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Abstract: This paper has designed a variable structure controller based on the 
nominal compensation of neural networks. The neural network input is the desired 
trajectory, which eliminates the strict assumptions of the control inputs in 
conventional neural networks. It also ensures the asymptotic stability of the system 
closed-loop global exponentials to introduce model compensation and continuous 
variable structure control rate. By means of Lyapunov stability theory, it is 
analyzed and researched how to guarantee good transient performance of the 
control system comprehensively and thoroughly. The theoretic analysis and 
simulation results demonstrate the efficiency of the method proposed. 
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1. Introduction  

As intelligent control theory has been paid more and more attention in control 
fields, many scholars have applied it to uncertainty robot system control. The fuzzy 
control has better reasoning ability. For example, in [1] a class of robust control 
strategy based on fuzzy control is designed. It mainly uses the reasoning ability of 
fuzzy control to determine the limits of uncertainty parts. The conventional control 
strategy is dependent on the model, while the neural networks have good nonlinear 
function approximation ability, which can be used in a robot system control to 
achieve a better control effect. The self-adaptation control method of neural 
networks provides a new way to study complex nonlinear control problems. 
Moreover, self-adaptation control of an uncertain nonlinear system based on neural 
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networks has become one of the hot topics in the study of control theory, and many 
research results have been made [2-5]. 

The authors present in [6] a typical robot control method based on a neural 
network, which integrates the neural network method and the variable structure 
control to develop a new control strategy. It uses the neural network method to 
approach the unknown nonlinear model of the system, and makes use of the 
variable structure control to compensate the approximation error of the model that 
guarantees the robustness of the system. 

In [7, 8] the authors adopt GGAP-RBF (growing and pruning RBF) algorithm 
based on the concepts of neuron sensitivity and winning neurons to ensure the 
structure and initial parameters of the neural networks online. Because every time it 
is only needed to adjust the parameters of the near neuron, the amount of 
calculation is greatly reduced, so that the speed is improved. The number of hidden 
layer neurons starts from a scratch; the algorithm has the standards of increasing 
and deleting nodes; therefore, it can obtain a more compact network structure. 

H o r n g  and  H s i s e h [9] utilize CMAC to gain from the uncertainty parts of 
a control system to realize stable and efficient control of the closed loop control 
system. However, this kind of control strategy requires the assumption, that the 
state of the system is bounded, and the neural network with the adaptive control 
method only learns the network weights online; there is nothing it can do for the 
model approximation error and the existing unavoidable nonlinear external 
interferences in the system. In [10] the NDOFEL method for time-varying nonlinear 
systems with unknown interference is proposed, combining the nonlinear 
disturbance observer and the neural network strategy based on FEL. It improves the 
tracking precision and solves the problem that the observation error cannot 
converge to zero when ( ) 0d t ≠& . Reference [11] presents a neural network 
disturbance observer method for a class of multi-input and multi-output system. The 
authors in [12, 13] make use of the variable structure control items to compensate 
the model approximation errors and external disturbances. But it cannot guarantee 
the transient performance of the system well, and the existence of discontinuous 
terms in the control algorithm will cause a chattering phenomenon of the system. 

Aiming at the shortage that conventional robust control methods can keep the 
system stable, but do not guarantee a good transient performance, the paper 
suggests in the model compensation to design a variable structure controller based 
on neural network nominal compensation. And through Lyapunov method it 
improves the update rate of the traditional network weights appropriately to make 
the practical motion trajectory of the robot system track the desired trajectory 
rapidly according to the index law; and the trajectory tracking errors are uniformly 
bounded ultimately. In this process the system not only ensures good dynamic 
performance, but it can also still be robust in the presence of external disturbances. 
At the same time, based on Lyapunov stability theory, the research results of this 
paper are proved rigorously and theoretically. The contrast of the simulation 
experiments verifies the advanced and efficient nature of the control strategy. The 
control strategy proposed can be used as an important reference for similar complex 
nonlinear mechanical system control. 
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2. Model compensation 

The mathematical model of robots is usually described by the following equation 
(1)   ( )( ) ( , ) ( ) ( , ) .M q q C q q q G q F q q d t τ+ + + + =&& & & &  

In that equation , , nq q q R∈& && are respectively expressed as the joint position vector, 

velocity vector and acceleration vector; ( ) n nM q R ×∈  is the inertia matrix of the 

robot arms; ( ), n nC q q R ×∈&  denotes Coriolis force or Centrifugal force matrix of 

the robot arm; ( ) nG q R∈  is the gravity item of the robot; ( )d t  is the external 

random disturbance; ( ), nF q q R∈&  expresses the friction item. The nonlinear 

friction ( ),F q v&  can be indicated as ( ) ( )s d, ,F q q F q F q= +& &  where s d, ( )F F q  
are respectively shown as an unknown static friction item and an dynamic friction 
item. 

