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Abstract: The local descriptors based on a binary pattern feature have state-of-the-
art distinctiveness. However, their high dimensionality resists them from matching 
faster and being used in a low-end device. In this paper we propose an efficient and 
feasible learning method to select discriminative binary patterns for constructing a 
compact local descriptor. In the selection, a searching tree with Branch&Bound is 
used instead of the exhaustive enumeration, in order to avoid tremendous 
computation in training. New local descriptors are constructed based on the 
selected patterns. The efficiency of selecting binary patterns has been confirmed by 
the evaluation of these new local descriptors’ performance in experiments of image 
matching and object recognition.  

Keywords: Selecting patterns, searching tree, local descriptor, matching, binary 
pattern.  

1. Introduction  

Local feature is widely used in many computer vision tasks, such as image retrieval 
[1, 2], object detection and recognition [3, 4], scene categories [4, 5] and action 
classification [6, 7]. The local feature is the first stage to get mid-level visual 
representation or high-level semantic description in most of the vision applications 
[1-7]. Plentiful applications drive the researches to propose a variety of local feature 
descriptors.  
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Among these presented descriptors, CS-LBP [8], MRRID [9], OC-LBP [4] 
have taken the limelight for their high distinctiveness, robustness to illumination 
and simple computation. These three local descriptors are all based on the 
histogram of a binary pattern feature on the given spatial pooling. The local 
descriptors CS-LBP and MRRID use CS-LBP histogram [8], and the local 
descriptor OC-LBP uses OC-LBP histogram [4]. These three descriptors have more 
discrimination than SIFT [10], however the higher dimensionality impedes them 
from matching faster and being used in a low-end device. 

 
Fig. 1. CS-LBP transformed image: (a) original image, (b) CS-LBP transformed image with 16 

patterns, (c) CS-LBP transformed image with 8 selected patterns 

In our work we find that some patterns contribute more distinctiveness to the 
image description, while some patterns contribute less. For example, Fig. 1 shows 
two CS-LBP transformed images with 16 patterns and 8 patterns having similar 
distinctiveness in appearance, though (c) has lost the information of 8 patterns. 
Accordingly, different patterns may contribute differential discrimination to the 
local descriptor. We aim to select discriminative patterns to construct a more 
compact local descriptor and discard less informative patterns in order to reduce the 
dimension of the local descriptors with low loss of distinctiveness. 

Many learning methods on local descriptors target at achieving a compact 
higher level feature, such as middle feature, image feature, leading to a different 
learned result in different vision scenes and tasks. Few learning is used to construct 
a local descriptor providing a low level feature. However, recently learning for 
constructing a local descriptor has received increased interest by the researchers. 
K e and S u k t h a n k a r [11] use Principal Components Analysis (PCA) to the 
normalized gradient patch to gain a more compact descriptor. C a i, 
M i k o l a j c z y k and M a t a s [12] propose Linear Discriminant Projections (LDP) 
for reducing the dimensionality of local descriptors. A large data set from multi-
image 3D reconstruction is introduced by B r o w n, H u a and W i n d e r [13], which 
makes possible the learning result to be suitable for universal application. LDB 
[14], RFD [15] and discriminative Learning of local image descriptors [13] are all 
trained on this large data set. The authors of [13] make use of Linear Discriminant 
Analysis (LDA) and Powell minimization to solve the problem of the parameters 
for gaining a more discriminative descriptor. LDB, RFD both use greedy learning 
techniques to select a salient bit for constructing a compact and distinctive binary 
descriptor. LDB uses a similar AdaBoost-based Bit Selection and RFD employs 
iterative optimization.  
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This paper’s contributions lie in: 1) we propose an efficient learning method to 
select discriminative binary patterns in a non-greed way; 2) we design a Loss 
function as a selecting criterion to evaluate the discrimination of the selected patterns 
in constructing a local descriptor. The efficiency of patterns selection is confirmed 
by evaluating the performance of the generated local descriptors based on the 
selected patterns in experiments of image matching and objects recognition.  

2. The method proposed 

The aim is to select a generic patterns subset for constructing a compact local 
descriptor. There are three problems to solve: the first one is to generalize the 
uniform flow for constructing a local descriptor based on a binary pattern; the 
second is to define a selecting criterion to decide which is the discriminative pattern 
for the local descriptor; the third is how to learn feasibly on a large data set to avoid 
a local optimum.  

