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Abstract: Many immunization strategies have been proposed to control the 
epidemic spreading which mainly focus on how to immunize the nodes. A novel and 
efficient strategy to control the traffic driven epidemic spreading in weighted 
networks is proposed in this paper. By immunizing the edges according to different 
weights, our control strategies cannot only reduce the epidemic spreading velocity 
and enhance the critical epidemic threshold, but also maintain the integrity of the 
weighted networks. Simulations show that the control strategy by immunizing edges 
according to the product of the strengths of two nodes of the edge proved to be 
more efficient. 
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1. Introduction 

Outbreaks of large-scale international diseases, such as SARS, H1N1 and H5H1, 
have caused dramatically increasing attention in recent years. These disease 
outbreaks in real systems can be viewed as epidemic spreading on complex 
networks, the nodes representing individuals and the edges denoting the possible 
relationships between them. The study on complex networks has shed light on the 
exploration of the epidemic spreading, taking place in the network. A lot of models 
have been proposed to investigate the epidemic spreading in real world networks, 
based on the assumption, that the nodes are classified in three states: susceptible 
(which will not infect others, but may be infected), infected (which is infective) and 
recovered (which have recovered from the disease and will not be infected). The SI 
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[1-3], SIS [4-6], and SIR [7-9] models are proposed based on the discrete states of 
the nodes. These models assume that a susceptible node will be infected by an 
infected one during one time step with probability ν, while in SIS model and SIR 
model the infected nodes will be recovered with rate ψ at the same time. Hence, the 
efficient spreading rate λ is defined as λ=ν/ψ. Without lack of generality, we always 
set ψ = 1, since it only affects the definition of the time scale. Based on these 
models, a great deal of immunization strategies have been proposed [10-13] to 
control the epidemic spreading in real world networks, such as random 
immunization [10], targeted immunization [11], and acquaintance immunization 
[12]. 

These theoretical models are largely based on the hypothesis that the spreading 
is driven by reaction processes, in the sense that the transmission occurs from every 
infected node through all its neighbors at each time step. However, in some real 
world networks, lots of networks are found the nodes of which only interact with 
some of their neighbors. For instance, Internet connection at a given time depends 
on the specific traffic and routing protocols. Also in some other real world 
networks, the epidemic spreading will not occur, unless there is at least one packet 
interaction in the network, which can physically transfer the epidemic from one 
node to another even when there is an edge, linking two neighbor nodes. The 
epidemic spreading mainly depends on the traffic flow. A novel approach, called 
traffic driven epidemic spreading, is introduced to investigate the dynamic process 
[14-16]. 

The previous studies on networks have been mainly focused on the not 
weighted network, where the edges between nodes are either present or not. 
However, lots of real world networks proved to be specified not only by topology, 
but also by the edge weight, such as the scientific collaboration networks [17], the 
world-wide airport network [18], and Internet [19]. How the traffic-driven epidemic 
spreads in weighted networks deserves a further study. The aforementioned 
strategies focus on immunizing nodes to control the epidemic spreading which often 
isolates the nodes from the networks and breaks the integrity. In this paper we 
propose a new control strategy which can maintain the integrity by immunizing 
some specified edges to control the traffic driven epidemic spreading in weighted 
networks. 

This paper is organized as follows. In Section 2 we describe the traffic driven 
epidemics spreading models and our control strategies, followed by experimental 
simulations and analysis in Section 3. Conclusions are proposed in Section 4. 

2. Models 

2.1. Network model 

The BBV weighted networks can be described by a weighted adjacency matrix W, 
whose elements wij denote the weight of the edge between node i and j. The 
generation of BBV weighted networks is based on the following two coupled 
mechanisms [18, 20]: 
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(i) Growth. Starting from an initial seed of N0 nodes fully connected by edges 
with assigned weight w0, a new node is added at each time step. The new node will 
be connected to m different previously existing nodes with equal weight w0 for 
every edge, choosing preferentially the nodes according to the probability 

,∑∏
→

=
l

li
in

ss  where si is the node strength, described as .∑=
j

iji ws  

(ii) Weight dynamics. The weight of each new edge is initially set to a given 
value w0. But the creation of the edge connecting to node i will introduce variations 
of the weight of the other edges linked to node i, which is set to be proportional to 
the edge weights. If the total increase is δ (δi = δ for simplicity), we can get 
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2.2. Traffic driven epidemic spreading model 

The traffic driven epidemic spreading model can be described as given below, with 
the assumption that each node has unbounded packet delivery capability: 

(i) all the nodes can create packets; receive packets, and forward packets; 
(ii) a packet is generated at every node with probability β, with randomly 

selected sources and destinations; and all the packets are forwarded one step toward 
their destinations according to the weighted shortest path routing strategy [17, 21] at 
the same time; 

(iii) a packet is removed from the network when it reaches its destination; 
(iv) a susceptible node has a probability λ of becoming infected every time it 

receives a packet from an infected neighbour. (in SIR model the probability λ is the 
efficient spreading rate while the recovering rate is fixed to 1). 

