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Abstract: In this paper a Distributed Adaptive Neuro-Fuzzy Architecture (DANFA) 
model with a second order Takagi-Sugeno inference mechanism is presented. The 
proposed approach is based on the simple idea to reduce the number of the fuzzy 
rules and the computational load, when modeling nonlinear systems. As a learning 
procedure for the designed structure a two-step gradient descent algorithm with a 
fixed learning rate is used. To demonstrate the potentials of the selected approach, 
simulation experiments with two benchmark chaotic time systems − Mackey-Glass 
and Rossler are studied. The results obtained show an accurate model performance 
with a minimal prediction error. 

Keywords: Distributed fuzzy neural network, fuzzy-neural models, nonlinear 
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1. Introduction 

Neural networks and fuzzy logic proved to be universal approximators, which can 
estimate any nonlinear function to a prescribed accuracy. For identification of the 
complex nonlinear processes, different kinds of neuro-fuzzy architectures are also 
used. These structures have an advantage over traditional statistical estimation and 
adaptive control approaches. They estimate a function without the need of a detailed  
mathematical description of the functional dependency between inputs and outputs. 
Combining the neural networks and fuzzy systems in one unified framework has 
become popular in the last few years. The fusion of both combines the learning and 
computational ability of neural networks with the human like IF-THEN thinking 
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and reasoning of a fuzzy system. This could be compared with the human brain [1] 
– the neural network concentrates on the structure of human brain, i.e., on the 
“hardware”, whereas the fuzzy logic system concentrates on the “software”. 

A lot of architectures have been proposed in literature that combine fuzzy 
logic and neural networks. Some of the most popular are ANFIS [6] and DENFIS 
[4]. They are all composed of a set of if-then rules. In principle, the number of 
fuzzy rules depends exponentially on the number of inputs and membership 
functions. If n is the number of inputs in a fuzzy-neural system and m is the number 
of the membership functions, then the number of the generated fuzzy rules is mn. 
Thus, the huge number of generated rules requires determination of a large number 
of parameters during the learning procedure. For instance, for a fuzzy inference 
system with 10 inputs, each one with two membership functions, the grid 
partitioning leads to 1024(=210) rules, which is an extremely large number of rules 
for any practical applications.  

In order to reduce the number of fuzzy rules without loss of accuracy, different 
fuzzy clustering approaches, such as fuzzy C-means [7, 8] and K-means [9] can be 
used. Besides, subtractive clustering and hyperplane clustering are proposed in [10, 
11]. Evolving fuzzy systems [4, 13], such as DENFIS, includes evolving clustering 
and dynamically forms bases of fuzzy rules generated during the past instance of 
the learning process. The new AnYa neuro-fuzzy structure also belongs to the 
evolving fuzzy systems. This architecture works with the so-called cloud instead of 
fuzzy sets. This removes the need for training of the membership functions 
parameters. However, apriori data is needed to form the clouds [2]. 

Another possibility to reduce the number of fuzzy rules gives the self-
constructing and self-organizing fuzzy-neural network structures [14, 15]. In this 
type of structures, during the training procedure, inactive rules are being removed, 
which consequently leads to reduction in the number of trained parameters. 

In order to deal with the rule-explosion problem, hierarchical fuzzy neural 
networks could be used, but they employ a very complex learning method [5]. A 
method that compresses a fuzzy system with an arbitrarily large number of rules 
into a smaller fuzzy system by removing the redundancy in the fuzzy rule base is 
presented in [3]. As a result of this compression, the number of on-line operations 
during the fuzzy inference process is significantly reduced without compromising 
the solution. A review of most of the existing rule base reduction methods for fuzzy 
systems, a summary of their attributes and an introduction of the advanced 
techniques for formal presentation of the fuzzy systems based on Boolean matrices 
and binary relations, which facilitate the overall management of complexity, are 
presented in [12].  

A simple method to reduce the number of the fuzzy rules is presented in the 
author’s previous works. In [16] the Semi Fuzzy Neural Network Model (SFNNM) 
is described in details, which has a small fuzzy rules base and also a reduced 
number of parameters (linear and nonlinear) that must be determined during the 
learning procedure. 

In this paper a Distributed Adaptive Neuro-Fuzzy Architecture (DANFA) with 
a reduced number of the fuzzy rules is proposed. The main idea of the designed 
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DANFA structure is to distribute the input space through different fuzzy neural 
structures. The learning procedure is based on a two-step gradient descent method, 
for scheduling of the rules premise and consequent parameters. The potentials of the 
presented approach are evaluated in simulation experiments with two common 
benchmark chaotic systems − Mackey-Glass and Rossler.  

