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Abstract:  In this paper, two feedback linearizing control laws for the stabilization 
of the Inertia Wheel Pendulum are derived: a full-state linearizing controller, 
generalizing the existing results in literature, with  friction ignored  in the 
description and an inputoutput linearizing control law, based on a physically 
motivated definition of the system output. Experiments are carried out on a 
laboratory test bed with significant friction in order to test and verify the suggested 
performance and the results are presented and discussed. The main point to be 
made as a consequence of the experimental evaluation is the fact that actually the 
asymptotic stabilization was not achieved, but rather a limit cycling behavior was 
observed for the full-state linearizing controller. The input-output linearizing 
controller was able to drive the pendulum to the origin, with the wheel speed 
settling at a finite value. 
Keywords: Feedback linearization, inertia wheel pendulum, unstable systems 
control. 

1. Introduction 

The Inertia Wheel Pendulum (IWP) represents a relatively novel mechanical system 
attracting a lot of attention in recent years as a research and teaching “tool” in the 
control systems field. It is a physical pendulum with a rotating symmetrical wheel 
at the pendulum top and represents an under-actuated mechanical system since only 
the wheel is actuated while the joint at the pendulum base is not. The IWP 
dynamics are considered a representative case study when testing and studying 
different nonlinear control strategies [1-5]. Also, many interesting and not solved 
control problems arise in under-actuated configurations (such as control in robot 
walking, running, flying and so on), and being an under-actuated system, the IWP 
may be useful when trying to gain insight into the dynamics involved and the 
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possible ways to control them. From a pedagogical viewpoint, it is attractive mainly 
because it is “the most linear” of all pendulum systems, having only one nonlinear 
term in its motion equations (the gravity induced torque on the pendulum), which 
makes it suitable for introducing unstable systems and state-space techniques in 
linear control courses.  

It is also a nonlinear, but full-state feedback linearizable system when ignoring 
damping in the dynamics, i.e a flat output can be constructed, so that the relative 
degree of the system equals the dimension of the state space. In [1], one of the first 
papers, dealing with the control problem of the IWP, a full-state linearizing 
controller is designed for stabilization at the unstable equilibrium point, 
corresponding to the inverted position of the pendulum.  

In this paper two feedback linearization control designs are presented for 
stabilizing the IWP at the unstable equilibrium, i.e., two balancing controllers are 
designed. The first one represents generalization of the one, proposed in [1], 
including also the wheel angle in the description of the system. As in [1], no 
damping is accounted for in the description. The experimental results showed 
however, that the friction at the pendulum joint has a great impact on the achieved 
asymptotic behavior of the system. On the other hand, firstly, as mentioned in [3] 
and [6], if even only a viscous friction damping is added to the description, the 
flatness of the system is lost and it is no longer full-state linearizable (it is easily 
shown that if a viscous damping term is added, the suggested output definition in 
[1] no longer leads to full-state linearization and in fact, a flat output for the system 
does not exist). Secondly, since the friction forces present a discontinuous behavior 
and most friction models [7] capture this, the derivation-based technique that 
generates the linearizing transformation and control law becomes intractable and 
suggests no way to compensate the friction terms. A second linearizing controller is 
designed, using a physically motivated definition of the system output, achieving 
only an input-output linearization. This design enables also to incorporate easily a 
friction compensation term in the control law. The properties of the resulting 
internal dynamics are discussed. Experiments on a laboratory test bed are carried 
out in order to test the suggested performance for both algorithms.  

The rest of the paper is organized as follows. In Section 2 the mathematical 
modeling of IWP is given. In Section 3, the two feedback linearizing 
transformations and control laws are derived. In Section 4, the laboratory test bed is 
described and the obtained experimental results are presented. Finally, the last 
section is devoted to summary and discussion of the obtained results. 

2. Mathematical modeling of the IWP 

The mechanical structure of the IWP is schematically depicted in Fig. 1. 
The following variable and parameter notations are used: 

1( )tθ  − pendulum angle; 

2 ( )tθ  − wheel angle (both, as defined in Fig. 1; for the wheel angle, the zero 
position can be taken arbitrary); 
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( )tτ − torque acting between the wheel and pendulum (created by an actuator 
mounted on the rod’s end); 

11m  − mass of the rod; 

12m  − mass of the actuator’s fixed part; 

2m − mass of the inertia wheel plus the mass of actuator’s rotating part; 

1l  − distance to the center of mass of the rod; 

2l  − distance to the center of mass of the wheel (the wheel and the rotor being 
symmetrical, this is actually the distance to the wheel axis); 

1J  − the moment of inertia of the pendulum around its center of mass; 

2J  − the moment of inertia of the wheel (plus actuator’s rotor). 
 