We also take advantage of the weighted betweenness bwi to estimate the 
possible packets passing through node i. The weighted betweenness of node i, bwi, is 
defined as 
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),,( tisσ  is the number of the weighted shortest paths between nodes s and t, that 
pass through node i and ),( tsσ  is the total number of weighted shortest paths 
between node s and t. 

When investigating the dynamical behaviours at the very early stage of the 
epidemic outbreaks, SI model is used, where the infected nodes remain always 
infective and spread the infection to susceptible neighbors with spreading rate λ. 
With the average density of infected nodes of degree k, defined as ik(t) and sk(t) for 
susceptible nodes, in BBV weighted networks we have 
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The right-hand side of the second formula in (3) takes into account the 
probability that a node with k neighbours belongs to the susceptible class sk(t) and 
gets the infection via packets travelling from infected nodes. The latter is 
determined by the spreading probability λ, the number of packets that a node of 
degree k receives at each time step βnbwk (n is the total node number), and the 
probability )(tΘ  that a packet travels through an edge linking to an infected node is  
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According to the definition of sk(t) and ik(t), we have sk(t) + ik(t)=1. With the 
initial condition 00)( iti t == , we obtain the average density of infected nodes i(t): 
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When it turns to the SIR model, which is often used where the infected nodes 
get recovered and will not return to the susceptible state again, the nodes run 
stochastically through the cycle susceptible → infected → recovered. With the 
efficient spreading rate, defined as λ (ψ = 1), we have 
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rk(t) means the average density of the recovered nodes of degree k. 
By imposing dik(t)/dt=0 and sk(t)+ik(t)+rk(t)=1, we can obtain the epidemic 

threshold of the traffic driven SIR epidemic model: 
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The epidemic will outbreak when the spreading rate λ>λc. 

2.3. Control strategy 

We give our control strategies as follows: 
(i) Define the weight of the edge linking two nodes i and j, Wij, in a different 

way according to the different control strategies, as shown in Table 1. 
(ii) Sort the edges by their definition weights Wij in a decreasing order and 

immunize the edge ranked first. If immunizing an edge will cause some nodes to be 
isolated from the network, we will not immunize it and will deal with the edge 
ranked next. 

(iii) Recalculate the definition weight Wij and repeat step (ii) until a fraction fe 
of the edges is immunized. 
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Table 1. The definition weight Wij of different control strategies 
Control 
strategy DOW DDP DSP 

Wij wij kikj sisj 

We utilize the RAN immunization strategy, which randomly immunizes edges, 
to check the validity of our immunization strategies. 

There must be at least n − 1 edges to maintain the integrity of the network. 
Therefore, fe=1 means that about nm − n+1 edges are immunized. 

3. Simulations and analysis 

At first, we test the validity of our control strategies on SI model by checking the 
average density of the infected nodes, using BBV weighted networks with n = 100, 
δ = 4, m = 4 and ω0 = 1. The simulation results are shown in Fig. 1. 

(For every network, 20 instances are generated and for each instance, we run 
50 simulations. The results are the average over all simulations.) 

 

 
Fig. 1. Average density of the infected nodes i(t) versus time t in a BBV network with n = 100, δ = 4, 

m = 4, ω0 = 1,  Λ = 0.005, β = 1. RAN (a); DOW (b); DDP (c); DSP (d) 

As shown in Fig. 1, we can consider that immunizing some specified edges 
can reduce the epidemic spreading velocity, which can be measured by the average 
density of the infected nodes, while randomly immunizing edges cannot. The 
average density of infected nodes of the DSP control strategy is the lowest after 
immunizing 10% or 20% of the edges. It means that DSP control strategy, which 
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immunizes edges with higher product of the strengths of two nodes of the edge is 
more efficient in controlling the traffic driven epidemic spreading. 

Then we turn to SIR model and immunize fe=1 edges to validate our control 
strategies by examining the critical epidemic threshold λc. 

