
 121

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 15, No 5
Special Issue on Control in Transportation Systems

Sofia • 2015 Print ISSN: 1311-9702; Online ISSN: 1314-4081
DOI: 10.1515/cait-2015-0022

An Object-Oriented HLA Simulation Study

Georgi Kirov
Institute of Systems Engineering and Robotics, 1113 Sofia
Emails: kirov@iser.bas.bg

Abstract: The study is dedicated to High Level Architecture (HLA) standard for
software architecture of interoperable distributed simulations. The paper discusses
the differences between object-oriented programming and HLA. It presents an
extended simulation architecture providing a mechanism for HLA data exchange
through Object-Oriented (OO) objects. This eliminates the complex network
programming for HLA distributed simulations. The paper shows a sample code that
implements the architecture for OO HLA/RTI simulation.

Keywords: High-level architecture, distributed simulation, data-centric
organization.

1. Introduction

Distributed simulation technologies are a paradigm to model dynamic,
heterogeneous and spatial distributed systems. They not only aim at speeding up
simulations, but also serve as strategic technologies for linking simulation
components of various types [1]. Distributed technologies can run with different
components installed on different computers linked via a local network, so as to
accelerate the execution time of the simulation. Although the contemporary
distributed simulation technologies, and especially, High Level Architecture/Run
Time Infrastructure (HLA/RTI) standard has a standardized structure for object
models, they do not completely correspond to common definitions of object models
in Object-Oriented (OO) analysis and design techniques [2, 9].

 122

A number of simulation models has been developed and more are being
developed for studying the individual aspect of system components. The value of
these models decreases because they do not consider all aspects of system
interdependencies. The simulation models, addressing different aspects of the
system components need to be integrated in a common framework to provide the
whole picture of the behavior of a complex system, which depends on the
interaction of several heterogeneous subsystems. In most of the cases, the
simulation models are built based on the OO approach. Object-oriented simulation
has great intuitive appeal in applications since it is very easy to view the real world
as being composed of objects [3]. Typical for these models is that there does not
exist integration among the models. They do not easily address highly dynamic
complex systems, and heterogeneous and spatial distributed models.

The acquired experience in distributed simulation technologies has called for
carrying out in-depth the analysis as to what extent the simulation mechanism is
fitting the contemporary challenges and requirements. The protocol-based nature of
the distributed simulation technologies shows the following trends:

• the distributed simulation technologies make it easy to connect applications,
but not so easy to find, access and work with the information from object-oriented
applications;

• lack of an object-oriented infrastructure of the distributed simulation
technologies, providing effortless component integration.

object classes

attributes

single updates

Objects

Inheritance Data-centric model

HLA interface
specification

time advance

Interoperability

Object Oriented
Paradigm HLA standard

Object-Oriented Layer

Layering

Fig. 1. Mapping of OO paradigm and HLA properties

The study aims at developing an extended software architecture providing a
mechanism for HLA data exchange through OO objects (Fig. 1). Manipulating
these objects (i.e., creating, modifying, deleting), the applications can work directly
at HLA/RTI API. This will eliminate the complex network programming for HLA
distributed simulations.

 123

2. HLA/RTI

The problems due to the inflexibility and lack of scalability of the traditional
distributed approaches have led to a different approach, the High Level Architecture
(HLA), which becomes IEEE 1516 Standard. HLA allows the experts to combine
computer simulations into larger simulation. For instance, the experts might want to
combine simulations of complex systems in several different regions of the country.
HLA can extend the simulation later by adding new models or simulations, for
example new models of infrastructures [6]. The HLA defines a set of rules
governing how the simulations (applications), now referred to as federates, interact
with one another. The federates communicate via a communication environment,
called RunTime Infrastructure (RTI) and use an Object Model Template (OMT)
which describes the format of the data. The information exchange between
federates is based on a common object model, called Federation Object Model
(FOM). The HLA federates use data management mechanism based on publishing
and subscribing.