2.1. Uniform flow for constructing a local descriptor 

In order to make patterns selection independent on descriptor construction, we 
generalize the uniform construction flow from CS-LBP, OC-LBP and MRRID, as 
shown in Fig. 2. Firstly, detect the region. These three descriptors can employ the 
same region detector. In this paper Hessian-Affine detector is used. Secondly, 
partition the region into several sub-regions. CS-LBP and OC-LBP use SIFT-like 
grid, MRRID uses intensity order pooling partition. Thirdly, compute the pattern 
occurrence histogram on each sub-region. CS-LBP and MRRID both use the center-
symmetric local binary pattern, while OC-LBP uses orthogonal combination of a 
local binary pattern. At the fourth and fifth steps, these three descriptors do the 
same thing: concatenating the histograms of each sub-region together and 
generating the final local descriptor. 

 

Fig. 2. The uniform flowchart for constructing a local descriptor 

2.2. Selecting criterion 

As well known, the recall versus 1-precision curve [16] is widely accepted as the 
evaluation criterion by many local descriptors, which assesses the performance of 
the local descriptor under different thresholds. In order to eliminate the influence of 
the different thresholds on the learning result, we evaluate the local descriptor using 
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its ROC area of the recall versus 1-precision curve between 80% and 95% 
precision, as shown in Fig. 3.  

 
Fig. 3. The recall versus 1-precision curves for two descriptors. Sp is the ROC area between 80% and 

95% precision of the descriptor below. S is the ROC area of the descriptor above 

Based on ROC area, a Loss function is designed to evaluate the discrimination 
loss of the descriptor based on the selected patterns subset, compared with the 
original descriptor. It is defined as (1) 
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where S is the ROC area of the original local descriptor between 80% and 95% 
precision (the area below the upper curve), and SP is the ROC area of the local 
descriptor based on the selected pattern subset P (the area below the lower curve); 
precisioni and recalli (i = 0, 1, …, n) are multiple precisions and recalls of the local 
descriptors generated on the candidate patterns set under different thresholds, 
PrecisionP

i  and recallP
i (i = 0, 1, n) are multiple precisions and recalls on the pattern 

subset P and n is the number of thresholds we used (n = 8 in our selecting process). 
The call and precision are computed in (2) by patches matching in a training set 
using the corresponding local descriptor, 

(2)   ,
matchesall#
matchesfalse#precision1;

encescorrespond#
matchescorrect#recall =−=  

where “#correspondences” is the ground truth number of matches in the training 
set; “#correct matches” is the number of correctly returned matches;  
“#false matches” represents the number of falsely returned matches; the total of  
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“#false matches” and “#correct matches” is “#all matches”. The ROC area is 
computed using the cubic Hermite interpolation of these precisions and recalls in 
the interval [0.8, 0.95] that 1-precision belongs to. 

The dimensionality of the local descriptor is determined by the number of 
patterns used in its construction. The most discriminative patterns are selected to 
construct a local descriptor with low dimension at minimum loss of distinctiveness. 
A Loss function is used as our selecting criterion. The smaller the Loss function is, 
the better the corresponding pattern subset is in selecting.  

2.3. Selecting with a searching tree 

The source of our training data comes from publicly available data sets (Liberty, 
Yosemite, and Notre Dame [13]). Each data set contains over 400K patches, 
sampled densely from 3D reconstruction scenes. In each data set, the ground truth 
data indicating the match and mismatch has been given. In preparing the training 
set, we randomly chose 50K pairs of matching patches and 200K pairs of non-
matching patches from Liberty and Notre Dame dataset as the training set. We use 
Yosemite as a testing data set. 

 
Fig. 4. Selecting with a searching tree 

In order to gain a stable and generic result, we use a non-greedy learning to 
select the optimum. However, the evaluation of the selecting criterion for all 
candidate subsets in exhaustive enumeration is a huge amount of work. For each 
candidate pattern subset, we must construct their corresponding descriptors for all 
the patches in the training data set and compare their Euclidean distance in pairs to 
decide the match or the mismatch, finally compute its loss function as (1) by the 
statistics of the match and the mismatch and the given ground truth data. To avoid 
exhaustive enumeration and local optimum, our selecting employs the selecting tree 
with Branch&Bound [17], as shown in Fig. 4.  

