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Abstract:  In this paper an exact discrete-time model of the induction motor in a 

current-fed mode, including stator flux components is derived and validated. The 

equations of the motor are written in a frame aligned with the rotor electrical 

position, which results in a linear, time-invariant system. Based on the derived 

exact discrete-time representation of the motor dynamics, an input-output 

linearizing control law is designed for decoupled torque and stator flux control. The 

applied design technique led to a non-trivial, still useful, definition of the 

electromagnetic output of the motor. Simulation results are presented showing that 

the aimed performance is obtained, that is, no coupling exists between the outputs, 

and the initial design problem of controlling a nonlinear interacting TITO system is 

reduced to a problem of controlling two linear and decoupled SISO systems with 

simple dynamics. 

Keywords: Input-output linearization, induction motor, discrete-time nonlinear 

control. 

1. Introduction 

The induction motor is probably the most widely used electric machine in industry. 

The related control problem, known for its difficulty, has received large attention in 

the scientific literature. Different solutions were found, the most renowned being 
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the so-called “field-oriented control” [1, 2, 3]. Nowadays, in one of its many 

variants and modifications, it is in industrial practice where high dynamic 

performance is required. Another approach, subject of scientific research, allowing 

potentially for superior performance and absolute decoupling between the flux and 

torque, rather than only asymptotic (that is, under constant flux conditions), as in 

the field-oriented control case, is the input-output linearization based control [3-9]. 

Only few input-output linearization designs are based on a model of the motor 

containing stator flux components and defining the squared stator flux as an output 

[8, 9], while most of them define the rotor flux (squared) as the electromagnetic 

output of the motor and use the respective description of the machine. It is true 

however, that the main operational aspects of the motor are more clearly expressed 

in terms of the rotor flux magnitude, thus more easily related to control goals. For 

field-oriented designs though, despite these properties and even the additional 

advantages of the rotor flux oriented control over the stator flux orientation scheme 

from a control performance perspective, the latter scheme is probably more often 

used in industrial drives, because it possesses some implementation-related 

advantages, e.g., lower sensitivity of the flux estimation models. The input-output 

linearization approach can potentially eliminate some of the stator-flux orientation 

scheme disadvantages, such as the residual input coupling, while retaining its 

advantages. 

In all cases the design is typically performed using continuous-time 

descriptions of the motor, while the control law is implemented using digital 

devices, being inherently a discrete-time process. This makes the task of proving 

and guaranteeing the stability of the overall system (interconnection of two 

nonlinear systems) very difficult, practically impossible. In this aspect, a control 

law designed on a discrete-time model will potentially eliminate this problem. The 

design of the control law directly in the discrete-time domain for voltage-command 

mode applications, i.e., using the complete models of the machine, relies also on 

approximations since the description does not allow exact discretization. For the 

current-fed modes of the operation however, exact discrete-time representations can 

be obtained when the equations of the motor are written in a frame aligned with the 

rotor electrical position.  

For the rotor flux control case, a discrete-time field-oriented control law is 

proposed in [10, 11] and stability conditions are derived based on an exact discrete-

time model of the motor dynamics. In [12, 13], an input-output linearization design 

based on the same discrete-time description is proposed and validated. 

In this paper the stator flux control case is considered. First, an exact discrete-

time model of the induction motor in a current-fed mode, including stator flux 

components is derived.  Then, an input-output linearizing and decoupling control 

law is designed using this exact description. In Section 4 the proposed control law, 

along with the motor equations, is modeled in Matlab, Simulink environment and 

some simulation results are presented. 
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2. The stator-flux model 

Under the common assumptions for symmetrical construction, sinusoidal 

distribution of the field in the air-gap and linearity of the magnetic circuits, the 

equivalent full-order two-phase model of the machine, expressed in the two-phase 

stator-fixed α-β frame with stator flux linkages and stator currents as states, is given 

as follows: 

(1)   

s s s s

s s s s

1 1

s s p s s p s s s s

1 1

s s p s s p s s s s

,

,

( ) ( ) ,

( ) ( ) ,

r i u

r i u

i i n i n l l u

i i n i n l l u

  

(2)   m p s s s s
( ),n i i  

where 
s s

( ),  ( )u t u t  are the stator voltages, 
s s

( ),  ( )i t i t   the stator currents, 

s s
( ),  ( )t t   the stator flux linkages, ( )t   the rotor speed, m

( )t   the motor 

electromagnetic torque. The parameters in the model are defined as follows: 
2 1

r s
1 ( )m l l , 1

r r s
( )r l l , 1

r s s r r s
( )( )l r l r l l , where s

l  is the stator phase 

winding inductance, s
r   the stator phase winding resistance, r

l   the rotor phase 

winding inductance, r
r  the rotor phase winding resistance, m   the mutual 

inductance, 
p

n   the number of pole-pairs. 

