
 63

BULGARIAN ACADEMY OF SCIENCES 
 
 
CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 13, No 2 
 
Sofia • 2013  Print ISSN: 1311-9702; Online ISSN: 1314-4081 

DOI: 10.2478/cait-2013-0015 
 
 
 
 
 
 
 
Study on Deployment of Web Services for User Interaction  
in Multimedia Networks 

Ivaylo Atanasov 
Faculty of Telecommunications, Technical University of Sofia 
Email:  iia@tu-sofia.bg 

Abstract: The paper studies issues concerning the deployment of third party control 
on user interactions by Web Services. A mapping of Web Service interfaces onto 
control protocols in multimedia networks is described. Models of user interaction 
session are proposed. It is proved that both models expose equivalent behaviour. A 
use-case example is provided. 

Keywords: Web Services, Internet Protocol Multimedia Subsystem, Interface to 
protocol mapping, Labelled Transition Systems, Bisimulation. 

1. Introduction 

Opening the network allows third party applications to invoke communication 
capabilities, such as session management and access to information in public 
networks using application programming interfaces. The APIs provide an 
abstraction of underlying network technology and control protocols and enable easy 
development of innovative applications. Opening the networks provides a number 
of benefits for service developers, operators and end users. For network operators it 
is a way to increase the traffic in the network and therefore to increase the revenue. 
The service providers may develop applications using access to functions in the 
network without telecommunications knowledge. They may combine Information 
Technology (IT) applications with communications functions for end users who 
enjoy enhanced communication applications that are customized to their needs. 

To achieve network programmability, Open Service Access (OSA) interfaces 
are defined. OSA APIs provide access to call and session control, messaging, user 
interaction control, charging, as well as access to information about user location 
and status. The abstraction provided by OSA APIs is relatively low which means 



 64

that the usage of OSA interfaces requires some telecommunications expertise by IT 
application developers. In order to make the process of application creation 
accessible for wider developer community and to shorten the way to the market, 
Parlay X APIs are defined. Parlay X is a set of Web Services that allow interfaces 
for programmability of communication resources [5, 10, 11]. The Parlay X 
interfaces are not as flexible as OSA interfaces but they are easier and simpler to 
use and provide high level of abstraction. 

Deployment of open access to network capabilities requires implementation of 
a gateway which is a special type of application server [8]. The gateway exposes 
API towards third party applications and supports control protocols towards the 
network. It needs to translate the invocation of interface methods into control 
protocols messages and vice versa. In addition, it must maintain two state machines 
– one modelling the application view on the state of the network resources and 
another one modelling the control protocol view. Both state machines in the 
gateway must be synchronized to expose equivalent behaviour.  

There exist two alternatives for deployment of Parlay X Web Services. One 
alternative exploits Parlay X gateway that interacts directly with a network node. 
The other alternative is to implement an OSA gateway as a mediator between 
Parlay X gateway and the network node. In the latter case, Parlay X APIs 
invocations are translated into OSA APIs ones which in turn are translated into 
control protocols messages. 

In this paper, the focus is on open access to User Interaction (UI) control in all 
Internet protocol based multimedia networks. The Parlay X Audio Call is a web 
service that allows programmability of UI in the network [4]. The OSA UI APIs 
provide more flexible tool for controlling of UIs [2]. In IMS, session management 
including media control for user interaction rely on Session Initiation Protocol (SIP) 
signalling. The specification of OSA UI API does not define interface to SIP 
protocol mapping. Further, while the specification defines a model of UI as seen by 
application, SIP does not define any session management model. Some of the 
publications [16, 17] concerning OSA gateway implementation focus on aspects 
related to the application programming interfaces, while other authors [9, 13-15] 
discuss the evaluation of conformance of the basic session control mechanisms of 
an IMS out of the application context. This paper describes the mapping of Parlay X 
Audio Call interfaces onto OSA UI interfaces, and respectively onto SIP messages. 
A SIP model of user interaction in IMS is proposed. Both models representing the 
view of UI as seen by applications and by SIP are formally described and it is 
proved that both models behaviours are synchronized. 