  
Fig. 1. Inertia wheel pendulum 

 
Assuming that the axis of rotation of the wheel is parallel to the pendulum 

axis, both perpendicular to a vertical plane, and the wheel is symmetric with respect 
to its axis of rotation, the Lagrangian is written as 
(1)  L V U= − , 

with:  ( )2 2 2 2 2 2
11 1 1 12 2 2 2 1 1 2 1 2

1 ( ) ( )
2

V m l m m l J Jθ θ θ θ θ= + + + + +& & & & & , 1(1 cos )cU m g θ= + , 

11 1 12 2 2( )cm m l m m l= + +  and g  being the gravity acceleration. 
The Euler-Lagrange equations of motion are easily obtained as 

11

0d L L
dt θθ

∂ ∂
− =

∂∂ &
 
and 

22

d L L
dt

τ
θθ

∂ ∂
− =

∂∂ &
 

and can be put in the following form: 

(2)   ( )2 2
11 1 12 2 2 1 2 1 2 2 1

2 1 2 2

( ) sincm l m m l J J J m g

J J

θ θ θ

θ θ τ

+ + + + + =

+ =

&& &&

&& &&
. 

A new term 1( , )pf θ− ⋅&  is added to the right-hand side of the first equation in (2) to 
account for the friction in the pendulum joint.  
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3. Feedback linearization based control law design 

The equations of motion of the IWP − (2) are first put in the following form: 

(3)   11 12 11

21 222

sinc pa a m g f
a a

θθ
τθ

⎡ ⎤ −⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦⎣ ⎦

&&

&&
,  

with
 

( ) ( )
11 2 12 21 2

2 2 2 2
22 11 1 12 2 2 1 2 11 1 12 2 2 1 2

/ , / ,

( ) / , ( ) .

a J D a a J D

a m l m m l J J D D m l m m l J J

= = = −

= + + + + = + + +

   

 
.

 
A state space model is written from (3), with state variables 

1 2 3 4 1 1 2 2[ , , , ] [ , , , ]x x x x θ θ θ θ≡T T      & &  as 

(4)   ( ) τ= +&x f x g  , with 

2

11 1 11

4

21 1 21

sin
( )

sin

c p

c p

x
a m g a f

x
a m g a f

θ

θ

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

f x , 12

22

0

0
a

a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

g . 

Two linearizing state transformations and control laws for the stabilization of 
the IWP around at the unstable equilibrium point are derived using model (4). The 
first one, leading to full-state linearization of the system, and the other resulting in 
partial linearization.  

3.1.  Full-state linearization of the IWP 

The full-state linearizing transformation and the control law represent a 
generalization of the control law proposed in [1], including also the wheel angular 
position in the description. As suggested there, if the damping term − pf  is 
neglected, defining the output as: 
(5)   22 1 11 3( )y a x a x= +x , 
leads to a relative degree of the system, equal to the state dimension, thus allowing 
for full-state linearization. 

The new states are obtained by deriving the output function until the input 
appears in the respective expression. We have: 

( )22 11 22 11 22 11[ , 0, , 0] ( ) [ , 0, , 0] ( ) [ , 0, , 0] .yy a a a a a aτ τ∂
= = + = +

∂
         && x f x g f x g

x
 

The scalar terms ( )y∂
∂

f x
x

 and 
y∂

∂
g

x
, denoted usually as L yf  and L yg respectively, 

are known as the Lie derivatives of the function y  with respect to the vector field 
( )f x  and g  respectively [8]. We have: 

.y L y L yτ= +& f g , with 22 2 11 4L y a x a x= +f  and 0L y =g . 
For the second-order derivative of the output we have: 

( ) ( ) 2( ) . ( ) .y yy L y L y L L yτ τ τ∂ ∂ ∂
= = + = + = +

∂ ∂ ∂
& &
&&& f f g fx f x g f x g

x x x
, with 
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2
11 22 21 1( ) sincL y a a a m g x= +f  and 0L L y =g f . 