In a current-fed mode, the stators currents are efficiently used as control inputs 

to the machine. In order to achieve such mode of operation, the introduction of a 

current control scheme is required. Several types exist, the main ones using high-

gain, typically PI, current control loops [3, 14], feedforward schemes [3] and, most 

often, hysteresis relay loops [14]. In [14] a thorough overview of the current 

controllers for three-phase inverters can be found.  

In order to introduce the current-fed mode of operation based on this 

description of the motor, the stator voltages are eliminated in the flux equations by 

expressing them from the current dynamics. Thus, we have: 

(3)  s s p s s s s p s s s

s s p s s s s p s s s

n l i l n i l i

n l i l n i l i
,

 
which is put in a matrix form as 

(4)  
s s s s si

lφ M φ M i i , 

with T

s s s
[ ,  ]i ii ,

 

T

s s s
[ ,  ]φ , 1

r r
r l . 

The matrices in (4) can be decomposed as: 

(5)   
p

s s pi

n

l l n

M I J

M I J
,    

with 
0 1

1 0
J ,   

1 0

0 1
I .   

If the rotor speed is considered as a parameter in the description, it is seen that 

(4) represents a linear time-varying system, with stator currents as inputs and fluxes 
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as states, and an additional output – the motor torque, being a nonlinear function of 

the inputs and states. As it can be seen, the current derivatives appear also in the 

flux derivative expression, i.e., a direct feed-through between the input and output 

exists. 

3. Discrete-time representation of the stator-flux model 

The exact discrete-time representation of the motor dynamics is obtained in the 

frame aligned with the electrical rotor position (and rotating with the electrical rotor 

speed). 

Let us define the current and flux vectors in the considered frame (denoted by 

subscript indices *A(B))  
T

s s s
[ ,  ]

AB A B
i ii ,

 

T

s s s
[ ,  ]

AB A B
φ , 

and the transformation matrix between the stator-fixed and the rotating frame as 

(6)   
p p

p p

cos( ) sin( )

sin( ) cos( )
AB

n n

n n
T T , 

with  being the rotor angular position. 

For the transformation matrix we have:  

(7)  1 T

AB
T T T . 

It is also noted that the vector magnitudes are preserved by the transformation. 

By substituting the current and the flux vectors in (4) as 
s sAB

i Ti ,

   
s sAB
φ Tφ , we obtain: 

s s s s s
( ) ( )

AB AB i AB AB

d d
l

dt dt
Tφ M Tφ M Ti Ti , 

which, with the developed derivatives is rewritten as  

(8)   
s s s s s s s

.
AB AB AB i AB sAB AB

l lTφ Tφ M Tφ M Ti Ti Ti

 Given (7) and the following properties: e
J

T ,  
p p

,en e n
J

T J JT   

( ), equation (8) is reduced to 

(9)  
s s s s s sAB AB AB AB

l lφ φ i i . 

It is seen, that in this frame, the time-varying feature of the dynamics is 

eliminated and the system is linear time-invariant.

 For the torque we have:

 
(10)  

T

m p s s s s p s s

T T T

p s s p s s

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).
AB AB AB AB

t n i i n t t

n t t n t t

i Jφ

i T JTφ i Jφ  

Exact discrete-time description of the motor dynamics is obtained from (9), 

assuming that the stator currents are held constant during the sampling periods, i.e., 

assuming zero-order holds at the inputs: 

s s
( ) ( ) const

AB AB k
t ti i  for 1k k

t t t
 0k
t kT , 0

T  is the sampling period. 

In order to obtain the discrete-time description, the solution of (9) is first 

considered. For this purpose, the flux equation is decomposed as: 
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(11)  s s s s

s s s s

(1 ) ,

.