In this searching tree, the root represents the candidate pattern set before 
selecting and each node is the subset of patterns corresponding to a local descriptor 
based on this subset. The middle nodes represent the intermediate subset in 
selecting process and the leaves contain the final selected result. The node except 
the root is achieved by removing a pattern from its father node. The patterns 
number in the node is reduced successively with the tree level down. The depth of 
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the tree relates to the pattern number to be selected, which is determined by the 
requirement, such as memory store limitation. The rightmost successor has one 
branch, which is achieved by a greedy way. This means that each node in the 
rightmost branch (see  Fig. 4) has the least loss among the subsets enumeration that 
are achieved by removing a pattern from its father node respectively.  

We construct the asymmetric tree structure with sparser branches in the right, 
than in the left, as in the method given in [17]. Based on this tree structure, we try to 
position a good pattern subset node into the right sparse part of the tree. We need to 
order the nodes among their brothers according to their discrimination loss. In order 
to avoid a mass of heavy computation on the Loss function evaluation for each 
node, we utilize a simple prediction mechanism. We predict the Loss function of the 
subset using the distribution proportion of the corresponding discarded pattern from 
its father node, since the extensive experiments in [18, 19] have demonstrated that 
the pattern with a small proportion is inadequate to provide reliable and 
discriminative information. In this prediction mechanism, the nodes in the right part 
of the searching tree may likely provide a better selected result than in the left with 
high probability.  

Our searching path is a pre-ordered traversal from right to left, shown as a 
dashed line in Fig. 4. When the node is visited, we compute its Loss function and 
compare it with the bound: when the Loss function of the current node is lower than 
the bound, we continue to visit the next node in the order of the pre-order traversal; 
otherwise cut off its subtrees. An initial bound is set as the Loss function of the 
rightmost leaf. In the traversal, the bound would be updated by the lower Loss 
function of the visited leaf. The bound represents the currently least discrimination 
loss for the visited leaves, and its corresponding leaf is saved as the currently best 
pattern subset for the given pattern number to be selected. The bound is also used to 
cut off the subtrees of the node whose loss function is higher than the bound. We 
speed up the searching process by cutting off the bad subset. In order to avoid a 
discarding possible optimum in cutting off the subtrees, the monotonicity condition 
should be ensured: the loss function of the subset should not be lower than that of 
the set which contains this subset. In general, without disturbing of noise or 
blurring, the pattern feature always obeys the monotonicity condition. In our 
training set, most patches are high-quality, the patches disturbed by the blurring and 
noises are only minority. So the losses of the nodes satisfy the monotonicity in our 
selecting. 

Suppose that n is the pattern number to be selected and N is the total number 
of the candidate patterns. The above selecting is efficient when n is not less than 
N/2. When n is less than N/2, we deal with selecting in dichotomization: 

Step 1. Select the N/2 most discriminative patterns from N candidate patterns 
with the above selecting method. 

Step 2. If n is not less than N/4, then select n patterns from the N/2 most 
discriminative patterns selected at Step 1, else set the selecting n patterns from the 
N/2 most discriminative patterns as a new selecting problem and iterate the whole 
process.  
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2. 4. Selecting result  

Our learning is conducted three times: one is selecting from 16 patterns of CS-LBP 
based on a Cartesian grid (4×4); the second is selecting from 32 patterns of  
OC-LBP on a Cartesian grid (4×4); the third is selecting from 16 patterns of  
CS-LBP on intensity order pooling (4 partitions). 

From the first and the second learning based on the same partition, we gain 
two groups of selected subsets with different sizes. We compare the discrimination 
of these pattern subsets with different pattern number in serving to construct a local 
descriptor by evaluating their corresponding generated local descriptors on a test 
data set Yosemite, as shown in Fig. 5. The evaluation experiment demonstrates that 
CS-LBP provides better distinctive patterns than OC-LBP in constructing a local 
descriptor. Considering the balance of performance and dimension, CS-LBP 
patterns serve better in constructing a local descriptor than OC-LBP. 

 
Fig. 5. The call at 95% precision for different descriptors on the selected pattern subsets with different 

pattern numbers. Train: Liberty and Notre Dame (250k), Test: Yosemite (100k) 

For the first and the third selecting from the same pattern set on different 
partition, we gain the same subset. This demonstrates that our selected result is 
independent on the partition in local descriptor construction.  