Continuing in the same way, the following is obtained: 
3 2 .y L y L L yτ= +&&& f g f , with 3

11 22 21 1 2( ) cos .cL y a a a m g x x= +f  and 2 0.L L y =g f  
Finally  

(4) 4 3 . ,y L y L L yτ= +f g f  
4 2 2 2 2

11 22 21 1 2 11 22 21 1 1( ) sin . ( ) cos sinc cL y a a a m g x x a a a m g x x= − + + +f , 
3

12 11 22 21 1( ) coscL L y a a a a m g x= +g f . 
The new state vector can be defined as  
(6)   2 3

1 2 3 4[ , , , ] [ , , , ] ,y L y L y L yξ ξ ξ ξ= ≡T T      f f fξ , 
and the system dynamics are written in terms (partially) of the new coordinates as 

(7)   

21

32

43
4 3

4

0
0
0

L y L L y

ξξ
ξξ

τ
ξξ

ξ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

&

&

&

&
f g f

. 

The fact that (6) represents a valid state transformation can be easily shown by 
applying the implicit function theorem [8]. It is seen from the expression of 3L L yg f , 
that the system, with y  as output, has a well defined relative degree for 

1 , 0, 1, 2,...
2

x k kπ
≠ = ± ±   

Choosing the linearizing control law as 

(8)   ( )4
3

1 L y v
L L y

τ = − +f
g f

, 

with v  being the new input variable results in 

(9)   

21

32

43

4 v

ξξ
ξξ
ξξ

ξ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

&

&

&

&

. 

Thus, the dynamics of the overall system are linearized and rendered equivalent to 
those of a chain of four integrators (9). The control law can be introduced as long as 

the relative degree is well defined, which as noted, is the case for 12 2
xπ π

− < < . 

This result establishes the control law as useful for the stabilization problem at 
0=ξ . 
Now, a linear state feedback control law in an outer control loop can be 

designed by pole-placement or another linear control technique to generate the new 
control input v in order to render the closed-loop system stable, that is v can be 
chosen as  



 101

(10)   v = Kξ   with 1 2 3 4[ , , , ]k k k k=   K . 
As seen from (6), 0=ξ  reduces to 0x = , thus, stabilizing the system around 0=ξ  
results in the stabilization of the IWP at the unstable equilibrium point. 

As noted at the beginning of this section, in [1] the same linearizing control 
law is derived for the reduced model, obtained by excluding the wheel angle from 
the description (considering it as a cyclic variable), the output function being 
defined as 22 2 11 4 2( )y a x a x ξ= + =x . The linearized states, for this output, become 

1 2 3 2 3 4[ , , ] [ , , ]ξ ξ ξ ξ ξ ξ= ≡T T    ξ . When the full model is considered, this output 
leads to only partial feedback linearization. It is easy to show, that 3x  is a valid 
additional coordinate in order to complete the new state vector, so the internal, first-
order dynamics, of the system can be expressed in terms of the wheel angle. Since 
we have 3 4x x=&  and, as 4lim ( ) 0

t
x t

→∞
=

 
with the outer linear stabilizing controller in 

place, it is obvious that the internal state remains bounded and converges to a 
constant value, which in turn depends on the initial conditions.  

As mentioned in the introduction, if only a viscous friction term is added, (5) 
will no longer lead to full-state linearization and actually no such output exists. 

3.2.  Input-output linearizing control law of the IWP 

The second control law is derived, starting from a physically meaningful and 
directly related to the attacked control problem definition of the system output, 
being the pendulum angle. Formally, we have: 
(11)   1( )y x=x . 
The friction term is accounted for in the model. Again, the output function is 
derived until the input torque appears in the respective expression. We have 

.y L y L yτ= +& f g , with 2 ,L y x=f  and 0L y =g ; 
2 .y L y L L yτ= +&& f g f , with 2

11 1 11sinc pL y a m g x a f= −f , and 12L L y a=g f . 
The linearizing control law is chosen as 

(12)   ( ) ( )2
11 1 11

12

1 1 ˆsinc pL y v a m g x a f v
L L y a

τ = − + = − + +f
g f

, 

again, with v  being the new input variable, and ˆ
pf  being a model of the friction 

term in the pendulum joint. It is seen that the system, with the pendulum angle as an 
output, has a well defined relative degree of two, everywhere in the state space. 
Thus, if  ˆ

p pf f= , the system is transformed into 

(13)   1x v=&& . 
Otherwise, an additional, angular speed feedback term, induced by the friction will 
appear at the input. 