The paper is structured as follows. The next section describes functional 
architecture for deployment of Parlay X Web Services in multimedia networks. 
Section 3 presents in brief the Parlay X Third Party Call and Parlay X Audio Call 
Web Services. Section 4 provides a mapping of APIs for UI onto SIP messages. In 
Section 5, formal descriptions of UI session models as seen by third party 
application and by the network are provided and it is proved that both models 
expose equivalent behaviours. An example application that uses Parlay X APIs is 
presented in Section 6. Finally, the conclusion summarizes the paper contributions. 



 65

2. Deployment of parlay X web services in IMS 

Internet protocol Multimedia Subsystem (IMS) is service control architecture 
intended to provide all types of multimedia services based on IP connectivity. In 
IMS control architecture, Application Servers run applications some of which may 
reside in a 3-rd party network. Fig. 1 shows one of the alternatives for deployment 
of Parlay X web services in IMS [6]. The interworking between 3-rd party control 
and network functions is provided by Parlay X gateway and OSA gateway. The 
Parlay X gateway translates the Parlay X APIs into OSA APIs. The OSA gateway 
communicates with Serving CSCF (S-CSCF) which is responsible for user 
registration and session management which rely on SIP signalling. Media Resource 
Function Controller (MRFC) and Media Resource Function Processor (MRFP) 
together provide mechanisms for media services such as conferencing, 
announcements to users or bearer transcoding in the IMS architecture. The MRFC 
handles SIP communication to and from the S-CSCF and controls the media 
resources of MRFP using H.248 protocol. The MRFP provides media resources 
requested and instructed by the MRFC. The Home Subscriber Server (HSS) is a 
database which stores the user profiles. The access to user data in the HSS is based 
on Diameter signalling.  

It is also possible for network operator to connect the Parlay X gateway 
directly to the S-CSCF and HSS. In this case the Parlay X gateway needs to “talk” 
SIP and Diameter protocols. 

 
Fig. 1. Open access to media services in IMS  

 

Application server 

 

OSA API 

 

S-CSCF 

HSS SIP 

SIP 

Diameter 

OSA Gateway 

3rd party 
network 

 

MRFC 

 

MRFP 
H.248 

 Application view on 
user interaction 

SIP session for user 
interaction 

Parlay X Gateway 

Parlay X API 



 66

3. Parlay X interfaces for session management and media control 

The Parlay X Third Party Call web service may be used to create and manage a call 
initiated by an application (third party call) [3]. The overall scope of this Web 
Service is to provide call handling functions to application developers to create a 
call in a simple way without detailed telecommunication knowledge. The 
underlying model of the service is based on the following entities: 

• Call Session: A call (uniquely identified), to which participants can be 
added/removed. 

• Call Participant: Each of the call parties (uniquely identified) involved in 
the call session.  

• Media: the call can utilize multiple media types to support the participants’ 
communication. In particular both audio and video streams are available, including 
the specific stream direction (i.e., incoming, outgoing, bidirectional). 

An application setting up a call session must initially invoke the 
makeCallSession. The result of such invocation is the creation of a “context” that 
represents a call session with usually two participants, or at minimum one 
participant connected, a unique identifier is assigned to the just-created call session. 
Subsequently the application may wish to add, remove or transfer call participants. 
In order to do so, the operations addCallParticipant, transferCallParticipant, 
deleteCallParticipant can be used. Furthermore the call session or call participant 
status including the media details can be read. In order to do so the operations 
getCallParticipantInformation, and getCallSessionInformation can be used. It is 
also possible to retrieve the media details on its own using the 
getMediaForParticipant or getMediaForCall operations of the Audio Call web 
service. The application can also force the call session and all its participants to be 
terminated with the operation endCallSession. 