Runtime infrastructure is a supporting software that provides an information
exchange mechanism between federates in the distributed environment, regarding
FOM. It implements a distributed operating system and forms the basic software
layer for HLA applications. It neither maintains information about the state of the
federates, nor handles any semantics associated with the interaction between
federates, like what coordinate systems to use or what happens during a collision.
The RTI provides a set of services to the federates for data interchange and
synchronization in a coordinated fashion. The RTI services are provided to each
federate through its Local RTI Component (LRC) [1, 6].

The HLA object model supports the information exchange between federates
within the federation. The exchange of information takes the form of objects and
interactions. The federates communicate with their peers by sending interactions or
updating the object attributes. Federates do not communicate directly with each
other and all communication is administrated by the RTI. The Object classes [6] are
comprised of attributes. The Object classes describe types of things that can persist.
Each object in a time moment is characterized by a state, which is defined by a set
of current values of its attributes. The federate, which manages an object, may alter
the state of the object by changing the attribute values. Through RTI services, the
federate transmits the new values of the object to all federates in the simulation. In
this case it is assumed that the federate updates the attributes. The Interactions
classes [8] are comprised of parameters. An interaction is a single action caused by
a change in the state of an object from another federation. The Interaction classes
describe types of events. The objects are similar to interactions in so much as the
objects are comprised of attributes, and interactions are comprised of parameters.
The basic difference between the objects and interactions is persistence − the
objects persist, the interactions do not. In conclusion, the HLA FOM offers an
object model that does not completely correspond to the common definitions of
object models in object-oriented programming. Most of the OOP functionality can

 124

be mimicked using tailored HLA federation agreements. Most of the HLA
functionality can be mimicked using OO classes and methods [7].

3. Extended HLA software architecture

This chapter presents a software architecture that extends the HLA profile with an
object-oriented view on a set of related HLA FOM object data, thus providing
typical OO-features, such as navigation, inheritance and use of value-types API
[4, 5, 7]. The main goal of the architecture is to provide functions and services for
working with the traditional HLA (see Fig. 2). Once this is done, we can write the
business logic on-top of these abstractions. It can significantly simplify the
implementation of HLA interfaces. Our aim is to develop an object-oriented
architecture that reduces the lines of the code that need to be written for a HLA
application.

3.1. Differences between object-oriented programming and HLA standard

In the HLA terminology, the classes support information for a common description
of the objects. The basic idea is to provide data-centric organization, which is an
opportunity for information exchange between the distributed applications. This
concept differs significantly from the classical object-oriented methodology where
the behaviour is an integral part of the objects. In the proposed architecture,
attributes of an object-oriented class correspond broadly to the attributes of a HLA
object class.

The diversity of HLA and OO object concepts consists in the fact that HLA
objects are defined entirely by the attributes, the values of which are exchanged
between the federates. The responsibility for updating the attributes of an HLA
object is distributed among different federates in a simulation system, whereas OO
objects encapsulate the state locally and associate the update responsibilities with
methods that are an integrated part of the object’s implementation in [2].

In order to add an additional functionality to HLA objects, it is necessary to
implement software encapsulations of the data and methods, which contain
descriptions about the objects behaviours. The methods affect the values of HLA
object attributes. Another difference is that HLA does not support multiple
inheritance which does not permit the use of polymorphism. In order to resolve the
above mentioned problem, it is necessary to make OO API that provides an ability
to request objects with the same interface to react differently depending on the type
of the object.

3.2. Extended HLA object model

Fig. 2 shows a high-level model of the proposed architecture. The rtiAmb (rti
ambassador) contains customized libraries that access the standard RTI services and
it simplifies the design of the simulation model [4, 5]. Another member of the
fedAmb architecture provides a common callback mechanism to the programmer,
and thus the RTI invokes functions from the OO user methods.

 125

Therefore, there are fundamental differences between object-oriented
programming and HLA standard. A number of assumptions about how a federate
wants to use HLA services must be made in order to support these services in an
object-oriented API.

Fig. 2. Conceptual model of HLA software architecture

On the other hand, it is also necessary to make a number of assumptions about
HLA interactions between federates in order to fully use object-oriented features,
such as method invocations [5, 7]. The proposed OO approach aims at transferring
objects between joined federates. It implies shared HLA objects to be presented as
local OO objects (C++), i.e., an HLA object instance to be presented as an object-
oriented C++ object [7]. For this purpose, the OO objects have to be mapped into
FOM data format. Therefore, HLA attribute has to be mapped to C++ class
attributes. It imposes the object data to be coded into a network format by a
serializing mechanism.