AB AB AB

AB AB AB

l

l

ψ ψ i

φ ψ i  

For 
k

t t , we have 

( ) ( )

s s s s
( ) ( ) (1 ) ( )k

k

t

t t t

AB AB k AB k

t

t t e l e t dψ ψ i , 

and ultimately 

(12)  ( ) ( )

s s s s
( ) ( ) (1 )(1 ) .k kt t t t

AB AB k AB
t t e l eψ ψ i

 
Thus, from (11) it is obtained for the flux: 

(13)   ( ) ( )

s s s s s s
( ) ( ) (1 ) ( ) ( ).k kt t t t

AB AB k AB k AB
t t e l e t l tφ φ i i

 
For the torque we have  

( )T

m p s s
( ) ( ) ( ) ( ) ,kt t

AB AB k
t n t t t ei Jφ   

with 

(14)  m p s s s s
( ) ( ( ) ( ) ( ) ( )).

k A k B k B k A k
t n t i t t i t  

Finally, for 
1k

t t , the flux is given by 

(15)  0 0

s 1 s s s s s 1
( ) ( ) (1 ) ( ) ( ).

T T

AB k AB k AB k AB k
t t e l e t l tφ φ i i

 
Though the motor torque is a nonlinear function of the states, the particular 

function structure, along with the considered input excitation (zero-order holds on 

the stator currents in the rotating frame) enables its exact reconstruction from its 

samples by a form of the exponential hold.  

This, in turn gives the possibility to obtain an exact discrete-time 

representation of the speed dynamics, assuming it linear, as follows: 

(16)   
m L

J c  

with 
J   moment of inertia, referred to the rotor; c   viscous friction coefficient. 

The transfer function of the hold is 
0( )

1
s T

e

s
. 

The overall discretization scheme is illustrated in Fig. 1. 

 

 
Fig. 1. Discretization scheme 

 

The speed at the sampling instants is obtained as 

(17)  

1
10 0

1 1
0 1( )

1 m l

1
( ) ( ) ( ) ( )

k

k

k

tcJ T T

cJ T cJ t

k k k

t

e e
t e t t e d

J c J
. 

In cases, when the load torque satisfies l l
( ) ( )

k
t t  for 0 0

( 1)kT t k T , that 

is, it is constant during the sampling periods, we have: 
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(18)  

1
1 0

1
1( )

l l

1 1
( ) ( )

k

k

k

t cJ T

cJ t

k

t

e
e d t

J c
,  

(for 0c we have 1

0 l
( )

k
J T t ). 

In these cases, a difference equation can be written for the motor speed. 

Equations (15), (14), (17), and (18) represent the exact discrete-time model of the 

system. 

4. Input-output linearizing control law design 

The theoretical foundations of the feedback linearization and the basic control 

design techniques extended for discrete-time systems can be found in [15, 16]. Here 

it will be only noted that the basic structure of a control system using such control 

laws consists of two loops – an inner one, in which the linearization is achieved, 

and an outer, linear loop, where the linear controller attributes the desired dynamics 

of the overall system. 

The model used here as basis for the control law design is given by: 

(19)  

0 0

0 0

1 1 1 s 3 s 1

2 1 2 s 4 s 2

3 1 1

4 1 2

( ) ( ) (1 ) ( ) ( ),

( ) ( ) (1 ) ( ) ( ),

( ) ( ),

( ) ( ),

T T

k k k k

T T

k k k k

k k

k k

x t e x t l e x t l u t

x t e x t l e x t l u t

x t u t

x t u t  
with          T T

1 2 3 4 s s s s
[ ( ),  ( ),  ( ),  ( )] [ ( ),  ( ),  ( ),  ( )] ,

k k k k A k B k A k B k
x t x t x t x t t t i t i t   

T T

1 2 s 1 s 1
[ ( ),  ( )] [ ( ),  ( )] .

k k A k B k
u t u t i t i t  

As seen, model (15) is augmented by two additional state variables  

3
( )

k
x t and

4
( )

k
x t , and their respective equations by adding a delay of one sampling 

period at each input. Thus, a description in a state-space form is obtained. Also, in 

this way, one sampling period is allowed for calculations, which renders the control 

law realizable since the control design technique applied will result in a static state 

feedback. For the control design, the induction motor is normally considered as a 