The Parlay X Audio Call web service may be used for multimedia message 
delivery and the dynamic management of the media involved for the call 
participants. The interface is very simple, not requiring the developer to manage the 
creation of the call. There are several mechanisms which may be utilized for the 
message content: 

• Text, to be rendered using a text-to-speech engine. 
• Audio content (such as .wav content), to be rendered by an audio player. 
• VoiceXML, to be rendered using a VoiceXML browser. 
• Video, to provide video streaming to the user. 
• Capture media input from the end user. 
The service may provide one or more mechanisms, as determined by service 

policy. The service allows application control of the call participants’ multimedia in 
a call: 

• Allow multiple media types for each participant. In particular both audio 
and video, as well as chat and data.  

• Add and delete media types. 
• Control the specific media stream direction (i.e., incoming, outgoing, 

bidirectional) for each media type. 



 67

• Get the current media status of a single call participant or for all the call 
participants in a call. 

• Control the media interactions for a call participant.  

4. Interface to protocol mapping 

In order to deploy Parlay X web services in the network, it is required to map 
interface operations onto OSA interface methods in case of OSA gateway usage or 
directly onto network protocols. 

OSA APIs provide more flexibility in programming of call and session 
management and related user interactions. OSA provides two forms of call control 
interface. The Generic Call Control APIs support simple two-party voice calls. The 
three sets of interfaces are defined for control of multiparty, multimedia and 
conference calls. The Multiparty Call Control APIs provide methods required to set 
up, modify and clear multiparty calls [1]. The Multimedia Call Control APIs inherit 
all the methods of the multiparty interfaces and therefore form an enhanced 
interface that allows the control and manipulation of media within a multiparty call. 
The Conference Call Control APIs inherit the methods of the other two interfaces 
while adding specialized capabilities, for handling conference participants. Closely 
allied to call control APIs is the User Interaction APIs that allow the application to 
use IVR (Interactive Voice Response) capabilities.  

In IMS, SIP is the control protocol for multimedia session establishment, 
modification and termination.  Table 1 shows the suggested mapping of Third Party 
Call interfaces onto OSA Multiparty Cal, Control interfaces and respectively onto 
SIP messages. 

Table 1 shows the suggested mapping of Audio Call interfaces. SIP signaling 
in the networks is concerned with playing announcement or media and reflects the 
SIP session management with MRFC. The announcement may be sent in the body 
of SIP INVITE request or SIP INFO request. If media services are used to prompt 
the user and collect information, then the user’s answer is transmitted by the body 
of SIP response 200 OK of the related INVITE or with a dedicated INFO request 
and the related 200 OK response. SIP signaling in the network related to adding or 
removing media for call participant reflects the call handling.  

5. Formal specification of user interaction models 

The formal specification of finite state machines as Labeled Transition Systems 
allows proving the behavioral equivalence and hence the interworking of OSA User 
Interaction control and IMS media service control. This may be used for automatic 
generation of test cases during the OSA gateway verification. 

5.1. Labeled Transition Systems and behavioral equivalence  

To prove behavioural equivalence between state machines formally, the notion of 
Labelled Transition Systems is used [7].  



 68

Definition 1. A Labelled Transition System (LTS) is a quadruple (S, Аct, →, 
s0), where S is a countable set of states, Act is a countable set of elementary actions, 
→ ⊆ S × Act × S  is a set of transitions, and  s0 ∈ S  is a set of initial states.  

Table 1. Functional mapping of Third Party Call operations 
Third Party Call 
operations 

OSA Multi-Party Call Control methods SIP messages 

MakeCallSession IpMultiPartyCallControlManager.createCall; 
IpMultiPartyCall.createAndRouteCallLegReq 
or IpMultiPartyCall.createCallLeg and 
IpCallLeg.routeReq 

INVITE; 183; PRACK; 
200[PRACK], UPDATE, 
200[UPDATE], 
180; 200[INVITE]; ACK 

AddCallParticipant IpMultiPartyCall.createAndRouteCallLegReq 
or IpMultiPartyCall.createCallLeg and 
IpCallLeg.routeReq 

INVITE; 183; PRACK; 
200[PRACK], UPDATE, 
200[UPDATE], 
180; 200[INVITE]; ACK 

TransferCallPartici-
pant 

IpCallLeg.routeReq and IpCallLeg.release INVITE; 200[INVITE]; 
BYE; 200[BYE] 