The details of how the object data is encapsulated and propagated are dealt by
data serialization (Fig. 3). The concept is based on the idea of representing the
object data fields into a network-format for transmission. OO methods for a
serialization provide enough capabilities to code the HLA object in the form of a
vector of bytes [5]. The publishing federate uses an OO function sendUpDate() to
send object data through the RTI. The architecture proposed provides flexible
methods to the user for packing update data, and leaves the transmission details
transparent. The subscriber federate receives the published data for a given object.
Then, the federate calls the function receiveUpDate() of the object distinguished by
the key. The function maps HLA FOM object to a class by deserialization, thus
making it possible to reconstruct the object-oriented views of the existing data
models (mirror objects). Thus, the mirror objects are automatically created at
receiving federates as object-oriented instances. A mirror object is a dynamically
created block of code that exists in the receiving application on behalf of the OO
HLA object, and it exposes all of its features, including all fields, properties, events,
and methods.

 126

OO HLA object

Publish application

update()
sendUpdated()
sendInteraction()
receiveUpdate()

OO API

HLA
attributestransform send

RTI

Subscribe
application

bytes

Fig. 3. OO HLA communication model

All work on processing of the OO HLA objects is done by the simulation loop
(Fig. 4). It is continuously repeated, during which the virtual functions of all OO
HLA objects are executed and the attributes are updated. The simulation loop calls
the virtual functions of the implemented HLA models because of the polymorphism
obtained by an inheritance StandAlone class.

Fig. 4. Simulation loop

4. Reference model of an OO HLA object

This section shows a sample code that implements the architecture for OO
HLA/RTI simulation. The reference model of HLA object is C++ class, which sets
the standard for the construction of HLA objects. It provides the performance
requirements for the joint and resign of HLA objects in a common simulation. The
reference model implements the principal characteristic of the HLA simulations −
modularity and expandability. The remaining part of this point is a principle

 127

description of the reference model of an OO HLA object − the data, methods and
working principle. HLA_Model class specifies the structure of the OO HLA object.
It inherits the class StandAlone, thereby receiving all features necessary for
participation in the HLA simulation (Fig. 5).

HLA_Model class contains two sections that are relevant to the HLA/RTI
standard. The first section contains declarations of the state variables. In the
terminology of C++ these variables are presented as members-variables (data) to the
class HLA_Model. The second section contains virtual functions inherited from the
class StandAlone. These virtual functions must be implemented, as they are called
sequentially in the simulation loop. The virtual functions meet the following basic
steps defined by the HLA standard:

• processing upon receipt of an event (interaction);
• calculation of the state variables for each time step;
• sending the new values for the HLA models through RTI.

Fig. 5. C++ HLA_Model class

5. An example for building OO HLA simulation

5.1. Aircraft model

In this section an example for building a simple OO HLA airplane model is
presented. It is developed following the specifications given into the reference
model of HLA object (HLA_Model). An aircraft class (Fig. 6) is created initially,
and then it inherits the base class StandAlone. It encapsulates the common features
of all aircraft − speed, position, identification, etc.

In the Aircraft class the virtual functions inherited from StandAlone are not
implemented because the simulation application never creates an object of class
Aircraft. This class is used only to be inherited by classes that are models of
specific aircraft, such as F16 (Fig. 7).

 128

Fig. 6. Aircraft class

Fig. 7. F16 class

An instance of HLA object class F16 is created by the constructor of Class
F16. It initializes the state variables of the model and carries out registration of the
object into the RTI. As a result, an object handle of the objectHandle is returned. It
is a unique number that identifies the object instance into RTI. The object instance
is global representation maintained by the LRC. The same object instance is known
to all federates by its global unique handle value. The state variables are
recalculated at each time step of the simulation time by the function UpDate(). In
the example, the HLA object F16 recalculates the new position of the airplane. The
updated values of the state variables are sent to the RTI environment by
SendUpDate() from where all subscribing applications can get them. When an HLA
update is received, the corresponding mirror object is updated, enabling the
application to receive the value whenever needed [7].