TITO-system, with the torque, rotor speed or position being the main output of 

mechanical nature and the flux magnitude (squared) as the second output of 

electromagnetic nature. Here, the controlled quantities are defined as follows: 

(20)   
0

1 m p 1 4 2 3

2 2

2 1 1 1 2 2 1 1 1 2 1

( ) ( ) ( ( ) ( ) ( ) ( )),

( ) ( ) ( ) ( ) ( ) ( ( ) ( )).

k k k k k k

T

k k k k k k k

y t t n x t x t x t x t

y t x t x t x t x t e x t x t
 

The first output 1
( )

k
y t  is defined as the motor torque. Thus, the speed 

dynamics (being linear) is not accounted for in the decoupling control, which makes 

it simpler and more robust because it does not include the mechanical parameters. 

The second output 
2
( )

k
y t  is defined after the following modifications, starting 

from the expression for the squared stator flux  2 2

1 2
( ) ( )

k k
x t x t . First, the previous 

values of each component are introduced, so that the resulting control law becomes 

an affine function of the new external input variables. Thus, the left term in the 

expression is obtained. Then, a correction term, proportional to the previous value 
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of the flux square, is added, so that the stabilization of 
2
( )

k
y t  guarantees physically 

acceptable regimes of the motor operation and ultimate stabilization of the stator 

flux. It should be noted that the minus sign is important, the value of the coefficient 

 0T
e  is chosen so that the resulting expressions for the control law are simplified. 

In the steady-state (at a constant speed), 
2
( )

k
y t is related to the squared stator flux in 

the following way [12]: 
0

2

2 s s 0
( ) ( ) (cos( ) ),

T

k k l
y t t T eφ  

where sl is the electrical slip speed. Since the sampling period is typically atmost in 

the millisecond range and the slip speed is generally low (typically a single-digit 

percentage of the rotor speed), it can be assumed with satisfactory precision that 

s 0
cos( ) 1

l
T and 

(21)   0
2

2 s
( ) ( ) (1 )

T

k k
y t t eφ . 

 

The expressions for both outputs are written for 
1k

t t  as (22)  and the input-

output description is put in the vector-matrix form (23): 

(22)   

0 0

0 0

0

0

1 1 p 2 s 4 1

1 s 3 2

2 2

2 1 1 1 1 2 1 2 1 2

s 1 3 2 4

( ) ( ( ) (1 ) ( )) ( )

( ( ) (1 ) ( )) ( ),

( ) ( ) ( ) ( ) ( ) ( ( ) ( ))

(1 )( ( ) ( ) ( ) ( ))

T T

k k k k

T T

p k k k

T

k k k k k k k

T

k k k k

y t n e x t l e x t u t

n e x t l e x t u t

y t x t x t x t x t e x t x t

l e x t x t x t x t l
s 1 1 s 2 2

( ) ( ) ( ) ( );
k k k k

x t u t l x t u t  

(23)  1 1 11 12 1

2 1 21 22 2

( ) 0 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

k k k k

k k k k k

y t b t b t u t

y t a t b t b t u t
,  

with 11 12

21 22

( ) ( )
( )

( ) ( )

k k

k

k k

b t b t
t

b t b t
B   the decoupling matrix and 

0

0 0

0 0

s 1 3 2 4

11 p 2 s 4

12 p 1 s 3

21 s 1

22 s 2

( ) (1 )( ( ) ( ) ( ) ( )),

( ) ( ( ) (1 ) ( )),

( ) ( ( ) (1 ) ( )),

( ) ( ),

( ) ( ).

T

k k k k k

T T

k k k

T T

k k k

k k

k k

a t l e x t x t x t x t

b t n e x t l e x t

b t n e x t l e x t

b t l x t

b t l x t

 
By introducing the control inputs as

 

 

(24)  1 11

2 2

( ) ( )
( )

( ) ( ) ( )

k k

k

k k k

u t v t
t

u t v t a t
B , 

with

 

1 2
( ),  ( )

k k
v t v t being the new input signals, the input-output relations for the 

system obtained are given by 

(25)   
1 1 1

2 1 2

( ) ( )

( ) ( )

k k

k k

y t v t

y t v t
.