It is easy to show, that actually no coordinate transformation is needed in this 
case, since 1x  and 2x  can be considered as linearized states, and the remaining 
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second-order internal dynamics of the system can be expressed in terms of the 
wheel angle and angular speed − 3x  and 4x  respectively. 

Again, a linear state feedback control law in an outer control loop can be 
designed to generate the new control input v in order to render the closed-loop 
system stable, that is, v can be chosen as: 1 2 1 2[ , ][ , ]v k k x x= T  , with the appropriate 
values of 1k  and 2k . 

With (12) in place and taking into account that 21 11a a= − , the internal 
dynamics of the system is given by: 

(14)    
3 4

1
4 12 22 1 21 12 22 22 12

,
ˆ( ) sin .c p p

x x

x a a m g x a a f a f a a v−

=

= + − − +

&

&
  

It is seen that when 1x and 2x go to zero with the outer control loop in place, the 
right-hand side of the second equation in (14) also goes to zero (the input variable 
v  goes to zero, as well as the friction terms). Thus, the wheel speed converges to a 
constant value, depending on the initial conditions, while evidently the wheel angle 
diverges. 

4. Laboratory test bed and experimental results 

4.1.  Description of the test bed   

The main blocks of the laboratory test bed are depicted in Fig. 2. It is a hardware-
in-the-loop system. The control law is implemented in real-time within the Real-
Time Windows Target environment of Matlab®, with Simulink® being used as 
control law building environment and an interface for data logging and 
visualization. The interface to the physical system is realized with the DAQ board 
NI 6014 through a signal conditioning and power amplification custom-made 
circuit board. 

 
Fig. 2. Block-diagram of the laboratory experiment 

The laboratory apparatus is shown in Fig. 3. It comprises a planar physical 
pendulum made of a rod and the stator of the DC motor, which actuates an inertia 
wheel, mounted on its rotor. The IWP is instrumented with two incremental 
quadrature encoders mounted on the two revolute joints of the system. Actually the 
rod of the pendulum is mounted directly on the shaft of one of the encoders which 
serves as the pendulum joint of the mechanism (the encoder is fixed to the base 
plate of the equipment). The pendulum encoder outputs 3600 ppr, and the motor 
encoder outputs 512 ppr. The numbered pieces and devices on Fig. 2 are as follows: 
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1 – the inertia wheel; 2 – the DC motor (rated to 24 V) with mounted incremental 
encoder; 3 – the pendulum encoder; 4 – the pendulum rod. 

The signal conditioning board contains two blocks. 
• A decoder circuit for each of the two incremental encoders used to decode 

the generated pulse trains. An original decoding circuit realizing combinational and 
sequential logic, which operates asynchronously with no additional clocking was 
designed and implemented. Each decoder circuit outputs a direction signal and a 
pulse, on the second output line, when an edge in any of the encoder two outputs is 
detected. Thus, the resolution is increased by a factor of 4 up to 14400 counts per 
revolution for the pendulum encoder and to 2048 for the motor encoder. The 
decoded signals are fed to the up/down counters of the NI 6014 DAQ board. 

 

 
Fig. 3. The IWP balancing at the unstable equilibrium 

 
As a remark we note that using incremental encoders for position sensing on 

itself requires precise and spot direction change detection. Moreover, vibrations 
occur when operating the pendulum, which also may lead to interpreting certain 
counts as “false” or increment the position in the wrong direction. Also, counting 
only on falling or rising edges may lead to error accumulation in the calculated 
position value in certain scenarios. These problems were solved with the 
implemented decoding circuit. 

• A linear push-pull outputs circuit with bipolar transistors and flyback 
diodes providing the high current needed by the motor. The analog low-current 
control signal, output by the DAQ board, is fed to an operational amplifier with 
negative feedback on the motor voltage configured for a gain of 1.5. Also, the 
actual armature voltage of the motor and the voltage drop over a current sensing 
resistor of  0.1 Ω, divided by a resistor divider, are fed to two of the board’s analog 
input lines. The maximum voltage that can be applied to the motor is 15 V, since 
the analog output of the DAQ board is limited to 10 V. 
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4.2.  Model parameters 

The masses of the motor, the wheel and the pendulum rod were measured to be 
0.235 kg , 0.06 kg  and 0.03 kg  respectively, so 12 2 0.295 kgm m+ = . By design 
we have: 2 0.125 ml =  (the rod is designed to allow also a mounting so that 2l  is 
equal to 0.145 m ) and the distance to the center of mass of the rod with this value 
of  2l  is estimated to be around 1 0.04 ml = . 