GetCallParticipant 
Information 

IpCallLeg.getInfoReq; IpCallLeg.getCall; 
IpCallLeg.getCurrentDestinationAddress; 
IpCallLeg.getProperties 

INFO; 200[INFO] 

GetCallSessionIn-
formation 

IpMultiPartyCall.getInfoReq; 
IpMultiPartyCall.getCallLegs 

INFO; 200[INFO] 

DeleteCallParticipant IpCallLeg.release BYE; 200[BYE] 
EndCallSession IpMultiPartyCall.release or IpCallLeg.release BYE; 200[BYE] 

Table 2. Functional mapping of Audio Call operations 
Audio Call operations OSA Multi-Party Call Control и User Interaction 

methods 
SIP messages 

PlayTextMessage, 
PlayAudioMessage, 
PlayVoiceXml-
Message, 
PlayVideoMessage 

IpMultiPartyCallControlManager.createCall; 
IpMultiPartyCallControl.createAndRouteCallLeg
Req or IpMultiPartyCall.createCallLeg, 
IpCallLeg.eventReportReq, IpCallleg.routeReq; 
IpUIManager.creteUICall; IpUICall.sendInfoReq  

INVITE; 183; PRACK; 
200[PRACK]; UPDATE; 
200[UPDATE]; 180; 
200[INVITE]; ACK 

GetMessageStatus IpAppUIManager.reportEventReq INFO; 200[INFO] 
EndMessage IpUICall.abortActionReq BYE; 200[BYE] 
StartPlayAndRecord 
Interaction 

IpMultiPartyCallControlManager.createCall; 
IpMultiPartyCallControl.createAndRouteCallLeg
Req or IpMultiPartyCall.createCallLeg, 
IpCallLeg.eventReportReq, IpCallleg.routeReq; 
IpUIManager.creteUICall; 
IpUICall.sendInfоAndCollectReq 

INVITE; 183; PRACK; 
200[PRACK]; UPDATE; 
200[UPDATE]; 180; 
200[INVITE]; ACK; 
INFO; 200[INFO]; 

StopMediaInteraction IpUICall.abortActionReq BYE; 200[BYE] 
AddMediaForParti-
cipants 

IpCallLeg.attachMediaReq re-INVITE;200[INVITE]; 

DeleteMediaForParti-
cipants 

IpCallLeg.detachMediaReq re-INVITE;200[INVITE]; 

GetMediaForPartici-
pant 

IpCallLeg.getInfoReq INFO; 200[INFO] 

GetMediaForCall IpMultiPartyCall.getInfoReq INFO; 200[INFO] 

 

 



 69

The following denotations are used: 

– s
а
→ s´ stands for the transition (s, a, s´); 

– s 
а
→  means that ∃ s´: s

а
→  s´; 

– s
μ

⇒ sn , where μ  = а1, а2, ..., аn : ∃ s1, s2, …, sn, such that s
1а

→ s1 ... 
nа

→
sn; 

– s
μ

⇒  means that ∃ s´, such as s
μ

⇒  s´; 

– ⇒
μ̂

means ⇒  if μ ≡ τ or 
μ

⇒ otherwise, 
where τ is one or more internal (invisible) actions.  

The concept of bisimulation [12] is used to prove that two LTS expose 
equivalent behaviour. The strong bisimulation possesses strong conditions for 
equivalence which are not always required. For example, there may be internal 
activities that are not observable. The strong bisimulation ignores the internal 
transitions.  

Definition 2 [12]. Two labelled transition systems T = (S, A, →, s0 ) and  
T´ = (S´, A, →´, s0´) are weekly bisimilar if there is a binary relation U ⊆ S×S´, such 
that if s1 U t1 : s1 ⊆ S and t1 ⊆ S´  then ∀a ∈ Act: 

- s1 ⇒
a  s2 implies ∃ t2 : t1 ⇒′

â  t2 and s2 U t2; 

- t1⇒′
a  t2  implies ∃ s2: s1  ⇒

â  s2 and s2 U t2. 

