouput flow. Such estimation is 
obtained in the same way as for F1 and F2. Using the high order sliding mode 
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