The definition of the nominal model of the system is as follows: 
(2)   ( ) ( , ) ( ) ( , ) ,d d d d d d d d dM q q C q q q G q F q q τ+ + + =&& & & &  

where n
ddd Rqqq ∈&&& ,,  are respectively expressed as an expectation joint position 

vector, velocity vector and acceleration vector. We assume that the boundary of 
)(td , the unstructured random disturbance is known, and   (  ) Md d tt R+≤ ∀ ∈ . 

Control objective: Define the target trajectory as , , n
d d dq q q R∈&& &  and dq  are 

second derivatives sectionally continuous. The control objective of this paper is to 
look for a control strategy τ  to make the actual motion trajectory track the target 
trajectory. Meanwhile, ensure that e&  and e  are exponential asymptotic or 
exponential bounded stability in the global scope. 

We will design a variable structure controller based on a special sliding model. 
Define the model compensation as:  

(3)   
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The expected response of the sliding mode process can be ensured by means of 
the proper selection of matrix ( ), , ,z z z zA B C D . 

We set 
(4)         , ( ) .z r r d zr e y q q q q t y= + = − = −& & & & &  

Thus we can get the relationship between r and e : 
(5)   ( )1 , r se G r−=  

where  
( ) ( ) ,r n zG s sI G s= +   

( ) ( ) 1 .z z nz z z zG s C sI A B D−= − +  
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Formula (5) is described by state spaces as 
(6)   ,    ,r r r rr r rx A x B r y C x== +&  

where 
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⎣ ⎦⎣ ⎦
 

According to (5), in the sliding mode, the response of the system is controlled 
by ( )1

rG s− . As long as ( )1
rG s−  is stable, the sliding mode of the system will be 

stable. ( )1
rG s−  can be designed through the selection of ( )rG s  properly, that is, 

reach the expected dynamic responses in the sliding mode by selecting appropriate 
model compensation. The sliding mode can converge at an arbitrary exponential 
rate. 

The above mentioned is equivalent to the state in the state space, i.e., 
according to (6) and Lyapunov stability theory, for any given positive definite 
matrix Q, there is only one real symmetric positive definite matrix P to satisfy the 
following Lyapunov equation: 
(7)   T .r rA P PA Q+ = −  

Then, through a proper design providing that the poles of rA  are in the left 

plane and are away from y  axis, we can randomly design 
( )
( )

min

min

Q
P

λ
λ

. So we can get 

the arbitrary exponential convergence speed. 
Placing (2) and (4) into (1), we get: 

(8)   ( ) ( ) ( ) ( ), , ,r dM q r C q q r w s x d t τ τ+ + Δ + = −& &   

where 
( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
, , ,

, , .

r r d d r d d d

q d d

w r x M q q M q q C q q q C q q q

G q G q F q q F q q

Δ = − + − +

+ − + −

&& && & & & &

& &
 

By the results in [14] we know the following equation: 
(9)   ( ) 2

1 2 3 4, .r r r rw r x x r r x xγ γ γ γΔ ≤ + + +  

3. Design of the controler 

The ideology for a nominal model ( )d f xτ =  is also similar to that in [15]. Using 
the linear parametric network RBF, the local generalization network, to approach it 
in order to greatly accelerate the speed of learning.for the nonlinear model. 
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The input vector of the network is ( ), ,d d dx q q q= & && . The radial basis function 

( )xφ  is a Gaussian function, namely, 

2

2exp j
j

j

x c
φ

σ

⎛ ⎞−⎜ ⎟= −
⎜ ⎟
⎝ ⎠

, in which jc  is the 

width of the odd function. 
Based on the function approximation ability of RBF networks, we assume that: 

for any arbitrarily small positive Mε , the largest weight vector θ ∗  can be always 
found, and thus to approach the approximation error 
( ) ( ) ( )T .Mt x f xε θ φ ε∗= − <  The optimal weights are bounded, i.e., there is a 

positive constant λ  satisfying θ λ∗ ≤ . 
Then the neural network approximation of the system nominal model can be 

expressed as ( )Tˆˆ , ,d d d dq q qτ θ φ= & && ; ˆdτ  is the estimation output of networks; 

( )1
ˆ ˆ ˆ, , nθ θ θ= L  is the estimation weight coefficient matrix; ( ), ,d d dq q qφ & &&  is the 

multi-variable function vector and it could be written as  
(10)   ( ) ( )T , , .d d d dq q q tτ θ φ ε∗= +& &&  

The input of the neural network is the desired trajectory, which is generally 
definite and bounded. Thus the routine bounded assumption of the input in neural 
networks is eliminated. 