 
Fig. 2. Relationship λc(fe): BBV network with n = 100, δ = 4, m = 4, ω0 = 1, β = 1 

Fig. 2 indicates the relationship of the critical epidemic threshold λc and the 
fraction of immunized edges fe. The DSP control strategy which immunizes edges 
with higher product of the strengths of two nodes of the edge obtains the maximum 
epidemic threshold. The maximum epidemic threshold of DSP control strategy is 
52.17% higher than that of the original network (fe=0), while the DDP control 
strategy and the DOW control strategy is 33.40% and 35.46% correspondingly. The 
maximum epidemic threshold of the DSP control strategy is better than of the other 
two strategies (14.08% higher than DDP and 12.33% higher than DOW). It also 
proves that the DSP control strategy is more efficient to control the traffic driven 
epidemic spreading than the other control strategies. The epidemic threshold 
presents an inverse U shape which always goes up, when fe is less than 0.5 and 
declines when more edges are immunized. When fe is 1, the number of edges is 
almost equal to the number of nodes and the network will be modified to a treelike 
topology. The epidemic can become endemic even at a very small spreading rate. 

In order to check the impact, the weight on the critical epidemic threshold λc, 
we change δ to 8 to get the respective results, shown in Fig. 3. 

 
Fig. 3. Relationship λc(fe): BBV network with n = 100, δ = 8, m = 4, ω0 = 1, β = 1 
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Fig. 3 shows that the enhancement of three control strategies is 49.58%, 
28.81% and 33.30% respectively, which means that the total increase weight δ 
nearly does not affect our control strategies. 

Then we examine the implication of the new added edge number m on our 
control strategies by setting m to 8 and obtain the simulations in Fig. 4. 

 
Fig. 4. Relationship λc(fe): BBV network with n = 100, δ = 4, m = 8, ω0 = 1, β = 1 

Fig. 4 shows almost the same result, as Figs 2 and 3. The enhancement of three 
routing strategies is 35.97%, 29.64% and 31.31% correspondingly, which means the 
more new added edges do not also affect our control strategies. And we can also 
find that deleting edges randomly cannot restrain the traffic driven epidemic 
spreading. 

Then we check the impact of the node number n to gain the results in Fig. 5. 

 
Fig. 5. Relationship λc(fe): BBV network with n = 200, δ = 4, m = 4, ω0 = 1, β = 1 

The enhancement of the three routing strategies (DSP, DDP, and DOW) is 
65.65%, 41.36% and 43.82% correspondingly, which are higher than that shown in 
Fig. 2. It indicates that our control strategies are more efficient in large scale 
networks. 

Finally, we check the impact of the traffic flow on our control strategies. We 
generate packets at every node with probability β=2. 
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Fig. 6. Relationship λc(fe): BBV network with n = 100, δ = 4, m = 4, ω0 = 1, β = 2 

 
Comparing Fig. 6 with Fig. 2, we can observe that the two figures are almost 

the same, except the absolute value of the critical epidemic threshold λc. When the 
packet generating probability is doubled, there are more packets transferring across 
the network which will result in increase of the epidemic spreading velocity. 
Therefore, the critical epidemic threshold is doubled. 

Finally, we test our control strategies on USAir 97 network (network of direct 
flight connections between US airports for the year 1997 with 332 nodes and 2126 
edges, http://vlado.fmf.uni-lj.si/pub/networks/data/). We immunize 20% of the 
edges and check the average density of the infected nodes of SI model and the 
critical epidemic threshold of SIR model to confirm our control strategies. 

 
Fig. 7. Relationship i(t) (t) in USAir 97 network, fe = 0.2, λ = 0.001, β = 1 

From Fig. 7 we can realize that after immunizing fe = 0.2 edges in real world 
network, the average density of the infected nodes of DSP control strategy is still 
the lowest. The maximum epidemic threshold of the DSP control strategy is 0.020 
which is 80.39% higher than that of the original network (and for DDP, DOW 
control strategies it is 44.56, 46.85% respectively.) It proves that DSP control 
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strategy which immunizes the edges with a higher product of the strengths work 
also well in a real world network. 

4. Conclusion 

Aiming at restraining the epidemic spreading to the greatest possible extent, we 
propose novel immunization strategies of immunizing some specified edges to 
maintain the integrity of the network. By examining the epidemic spreading 
velocity of SI model and the critical epidemic threshold of SIR model, the 
simulations show that the strategies proposed can efficiently control the traffic 
driven epidemic spreading in BBV networks. The DSP control strategy which 
immunizes edges with higher product of the strengths of two nodes of the edge 
proved to be more efficient. A transition is found at the critical point after 
immunizing about half of the edges. Our control strategies can maintain the 
integrity of the whole network which makes it more appropriate in some particular 
situations. Our control strategies may be of great significance for controlling the 
epidemic spreading in real world networks. There may be other definitions of the 
weight of the edge and more suitable definitions of the weight will be a problem 
deserving further study. 
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