2. Classical fuzzy neural network 

In this section the so-called Classical Fuzzy Neural Network (CFNN) with a 
second order Takagi-Sugeno inference mechanism is described. It is named so 
in order to distinguish it from the proposed in the next section DANFA model. The 
structure of CFNN model is shown in Fig. 1. 

Layer 1. This layer accepts the input variables and then the nodes in this layer 
only transmit the input values to the next layer directly. 

Layer 2. Each node in this layer does fuzzification via a Gaussian membership 
function: 
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where Xp are the input values, CXp,m and σXp,m are the center and the standard 
deviation of the Gaussian membership function.  

Layer 3. This layer is a kind of a rules generator for it forms the fuzzy logic 
rules. Their number depends on the number of inputs p and the number of their 
fuzzy sets m, and it is calculated according to the expression N = mp. In this layer, 
each node represents a fuzzy in the following form: 
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Layer 4. At the fourth layer an implication operation is realized: 
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Layer 5. At the fifth last layer the removal decision is made which consists of 
determining the value of the model output by the expression 
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Fig. 1. Structure of the CFNN 

3. DANFA model structure 

The structure of the proposed DANFA model with a second order Takagi-Sugeno 
inference mechanism is shown in Fig. 2. DANFA model is a modification of the 
CFNN model with a second order Takagi-Sugeno inference mechanism, described 
in the previous section. Actually, DANFA model is a network from p CFNNs. 
DANFA model is a six-layer architecture with Takagi-Sugeno inference 
mechanism. The main idea behind it is to distribute the input signals in order to 
separate the fuzzy neural structures as can be seen in Fig. 2. In this way a network 
of neural fuzzy structures is obtained. Each of these neural-fuzzy structures acts as a 
separate sub-model and the global DANFA model is a set of p on the number of the 
sub-model. The output signal of a global DANFA model is computed as a sum of 
the output signals of the p CFNN models, which are obtained by using the equations 
(1)-(5). Thus, the global DANFA model output parameter is calculated by the 
following expression: 
(6)   ),(ˆ)(ˆ)(ˆ)(ˆ 21 jkyjkyjkyjky MpMMM ++++++=+ K  
where ŷMr for r = 1/p is obtained as follows: 

(7)   .
)(

)()(
)(ˆ

1

)(

1

)()(

∑

∑

=

=

+

++
=+ q

i

i
r

q

i

i
r

i
r

Mr

jk

jkjkf
jky

μ

μ

 

In this paper it is chosen to construct the global DANFA model from two sub-
models, i.e., the global DANFA model represents a network from two CFNNs. This 
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The main advantage of DANFA is that it operates with a small number of rules 
and has respectively a smaller number of parameters for learning. The formula for 
calculating the number of rules in DANFA model is N= pnm, where p is the number 
of used CFNNs, n is the number of input variables, m is their fuzzy set. It is clear, 
that if one wants to realize a NARX model with 4 inputs and 3 fuzzy sets, then the 
CFNN model needs 81 fuzzy rules, while the DANFA model needs only 18 fuzzy 
rules. Also, during the learning procedure in CFNN model the values of 1053 
parameters are computed, while in DANFA model the values of only 156 
parameters are computed. 

The learning algorithm for DANFA model is very simple. It is based on 
minimization of the instant error measurement function between the real plant 
output and the process output, calculated by the DANFA model 
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where y(k) denotes the measured real plant output and ŷ(k) is the sum of the 
calculated by the two fuzzy neural networks output parameters ŷM1 and ŷM2. The 
algorithm performs a two-steps gradient learning procedure. Assuming that βuij is an 
adjustable i-th coefficient for Sugeno function fu into j-th activated rule for CFNN1, 
then the general parameter learning rule for the consequent parameters is 
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After calculating the partial derivatives, the final recurrent predictions for each 
adjustable coefficient βuij and the free coefficient are obtained by the following 
equations: 
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The output error E can be used back directly to the input layer, where the 

premise adjustable parameters are available (center − cij and the deviation − σij of a 
Gaussian fuzzy set). The error E is propagated through the links composed by the 
corresponding membership degrees, where the link weights are units. Hence, the 
learning rule for the second group of adjustable parameters in the input layer can be 
expressed by the same learning rule: 
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To obtain the parameters for CFNN2, similar formulas are used, namely: 
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4. Simulation results 

Two benchmark chaotic systems (Mackey-Glass and Rossler chaotic time series) 
are chosen to demonstrate the ability of the proposed DANFA model. The series 
will not converge or diverge, and the trajectory is highly sensitive to initial 
conditions. The learning rate η has a fixed value of 0.04 for each of the two fuzzy 
neural networks. 