Then the control rate design of uncertain robot system is as follows: 

(11)   
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where θ̂  is the estimated value of θ ; Kr and Kx are gain matrices, and Kx = PBx;  

5r  is the undetermined coefficient; τ ′  is the smooth variable structure compensator 
in order to remove the network approximation error and external disturbances; 

;d M MK dε= +  Kτ  is an arbitrary positive definite matrix; 1
2

d

d

r
c

ϕ
ε ϕ
−

= ; 1ε  and 

2ε  are arbitrary positives; ( )tϕ  is a bounded positive function, at that 

( ) max0 tϕ ϕ≤ ≤ . 
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Note that the above variable structure control part τ ′  is similar to the idea in 
[14]. Introducing the boundary layer ( )tϕ  near to the sliding mode { }0r =  
makes the variable structure control rate continuous that efficiently avoids the 
chattering problem of the system. 

The weight adaptive rate is 
( )ˆ ˆ, , q ,d d dq q r Wθ φ θ= −Γ −Γ&&&  

where: 

(12)   

( )
( ) ( )
( )

( ) ( )
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⎪

Γ − −⎪
Γ −⎪

= − = ⎨
⎪

−⎪
⎪
⎪ Γ − Γ − ≥ +
⎩

≤ +

 

both Γ  and 'Γ  are positive definite matrices which are known apriori; aθ  is a 

nominal amount; δ  is a given positive value; ρ  and 4ε  are arbitrary positives. 
Theorem 1. For the robot system described in (1), satisfying the assumption 

conditions, using the control rate shown in (11) and the weight adaptive rate of the 
neural networks shown in (12) makes the whole robot system meet the state that the 
global exponential is of an asymptotic consistency and bounded stability. 

P r o o f: Define Lyapunov function as 

(13)   ( )T T T 11 1 1 .
2 2 2r rV r M q r x Px θ θ−= + + Γ% %     

The results are: 

(14)   
( ) ( )

( ) ( )

22 2 1
1 min min

22 2 1
2 max max

1 1 1
2 2 2

1 1 1 .
2 2 2

r

r

k r P x V

k r P x

λ λ θ

λ λ θ

−

−

+ + Γ ≤ ≤

≤ + + Γ

%

%
 

Take the derivative of (13) and put it into (8).Then we get 

( ) ( )T T

T T 1

1,
2

.

d r r r

r r

V r w r x d t x Qx

x PB r

τ τ

θ θ−

= − −Δ − − +⎡ ⎤⎣ ⎦

+ + Γ

&

&% %
 

Substitute it into (10) and the control rate (11); by x rK PB= we can get 
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( ) ( ) ( ) ( )2T
5

T T 1

, , , '

1 ,
2

d d d r r r

r r

V r q q q K r w r x x r t d t

x Qx

θφ γ τ ε

θ θ−

⎡ ⎤= − − Δ − + − − −⎣ ⎦

− + Γ

%& & &&

&% %
 

where ˆθ θ θ ∗= −%  expresses the estimation error of the optimal weight vector. 
Substituting into the weight adaptive rate equation (12) we get 

( ) ( ) ( )

( ) ( )
1

2T
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On the basis of the inequation 1 2 3 ,a b a bβ β β≤ +  where 
2

1 2 3 1 2 3, , , , 0, 4  ,  a b R β β β β β β∀ ∈ ≥ =  then 

( ) ( )
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− − + − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
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%

 

where 2 2 2
6 7 1 8 9 3 10 11 4

1 1 1, .
4 4

     ,  
4

γ γ γ γ γ γ γ γ γ= = =  

Set 5, ,rK Q γ  appropriately and make it satisfy the following equations: 

(15)   

( )
( ) ( )

min 3 6 2 9

min 3 7 11

5 8 10

+ ,

2 ,
,

rK

Q

λ ε γ γ γ

λ ε γ γ
γ γ γ

≥ + +

≥ + +

≥ +

  

where 3ε  is an arbitrary positive. 

For ( ) ( )T ' ,r t d tτ ε− −⎡ ⎤⎣ ⎦  when ( )21 ,dr ε ϕ≥ +  then 

( ) ( ) ( )T ' + 0.d M Mr t d t K r d rτ ε ε− − ≤ − + =⎡ ⎤⎣ ⎦  When ( )21 dr ε ϕ≤ + , then 
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( ) ( ) T
2 21 1 , ' 0.d d d tK r K rε ϕ ε ϕ τ≤ + ≤ + ≤  Thus we get: 

(16)   
( ) ( ) ( )

( ) ( )

T T

T
2

' + '

' 1 .
M M

d

r t d t d r r

K r r t

τ ε ε τ

τ ε ϕ

− − ≤ + =⎡ ⎤⎣ ⎦
= + ≤ +

 

For T ˆ,Wθ θ%  put into W we get: 

(17)   
2T

1 2
ˆ ,W k kθ θ θ≥ −% %  

where ( ) ( ) ( )( )
2 2

22
1 min 2 4' ' , max , ' 2 ,

4 '
k k ρ δρ ρ λ ρ ρ δ ε

ρ
⎧ ⎫

= − Γ = − +⎨ ⎬
⎩ ⎭

 in which 

'ρ  is a constant, and satisfies  the condition 0 'ρ ρ＜ ＜ . 
The integrated formulas (15), (16) and (17) are shown. 