 
As seen from the equations, no coupling exists between the two outputs which 

delays their respective input signals by one sampling period. It is also noticed, that 
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the obtained input-output dynamics is of second order, while the initial description 

is of fourth, so that second order internal dynamics, unobservable from the outputs, 

exists. It must be such that the system states remain bounded while controlling the 

outputs, otherwise, the control law would be unuseful. Here the non-trivial 

definition of the second output prevents the direct defining of a complete novel set 

of coordinates and the respective transfomation, so that the internal stability 

analysis can be performed. In order to do so, the model must be extended by two 

additional variables, so that the second output becomes a static function of states. 

No internal instabilities were observed during simulations of the system behaviour, 

the formal analysis however will be a subject of a future research. It must be noted 

that in the continuous-time case, with the stator flux square as a system output, the 

internal dynamics can be expressed in terms of the rotor flux components, which 

guarantees internal stability when input-output stability is achieved. 

In order to introduce the control law, the matrix inversion in (24) must be 

possible, i.e., the decoupling matrix must be non-singular. A discussion on the way 

to ensure it is given in the following lines. 

The following substitutions are introduced for notational simplicity: 

0 0

0 0

r1 1 s 3

r 2 2 s 4

( ) ( ) (1 ) ( ),

( ) ( ) (1 ) ( ).

T T

k k k

T T

k k k

t e x t l e x t

t e x t l e x t
 

The determinant of the matrix is given by 

(26)  
p s 1 r1 2 r 2

det ( ) ( ( ) ( ) ( ) ( )) 0.
k k k k k

t n l x t t x t tB  

The invertibility condition (requirement for a non-zero determinant of the 

decoupling matrix) represents the requirement for non-ortogonality of the stator 

flux vector 
s

( )
AB k

tφ
 and the vector T

r r1 r 2
( ) [ ( ),  ( )] .

k k k
t t tφ  

Note that as 
0

0T ,  1 1

r r r r s s s
( ) ( ) ( ( ) ( )).

k AB k AB k AB k
t ml t ml t l tφ φ φ i  Thus, in 

the asymptotic continuous-time case, the condition is reduced to preventing the 

stator and rotor flux vectors from becoming orthogonal, which, as pointed out in 

[9], can be related to the maximal available torque of the machine for its current 

electromagnetic state. More strictly, if the maximal available motor torque is not 

required, that is, if the torque satisfies 

(27)   max 1

m m p s r s r
( )n m l l φ φ  

with max

m  
being the maximal torque, the realizability of the control law is 

guaranteed. 

The motor torque, expressed in terms of the stator and rotor fluxes, is given by 
1 T

m p s r s r
( )n m l l φ Jφ  and max

m
 is obtained when the two flux vectors are 

orthogonal. 

It should be noted, that only the strict equality is not allowed. Also, normally 
max

m
 is much higher than the rated machine torque for the nominal operation 

regimes, so that the invertibility condition does not impose substantial limitations 

on the achievable performance. 

The insight gained from the continuous-time case can be applied for the 

discrete-time case considered here. An approach to ensure the realizability of the 
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proposed control law may consist of a dynamically saturating signal 
1
( )

k
v t  (it can 

be viewed as a torque reference) so that det ( )
k

tB remains negative. 

5. Simulation results 

To validate the proposed discrete-time model of the induction motor and the 

linearizing control law, a set of simulations were conducted. The following model 

was implemented in Matlab, Simulink environment. 

 

 
Fig. 2. Simulation model 

 

The induction machine parameters used in the simulations are taken from [7] 

and are as follows: 
s

0.052 Ωr , 
s

0.03175 Hl , 
r

0.07 Ωr , 
r

0.0323 Hl , 

m 0.031 H ,
 p

2n , 2
0.41 kg.mJ . The nominal power and the rated torque are 

nom
37 kWP  and 

nom
240 N.m . The value of the viscous friction coefficient is set 

to  4
10  N.m.sc .  

The sampling period was set to 
0

1 msT . Some of the results are shown in  

Fig. 3.  