5.2. Formal description of OSA user interaction 

The application view on UI object is defined in [2]. The behaviour of the UI object 
can be described by finite state machine. In Null state, the UI object does not exist. 
The UI object is created when the createUI() method is invoked or a network event 
is reported by reportNotification() method. In Active state, the UI object is 
available for requesting messages which have to be sent to the network. Both 
sendInfoAndCollectReq() and sendInfoReq() methods have a parameter indicating 
whether it is the final request and the UI object is to be released after the 
information has been presented to the user. In Active state, in case a fault is 
detected on the user interaction, an error is reported on all outstanding requests. A 
transition to Release Pending state is made when the application has indicated that 
after a certain message no further messages need to be sent to the end-user. There 
are, however, still a number of messages that are not yet completed. When the last 
message is sent or when the last user interaction has been obtained, the UI object is 
destroyed. In Finished state, the user interaction has ended. The application can 
only release the UI object. A simplified state transition diagram for UI object is 
shown in Fig. 2. 



 70

  

 
Fig. 2. OSA application view on the UI object 

By ТAppUI = (SAppUI, АctAppUI, →AppUI, s0´) we denote a LTS representing the 
OSA application view on UI object where: 

- SAppUI  = { Null, Active, ReleasePending, Finished };  
- ActAppUI  = { createUI, reportNotification, sendInfoReq[final], sendInfoReq[not final], 

sendInfoAndCollectReq[final], sendInfoAndCollectReq[not final], 
sendInfoRes[final], sendInfoRes[not final], sendInfoErr[final], 
sendInfoErr[not final], sendInfoAndCollectRes[final], 
sendInfoAndCollectRes[not final], sendInfoAndCollectErr[final], 
sendInfoAndCollectErr[not final], userInteractionAborted, release }; 

   - →AppUI  = { Null createUI Active,  
Null reportNotification Active, 
Active sendInfoReq[not final] Active, 
Active sendInfoRes[not final] Active, 
Active sendInfoAndCollectReq[not final] Active, 
Active sendInfoAndCollectRes[not final] Active, 
Active sendInfoErr[not final] Active, 
Active sendInfoAndCollectErr[not final] Active, 
Active release Null, 
Active sendInfoReq[final] ReleasePending, 
Active sendInfoRes[not final] ReleasePending , 
ReleasePending sendInfoErr[final] Active, 
ReleasePending sendInfoErr[not final] ReleasePending, 
ReleasePending sendInfoRes[final] Finished, 
ReleasePending userInteractionAborted Finished, 

CreateUI, ReportNotification 
Active 

Release 
Pending 

Finished 

SendInfoReq[final],
SendInfoAndCollectReq[final]

and responses outstanding,
SendInfoRes[not final]

SendInfoReq,
SendInfoAndCollectReq

SendInfoReq[final] and no 
responses outstanding, 
UserInteractionAborted 

Release 

Release 

Release 

SendInfoRes, 
SendInfoAndCollectRes, 
SendInfoErr, 
SendInfoAndCollectErr 

SendInfoErr[final], 
SendInfoAndCollectErr[final] 

SendInfoRes[final], 
SendInfoAndCollectRes[final], 

UserInteractionAborted 
and no responses outstanding 

SendInfoAndCollectRes[not final], 
SendInfoAndCollectErr[not final], 
SendInfotErr[not final] 



 71

ReleasePending release Null, 
Finished release Null, 
Active sendInfoAndCollectReq[final] ReleasePending, 
ReleasePending sendInfoAndCollectErr[final] Active, 
ReleasePending sendInfoAndCollectRes[not final] ReleasePending, 
ReleasePending sendInfoAndCollectErr[not final] ReleasePending, 
ReleasePending sendInfoAndCollectRes[final] Finished, 
Active sendInfoReq[final] Finished, 
Active userInteractionAborted Finished }; 

   - s0´ = { Null }.  