( ) ( ) ( )
22 2

3 1 2 21 .rV r x k k tε θ ε ϕ≤ − + − + + +%&  

Summing up the above, we get 
(18)   ( )2 2 max+ 1 ,V V kμ ε ϕ≤ − + +⎡ ⎤⎣ ⎦&   

where 
( )
( ) ( )( )

3 1
1

2 max max

2min ,
.

max ,
k

k P
ε

μ
λ λ −

=
Γ

 

Thus 

(19)   ( ) ( ) ( )2 2 max+ 1
0 1 .t tk

V e V eμ με ϕ
μ

− −+
≤ + −  

Based on Lyapunov stability theory, we know that the whole closed-loop 
control system is stable, at the same time, the trajectory tracking errors are a 
uniformly bounded convergent, and by the exponential convergence stability 
theorem, we also know that the system meets the exponential convergence. Finally  
the theorem is proved. ■ 

The controller structure is shown in Fig. 1. 
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Fig. 1. A nominal compensation control system structure for a robot based on a neural network 
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4. Simulation and analysis 

In order to verify the efficiency of this control algorithm, we carry on the simulation 
of the two-degrees of a freedom mechanical arm system [16, 17]. The math model 
diagram is shown in Fig. 2. 
 

 

Fig. 2. Sketch map of a 2-degree-of-freedom robot 

In Fig. 2 1l , 1m  and 1q  respectively denote the length, quality and 

corresponding angle of the robot connecting rod 1; l2, 2m  and 2q  are respectively 
the length, quality and corresponding angle of the robot connecting rod 2. All the 
above parameters cannot be measured accurately and are uncertain. 

In the process of simulation, set [ ] TT
21 12 , .q qq τ τ τ⎡ ⎤= = ⎣ ⎦  

The upper limits of the robot dynamic friction force and the static friction 
force are respectively: 

T T
s d(0.05 0.05) , (0.05 0.05) , 0.02.γ γ ε= = =  

The interference signal of the robots is ( ) [ ]  nsin  sid t t t= . 

For the mode of compensation 2zn = ; 0zA I= ; zB I= ; 
200zC I= ; 20zD I= . The original state is 0. Taking diag[1000,100],Q =  by (7) 

we can get P. 
The position instructions of two joints are respectively ( )1 0.5cosdq tπ=  and 

( )2 0.5sindq tπ= . The input of the neural network is the desired trajectory; the 

initial weight value is set to 0, and the state of the system is T
1 1 2 2  [ ]x q q q q= & & ; the 

initial state is T[0 0.2 0.2      5 0.1] .−  
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The response control parameters are set to: diag[10, 6],rF =  

[120,1250; 12,125],xF =  5 50,γ =  ,d M MK dε= +  diag[60, 8],Kτ =  

( )diag 20, 20 ,Γ =  ( )' diag 0.12, 0.13 ,Γ =  1 1,ε =  2 0.5,ε =  max 10.ϕ =  
The simulation results can be obtained as follows.  

 
Fig. 3. Tracking curves of two links using this controller 

 

  
Fig. 4. Tracking curves of two links using adaptive control methods 

 

 
Fig. 5. Control input of both joints 
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Based on Figs 3 and 4 we can see that under the circumstance that there is a 
nonlinear friction, external disturbance and unclear dynamic model items in the 
robot system, using a robust adaptive controller, based on the desired trajectory 
compensation can guarantee the actual trajectory track the desired trajectory faster 
and more efficiently. At the same time it ensures the system stability compared to a 
robust adaptive controller [18].The system has strong robustness. Fig. 5 shows the 
introduction of the continuous control rate, that efficiently avoids the chattering 
problem in the traditional variable structure control. 

5. Conclusion 

This paper studies a kind of a robust adaptive control method based on neural 
networks for robots. It does not need off-line calculation of the linear regression 
matrix of the system. Neural networks are used to identify the nominal model of the 
robot. The input signals of the neural networks are the desired trajectories of each 
joint, and the desired trajectories are determined and bounded, which eliminates the 
strict assumption of the control input in conventional neural networks. Besides, 
model compensation and a variable structure control rate are introduced to ensure 
the global exponentially asymptotic stability of the closed-loop system. It 
guarantees good transient performance and efficiently eliminates the chattering of 
the control moments. At the end, the simulation results show that the algorithm has 
very strong robustness and applicability. 
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