All transients confirm the validity of the discrete-time description of the motor 

since all signals produced by the model (shown held during sampling periods), 

match exactly the motor fluxes and the speed (the details shown in the embedded 

graphs). Also, the expected control performance is confirmed since no coupling is 

observed between the outputs and each output tracks its respective input with a 

delay of one sampling period, as given by (25).  
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Fig. 3. Simulated transients 
 

No outer loops were introduced and the two input variables are used as 

references for the respective outputs. The steady state values of 
2
( )

k
v t  were 

generated from the desired magnitudes of the squared stator flux by using (21). As 

seen, the actual squared flux magnitude reaches the desired reference value, thus 

proving that the scale factor in (21) is correct. It should be noted that slight 

deviations above the obtained in this way reference value, will be observed since 

the slip speed is not zero. These, as well as the ripples observed in the flux 

magnitude are insignificant from a practical point of view. Insignificant ripples are 

observed also in the motor torque. On the other hand, large ripples are observed in 

the second output of the motor, though this is not relevant to the control or the 

operation regimes of the motor. As seen, a certain dynamic lag is observed between 
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the actual squared flux value and the second output reference, the settling-time of 

the flux seeming to be practically unaffected by the reference rise-time. Finally, at 

1 st , as the torque step reference is applied, a small deviation in the squared flux 

magnitude is seen, which shows coupling between these quantities, though again, as 

obvious, the amplitude is insignificant. A load torque of 100 N.m  is applied at 

1.6 st . 

Fig. 4 shows transients with an outer control loop introduced in the flux 

subsystem. The controller is designed, based on the following assumption: 
0 0

2 22 2 2 2

2 1 1 1 1 2 1 s s 1
( ) ( ) ( ) ( ( ) ( )) ( ) ( ) .

T T

k k k k k k k
y t x t x t e x t x t t e tφ φ  

Thus, a discrete-time transfer function can be defined and the outer loop is 

configured as given in Fig. 5. The respective variations of 
2
( )

k
v t and 

2
( )

k
y t are 

shown in the graph to the right. The torque and speed responses are the same as in 

Fig. 3. 

 
Fig. 4. Simulated transients 

 

 

 

 
 

Fig. 5. Outer control loop configuration  
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6. Conclusion 

In this paper an exact discrete-time model of the induction motor in a current-fed 

mode, including stator flux components, is derived and validated. As above 

mentioned, in the practical setup the current-fed mode is forced by additional 

current control loops. In order the discrete-time representation to hold exactly, the 

stator currrents applied to the motor (the currents in the α-β frame, or at least their 

reference values), must vary between the sampling instants, unless the rotor speed is 

zero, as seen by the coordinate transformation between the two frames. This will 

require a higher performance current control, which in turn will call for faster, and 

possibly more complex current control loops, as well as higher sampling rates in the 

position signal acquisition channel. 

Based on the derived exact discrete-time representation of the motor dynamics, 

an input-output linearizing and decoupling control is designed for torque and stator 

flux magnitude control. The applied design technique requires a non-trivial 

definition of the electromagnetic output of the motor. However, a well specified 

modification results in a useful output definition, which is motivated by thorough 

analysis and discussion. The major benefit of the proposed scheme is that the 

stability analysis of the closed-loop system is trivial, since no approximations are 

done in any stage of the design. Of course, precise current control is assumed for a 

discrete-time model of the motor that holds exactly. 

Some simulated transients are presented showing that the aimed performance 

is obtained, that is, no coupling exists between the outputs, and the initial design 

problem of controlling the nonlinear interacting TITO system is reduced to a 

problem of controlling two linear and decoupled SISO systems with simple 

dynamics. 

The proposed control law calculation requires stator fluxes, which in a 

practical setup will require the implementation of a certain flux estimation scheme 

in the overall control system structure. This represents a whole separate research 

field. The voltage model is the trivial choice, though it is known for the pure 

integration-related drift problems. Here, a different model arises, not including pure 

integration, although the rotor resistance returns in the expressions, thus bringing 

back the related variability issues. 

The future research may focus first on including the current deviations from 

their desired values in the formal setup and studying the induced effects. Of course, 

further simulation studies with more detailed models, accounting the different 

processes, present in a practical implementation, such as current control, noises, 

flux estimation, parameter variability are planned, in order to validate the 

applicability of the proposed control law in a practical setup and ultimately, lead to 

experimental validation on a physical testbed. 
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