3. Experiments 

In order to demonstrate that the selected result is discriminative and suitable for 
constructing a powerful local descriptor with lower dimension, we use the selected 
CS-LBP patterns and MRRID-like construction to generate the new local 
descriptors P4_MRRID and P8_MRRID. P4_MRRID uses 4 selected binary 
patterns; P8_MRRID uses 8 selected binary patterns; P4_MRRID and P8_MRRID 
are based on 4 partition sub-regions and 4 support regions. They both have lower 
dimension than their original descriptors. Their dimensions are denoted in the 
legend of Fig. 6, which is labelled behind the notation ‘_’. We compare the 
performance of these new local descriptors with the state-of-the-art local descriptors 
in experiments of image matching and image recognition. 
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3. 1. Matching on the Oxford data set 

The new generated descriptors based on the selected patterns are evaluated on a 
standard Oxford data set (http://www.robots.ox.ac.uk/~vgg/research/affine/), which 
contains images in different transformations: viewpoint change (“graf”, “wall”), 
scale change and image rotation (“boat”), image blur (“bike”, “tree”), illumination 
change (“leuven”), and JPEG compression (“ubc”). The evaluation criterion uses 
the call at 95% precision, where the call and the precision are defined as 2.2 (2). 

 

Fig. 6. Experimental results under various image transformations in the Oxford data set for Hessian-
Affine Region 

We compare the performance of the proposed descriptors with SIFT, original 
CS-LBP, original MRRID, original OC-LBP with Hessian-Affine regions, as shown 
in Fig. 6. P8_MRRID has similar performance to original MRRID, while it only has 
half of the dimensions of the latter. It surpasses SIFT, original CS-LBP and original 
OC-LBP with the same dimension or lower dimension. In some cases like “leuven”, 
“bike”, “ubc”, P4_MRRID has also shown pretty better distinctiveness than SIFT, 
original CS-LBP and original OC-LBP, though its dimension is much lower. This is 
mainly because of two reasons: 1) the generated local descriptor uses better 
construction than SIFT, CS-LBP and OC-LBP; 2) the selected pattern reserves most 
information of the original patterns.  

3. 2. Object recognition on the Kentucky data set  

There are 10199 images in the Kentucky data set on the website 
http://vis.uky.edu/~stewe/ukbench/data/, in groups of four that belong to the same 
object. One image of every group is queried as the test, and the measure is based on 
whether the other three images of its group are returned in the top three with the 
largest similarities. The recognition accuracy is defined as the ratio of the number 
of images returned in the top three correctly to the number of the total returned 
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images [10]. Suppose that I1 and I2 are two images in the data set, and  
{f1

1, f2
1,…, fm

1}, {f1
2, f2

2,…,fn
2} are two sets of local descriptors of the same type 

extracted from I1 and I2. The similarity of the two images is defined as (3): 
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and T is a threshold which is tuned to give the best result for each evaluated 
descriptor. 

The object recognition result is shown in Table 1. P8_MRRID is approaching 
the best performance of MRRID with half of its dimensions. This means that binary 
pattern selecting is efficient and the selected patterns are discriminative for 
constructing a local descriptor. P8_MRRID surpasses SIFT, OC-LBP and OC-LBP. 
P4_MRRID has comparable performance of SIFT, OC-LBP and OC-LBP with the 
least dimensions among them.  

Table 1. Object recognition results on the Kentucky data set 

Descriptor SIFT 
(128) 

MRRID 
(256) 

CS-LBP 
(256) 

OC-LBP 
(512) 

P8-mrrid 
(128) 

P4-mrrid 
(64) 

Recognition accuracy 48.2% 57.5% 49.1% 48.8% 57.0% 49.0% 

4. Conclusion 

In the paper we propose a feasible learning method to select a discriminative binary 
pattern in order to construct a compact local descriptor. We design a Loss function, 
using the area of the call versus 1-precision curves as the selecting criterion to gain 
a stable and distinctive result. In selecting, a simple prediction mechanism and 
Branch&Bound technology are employed to accommodate the tremendous 
computation in training on a large data set. The experiments in image matching and 
object recognition demonstrate that the selected pattern is distinctive in serving for 
constructing a local descriptor; the generated local descriptors are compact and have 
comparable performance to the original local descriptors, being with lower 
dimensionality than their competitors. 
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