Mackey-Glass (MG) chaotic time series is described by the time-delay 
differential equation: 
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where a = 0.2, b = 0.1, c = 10; the initial conditions are x(0) = 0.1 and s = 17 s.  

 
Fig. 4. Model validation by using Mackey-Glass chaotic time series  

Results on model validation by using Mackey-Glass chaotic time series are 
shown in Fig. 4. As it can be seen, the proposed model structure predicts accurately 
the generated time series, with a minimum prediction error and fast transient 
response of the RMSE, reaching a value closer to zero. The value of the MSE in the 
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50-th time step is 0.045. For the sake of clarity the model errors, MSE and RMSE 
are presented in logarithmic scale. 

Another test of the DANFA model proposed is made with the help of Rossler 
chaotic time series. These series are described by three coupled first-order 
differential equations: 
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where a = 0.2, b = 0.4, c=5.7; initial conditions are x0 = 0.1, y0 = 0.1, z0 = 0.1. The 
results are given in Fig. 4. 
 

 
Fig. 5. Model validation by using Rossler chaotic time series 

 
For clarity, the results obtained with CFNN are not represented in Figs 4  

and 5. Comparison between CFNN and DANFA models is still made and it is 
shown in Table 1 below. The results in Table 1 are for Mackey-Glass chaotic time 
series prediction. As it can be seen, the absolute value of the current prediction error 
(Pred_err in Table 1) obtained with DANFA model is smaller than this obtained 
with CFNN model. The greater accuracy of DANFA model can be easily explained. 
In (3) the free parameter b0 plays the role of a disturbance filter. This can easily be 
proved if (3) is transformed into the following form: 
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This conversion is valid in T(q−1) = 1. In (25) d(k) is unknown disturbance that 
is defined by 

(26) ).(
)(
)()( 1

1

k
q
qTkd υ−

−

Δ
=  

Thus, the CFNN model works with one disturbance filter, while DANFA 
model has two filters (see (9) and (11)) and this is the reason the latter to be more 
accurate. 

Table 1.  Comparison between CFNN and DANFA model 
Steps DANFA model CFNN model 

Pred_err MSE RMSE Pred_err MSE RMSE 
50 –0.019613 0.053553 0.23141 –0.04702 0.0091595 0.095705 
100 –0.067288 0.027756 0.1659 –0.15122 0.0077459 0.088011 
150 –0.01297 0.01893 0.13759 –0.051306 0.0079593 0.089513 
200 –0.058875 0.014637 0.12098 –0.12744 0.077992 0.088313 
250 –0.02409 0.012033 0.1097 –0.051261 0.0077583 0.088081 
300 -0.04841 0.010343 0.10156 –0.12544 0.0079122 0.08895 
350 –0.039738 0.0090874 0.095328 –0.10179 0.0077017 0.087759 
400 –0.045243 0.0081819 0.090454 –0.11864 0.007838 0.088471 
450 –0.03445 0.0074437 0.086277 –0.095164 0.007659 0.087516 
500 –0.040763 0.0068844 0.082973 –0.11223 0.007769 0.088143 

5. Conclusions 

In this paper the architecture and learning procedure of DANFA model are 
presented. The proposed model is a modification of CFNN model with a second 
order Takagi-Sugeno inference mechanism and it has all its features. The main idea 
in DANFA is to distribute the inputs and thus to reduce the number of the used 
fuzzy rules. Two benchmark chaotic systems (Mackey-Glass and Rossler chaotic 
time series) are chosen to demonstrate the ability of this model. The proposed 
DANFA model predicts accurately the generated time series, with a minimal 
prediction error and fast transient response of RMSE, reaching values closer to 
zero. The main advantage of DANFA is that it operates by a small number of rules 
and has respectively a smaller number of parameters for learning. Thus, it carries 
out the modelling of nonlinear systems with considerably less calculation in 
comparison with the CFNN model. Moreover, DANFA has other advantages − it is 
more accurate than CFNN model and it does not require any apriori data and is not 
bounded by additional procedures, such as clustering. This makes it suitable for real 
time applications, such as predictive controllers. 
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