 129

5.2. A conceptual model of distributed simulation

A case study is done on an integrated simulation of an Air Traffic Control (ATC)
system. The distributed simulation system is created from a set of models that are
interconnected with each other. The proposed simulation system consists of several
federates: aircrafts, radars, viewer and analyzing tool. Fig. 8 presents a publish-
subscribe communication architecture that supports object-oriented updates to HLA
object instances. It shows the interactions between the model components needed to
work together to accomplish a communication task. Fig. 9 shows the viewer
federate. The viewer is developed to provide an integrated display environment. It
can act as a passive recipient and display simulation data from the rest of the
simulation system. The viewer uses databases to find geographic coordinates of the
static objects (airports, radars, etc.).

Fig. 8. Publish/Subscribe model

Fig. 9. Viewer federate

 130

6. Conclusion

The study presents an extended software architecture providing a mechanism for
HLA data exchange through OO objects. It facilitates the interoperability of all
types of models and simulations among them, as well as facilitating the reuse of
modelling and simulation components. The benefits of an object-oriented approach
to HLA simulation are numerous. The paper shows a sample code that implements
the architecture for OO HLA/RTI simulation.

The proposed architecture implements a mechanism for an object transfer that
can be summarized in the following steps:

1. Presentation of an HLA object instance as an object-oriented C++ object;
2. Coding the C++ class attributes into a network format (bytes) by a

serializing mechanism;
3. Sending the serializing object attributes through the RTI by an OO function;
4. Reconstruction of the object at receiving federation according to the

existing data models (mirror objects).

Acknowledgements: This work is partially supported by the project “AComIn: Advanced Computing
for Innovation” grant 316087 funded by the European Commission in FP7 Capacity (2012-2016).

R e f e r e n c e s

1. C h e n a, D., S. J. T u r n e r, W. C a i, M. X i o n g. A Decoupled Federate Architecture for High
Level Architecture-Based Distributed Simulation. – J. Parallel Distrib. Comput., Vol. 68,
2008, pp. 1487-1503.

2. IEEE, P 1516. Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) –
Framework and Rules. February 2000.

3. J o i n e s, J. A., S. D. R o b e r t s. An Introduction to Object-Oriented Simulation in C++. – In:
Proc. of the 1997 Winter Simulation Conference, S. Andradóttir, K. J. Healy, D. H. Withers,
and B. L. Nelson, Eds., 1997, pp. 78-85.

4. K i r o v, G., V. S t o y a n o v, B. L a z a r o v. Network-Centric Simulation of Complex
Transportation Systems Based on an Extended HLA Integration Architecture. – In: 13th
IFAC Symposium on Control in Transportation Systems CTS'2012, TUD COST Action
TU1102, 12-14 September 2012, Sofia, Bulgaria, pp. 391-397.

5. K i r o v, G., V. S t o y a n o v. Object-Oriented Architecture for Simulation of Complex
Interdependent Systems Based on HLA Standard. – In: 3rd International Conference on
Application of Information and Communication Technology and Statistcis in Economy and
Education (ICAICTSEE-2013), Sofia, Bulgaria, ISBN 978-954-644-586-5, pp. 279-289.

6. K u h l, F., R. W e a t h e r l y, J. D a h m a n n. Creating Computer Simulation Systems: An
Introduction to the High Level Architecture. Prentice Hall PTR, 1999, ISBN 0130225118.

7. M ö l l e r, B., F. A n t e l i u s. Object-Oriented HLA – Does One Size Fit All?. – In: Proc. of 2010
Spring Simulation Interoperability Workshop, 10S-SIW-058, Simulation Interoperability
Standards Organization, 2010.

8. Run-Time Infrastructure RTI 1.3-Next Generation Programmer’s Guide Version 3.2. Department
of Defense Modeling and Simulation Office, RTI 1.3NG-V3.2, 7 September 2000.

9. T o l k, A. HLA-OMT Versus Traditional Data and Object Modeling. – In: Command and Control
Research and Technology Symposium, Annapolis, Maryland, June, 2001.