5.3. Formal description of SIP Session with MRFC 
We describe formally the SIP session with MRFC. By ТSIP = (SSIP, АctSIP, →SIP, s0) a 
LTS is denoted which represents a simplified SIP session state machine where  

- SSIP  = { Idle, Wait200INVITE, Established, Wait200INFO, Wait200BYE };  
- ActSIP  = { INVITE, 200INVITE, INFO, 200INFO, BYE, 200BYE}; 
- →SIP = { Idle INVITE Wait200INVITE, 

Wait200INVITE 200INVITE Established, 
Established INFO Wait200INFO, 
Wait200INFO 200INFO Established, 
Established BYE Wait200BYE  
Wait200BYE 200BYE Idle }; 

    - s0  = { Idle }. 

5.4. User interaction models behavioral equivalence  
To prove that both user interaction models in OSA and IMS running at the OSA 
gateway are synchronized, it must be proved that the state machine representing the 
OSA user interactions and the SIP state machine expose equivalent behaviour. The 
behavioural equivalence is proved using the concept of weak bisimilarity.   

Proposition. The Labelled Transition Systems ТAppUI and ТSIP are weakly 
bisimilar. 

P r o o f: To prove the bisimulation relation between two Labelled Transition 
Systems, it has to be proved that there is a bisimulation relation between their 
states. By U a relation is denoted between the states of ТAppUI  and ТSIP where  
U = {(Null, Idle), (Active, Established)}. Table 3 presents the bisimulation relation 
between the states of ТAppUI and ТSIP  which satisfies Definition 2. The mapping 
between the OSA User Interaction interface methods and SIP messages defined in 
Section 3 shows the action’s similarity. Based on the bisimulation relation between 
the states of ТAppUI and ТSIP it can be stated that both systems expose equivalent 
behavior.  

6. Use case of open access to user interaction 

Let us consider an example application that sends greetings on occasion (e.g., on 
birthdays). The sequence diagram in Fig. 3 shows a “greeting message”, in the form 
of an announcement, being delivered to a user as a result of a trigger from an 



 72

application. Typically, the application would be set to trigger at certain time, 
however, the application could also trigger on other types of events. 

Table 3. Bisimulation relation between OSA user interaction and SIP media session  
Transitions in ТAppUI Transitions in ТSIP 

Null createUI Active Idle INVITE Wait200INVITE, wait200INVITE 200INVITE Established 

Null reportNotification Active Idle INVITE Wait200INVITE, Wait200INVITE 200INVITE Established 

Active sendInfoReq[not final] Active Established INFO Wait200INFO, Wait200INFO 200INFO Established 

Active sendInfoRes[not final] Active Established INFO Wait200INFO, Wait200INFO 200INFO Established 

Active sendInfoAndCollectReq[not final] Active Established INFO Wait200INFO, Wait200INFO 200INFO Established 

Active sendInfoAndCollectRes[not final] Active Established INFO Wait200INFO, Wait200INFO 200INFO Established 

Active sendInfoErr[not final] Active Established INFO Wait200INFO, Wait200INFO 200INFO Established 

Active sendInfoAndCollectErr[not final] Active Established INFO Wait200INFO, Wait200INFO 200INFO Established 

Active release Null Established BYE Wait200BYE, Wait200BYE 200BYE Idle 

Active sendInfoReq[final] ReleasePending, 
Active sendInfoRes[not final] ReleasePending,  
ReleasePending sendInfoErr[final] Active, 
ReleasePending sendInfoErr[not final] 
ReleasePending, 
ReleasePending sendInfoRes[final] Finished, 
ReleasePending userInteractionAborted Finished,
ReleasePending release Null, 
Finished release Null 

Established INFO Wait200INFO, Wait200INFO 200INFO Established,  
Established INFO Wait200INFO, Wait200INFO 200INFO Established,  
Established INFO Wait200INFO, Wait200INFO 200INFO Established,  
Established INFO Wait200INFO, Wait200INFO 200INFO Established, 
Established INFO Wait200INFO, Wait200INFO 200INFO Established, 
Established INFO Wait200INFO, Wait200INFO 200INFO Established, 
Established BYE Wait200BYE, Wait200BYE 200BYE Idle, 
Established BYE Wait200BYE, Wait200BYE 200BYE Idle 