The friction model adopted is a static model including Coulomb and viscous 
friction components [7], so we have: 1 1 1 2 1

ˆ ( ) ( )p p pf c sign cθ θ θ≡ +& & & . As a result of 
some preliminary identification experiments [9], the following estimates of the rest 
of the model parameters were found: 

6 2
1 180 10  kg.mJ −= × , 1 0.00225 (N.m.s)/radpc = , 2 0.0002 (N.m.s)/radpc = . 

The inertia wheel was designed with a moment of inertia of 6 232 10  kg.m .−×  A 
value of -6 236 10  kg.m×  for 2J  was found to fit better experiments. 

The driving torque, produced by the DC motor is given by the following 
expression: 
(15)   2 2( ) / ( , )k u k R fτ θ θ= − − ⋅m m m

& & ,  
where ( )u t is the armature voltage of the DC motor; 

km  − motor constant (assuming back e.m.f. and torque constants are equal); 
R  − rotor winding resistance; 

2( , )f θ ⋅m
&  − friction torque at the rotor bearings and collector brushes.  

Again, Coulomb and viscous friction components are adopted and the term is 
defined as: m 2 m1 2 m2 2( ) sign( )f c cθ θ θ≡ +& & & . The inductance of the rotor winding is 
neglected in the description, since the initial experiments on the laboratory test bed 
suggested a very small value of the motor electrical time constant. 

The following estimates of the model parameters were found in [9] to be: 
m 0.04 (N.m)/Ak = , 12.5R = Ω , m1 0.0016 (N.m.s)/radc = , 

5
2 10 (N.m.s)/radc −=m  .  

4.3.  Experimental results 

Two operational aspects of the current laboratory apparatus should be taken in 
consideration, when analyzing the obtained experimental results. Firstly, significant 
static friction exists in the pendulum joint, enough to maintain the pendulum still in 
an upright position in a very small range around the actual vertical position (the 
direction coinciding with the gravity acceleration direction). The same friction force 
is able to hold the pendulum deviated from the actual vertical when being down. 

Secondly, since incremental encoders are used, a reference point is needed to 
measure a position. A natural choice for the reference point, which will enable in 
theory to detect the actual vertical position, is the vertical downward position since 
it is the stable equilibrium point of the system, and is at a known angular distance to 
the unstable equilibrium point. Due to the above mentioned friction induced 
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deviation of the pendulum from the initial downward vertical position, the 
measured “zero” value of the pendulum angle also deviates from the exact upright 
vertical. Moreover, the torque, created by the connecting wires tension also tends to 
add to this deviation. The same torque acts as a disturbance, when balancing the 
pendulum around the unstable upright position. 

 

Fig. 4. Experimental trajectories of the IWP coordinates for the full-state linearizing controller 
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It should be noted, that no torque saturation is accounted for in the design and 
the applicability analysis of the proposed control laws so far. Thus, as theoretically 

the pendulum can be stabilized in the region 12 2
xπ π

− < < by using (8) and (10), in 

practice, this region will be significantly narrower, around the equilibrium point, 
due to limitations on the available torque. 

Finally, if the pendulum angle is considered as a cyclic variable, it should be 

folded back to the interval ;
2 2
π π⎛ ⎞−⎜ ⎟

⎝ ⎠
when the pendulum is above horizontal.  

Several experiments were conducted and some of the obtained transients are 
shown in the following.  The maximum voltage available to the motor was limited 
to 12 V. For all experiments, the control algorithms were implemented with a 
sampling period of 2 ms, without transferring continuous designs into discrete time. 
The pendulum was lifted by hand to a position around vertical and then the control 
is switched on (on all graphs, the trajectories are shifted, so that as shown, a control 
action is applied from 1 st =  on). Both angular speeds were estimated by taking 
first-order difference from angle measurements. 

For the results shown in Fig. 4, the outer-loop controller gains in (10) were 
designed by pole placement with the desired closed-loop poles being located at –5, 
–7, –9 and –11 rad/s. The controller gains were obtained as: 1 3465k = , 2 1888k = , 

3 374k =  and 4 32k =  (N.m)/rad for k1(3) and (N.m.s)/rad for k2(4)). As seen in the 
first place, asymptotic stabilization is not achieved. Asymmetric limit cycle for the 
pendulum angle is observed, while symmetric cycles establish for both angular 
speeds, which also guarantees that the motor angle remains bounded. A detailed 
visualization of the limit cycles is also given in the figures. 

In Fig. 5 shows excerpts from experiments, showing the established limit 
cycles in the pendulum angle and wheel speed trajectories, with poles placed at –3, 
–5, –7 and –9 rad/s. The respective controller gains were found to be: 1 945k = , 

2 744k = , 3 206k =  and 4 24k = .  
 

 
 

Fig. 5. Established limit cycles of the pendulum angle (to the left) and wheel speed 
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It is noted, that again a symmetrical limit cycle of the wheel speed trajectory is 
observed. By comparing the limit cycles for both cases (Figs. 4 and 5), it is seen 
that the settings of the outer loop controller influence significantly the parameters of 
the limit cycles. For the wheel speed trajectory, shown in Fig. 5, a limit cycle with 
an amplitude of 58 rad/s and a period of  2.15 s is observed, while for the case in 
Fig. 4, the same parameters are with values of 40 rad/s and  1.22 s respectively.  

In Fig. 6, again the asymptotic behavior of the system is shown, this time with 
a linearizing control law, designed using the reduced-order model (the control law 
proposed in [1]). The outer loop state-feedback controller is designed so that the 
closed-loop poles are placed at –5, –7 and –9 rad/s and the respective gains are 

1 315k = , 2 143k =   and 4 21k =  ( 3 0k = ). A rather even limit cycle was observed 
for the pendulum angle, though this was not always the case for the conducted 
experiments. On the other hand, generally an asymmetrical limit cycle is established 
of the wheel speed, which in turn results in a diverging wheel angle. 
 

 
Fig. 6. Established limit cycles of the pendulum angle (to the left) and wheel speed 

 
In Fig. 7 transient responses of the system with the input-output linearizing 

controller in the loop are shown. Since preliminary experiments with a state-
feedback controller in the outer loop showed unsatisfactory behavior of the control 
system, an output feedback controller with integral action was designed and 
implemented. The input variable to the linearizing controller − v was generated by a 
discrete-time equivalent of: 

2

0 1
( 4)( ) ( )
( 40)
sv s k x s

s s
+

=
+

, with 0 700k = − , so that the dominating poles of the 

closed-loop system were placed at around 10 11 rad/sj− ± . 
As seen, in this case an asymptotic stabilization of the pendulum angle is 

achieved as it goes to the origin. The wheel speed ultimately settles at around  
20 rad/s. An obvious disadvantage of the proposed controller is the fact, that, as the 
wheel speed grows, the torque generating capabilities of the DC motor diminish, 
which in turn reduces the ability of the system to reject disturbances. 
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Fig. 7. IWP coordinate trajectories for the input-output linearizing controller  

5. Conclusion 

In this paper two feedback linearizing transformations and control laws are 
proposed for the stabilization problem of the Inertia Wheel Pendulum at the 
unstable equilibrium, corresponding to its inverted position. The first controller, 
leading to a full-state linearization with suitably defined new set of states, 
represents a generalization of the control law presented in the references, in the 
sense, that it is based on the full-order model of the system. The experiments on a 
laboratory test bed are carried out in order to test the suggested performance. It was 
found that actually no asymptotic stabilization was achieved, but rather stable limit 
cycles were observed which presumably resulted from the significant friction 
existing in the base joint of the laboratory apparatus and probably from the 
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imperfect compensation of the friction at the DC motor shaft. The parameters of the 
limit cycles depend on the overall system dynamics, attributed by the outer linear 
controllers. 

Secondly, an input-output linearizing control law is derived, starting from a 
physically meaningful and directly related to the attacked control problem 
definition of the system output, being the pendulum angle. The resulting internal 
dynamics, which is expressed in terms of the wheel speed, is marginally stable. The 
experimental results have confirmed the expected performance as the pendulum 
angle settled at the origin, with the wheel speed also settling at a finite value.  
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