Active sendInfoAndCollectReq[final] 
ReleasePending, 
ReleasePending sendInfoAndCollectErr[final] 
Active, 
ReleasePending sendInfoAndCollectRes[not 
final] ReleasePending, 
ReleasePending sendInfoAndCollectErr[not 
final] ReleasePending, 
ReleasePending sendInfoAndCollectRes[final] 
Finished, 
ReleasePending userInteractionAborted Finished,
ReleasePending release Null, 
Finished release Null 

Established INFO Wait200INFO, Wait200INFO 200INFO Established,  
Established INFO Wait200INFO, Wait200INFO 200INFO Established,  
Established INFO Wait200INFO, Wait200INFO 200INFO Established,  
Established INFO Wait200INFO, Wait200INFO 200INFO Established, 
Established INFO Wait200INFO, Wait200INFO 200INFO Established, 
Established INFO Wait200INFO, Wait200INFO 200INFO Established, 
Established BYE Wait200BYE, Wait200BYE 200BYE Idle,  
Established BYE Wait200BYE, Wait200BYE 200BYE Idle 

Active sendInfoReq[final] Finished, 
Finished release Null, 

Established INFO Wait200INFO, Wait200INFO 200INFO Established, 
Established BYE Wait200BYE, Wait200BYE 200BYE Idle 

Active userInteractionAborted Finished, 
Finished release Null 

Established INFO Wait200INFO, Wait200INFO 200INFO Established, 
Established BYE Wait200BYE, Wait200BYE 200BYE Idle 

The application requests an audio message to be played to the user. The Parlay 
X gateway initiates a call to the user using the OSA Call Control interfaces. The 
call is established in the network and the Parlay X gateway is notified. Then using 
the OSA UI interfaces the Parlay X requests from OSA gateway to create a copy of 
UI object. A signaling connection to the MRFC is established in the network. The 
Parlay Х gateway requests to play the audio message. The message is played and 
the result is reported to the Parlay X gateway and to the application. The application 
in turn requests the release of the call which is followed by resource release in the 
network.  



 73

 

Fig. 3. Playing an audio message using Audio Call and Third Party Call interfaces 

7. Conclusion  

The usage of Web Services for session management makes the development 
process of application with enhanced communication functions easer and simpler. 
The high level of abstraction provided by Parlay X interfaces enables application 
creation by IT developers without comprehensive knowledge in 
telecommunications protocols. 

Deployment of Parlay X web services requires by the network operator to 
implement a Parlay X gateway and OSA gateway which make the translation of 
interface methods into protocol messages and vice versa. The suggested mapping of 
Third Party Call and Audio Call operations SIP messages enables the usage of web 
services in all IP based multimedia networks.  

The main issue in deployment of Web Services is related to implementation of 
OSA gateway. The OSA gateway needs to maintain two mutually synchronized 
sessions representing the application and network views. The suggested model of 
SIP user interaction session describes the network view. The formal description of 
both models representing the application and network views provides a method for 
formal verification of the functional behavior of OSA gateway. The method is 
useful in testing the conformance of implementation of OSA gateway with respect 
to the specification, in the context of reactive systems. 

 

200 [1] 

:IpAppCall 
:IpAppUICall 

:IpCallControlManager 

:IpCall 
:IpUIManager 

:IpUICall 

OSA gateway SIP server 
S-CSCF MRFC 

createCall() new() 

routeReq() INVITE [1] 

Session establishment 

INVITE [2] 

200 [2] 

routeRes()

createUICall() new() 
INVITE [2] 

200 [2]
ACK [2] ACK [2] 

sendInfoReq() 
INFO [2] 

200 [2] 

INFO [2] 

200 [2] 

INFO [2] 

200 [2] 

INFO [2] 

200 [2]sendInfoRes() 

release() BYE [2] 

200 [2] 
BYE [2] 

200 [2] 
release()

BYE [1] 

Termination of user 
interaction session 

200 [1] 

:Play-
Media 

:Third-
Party-
Call 

:Gree-
ting-
App 

Parlay X gateway 

PlayAudioMessage Request() 
new() 

PlayAudioMessageResponse() 

EndCallSession 



 74

R e f e r e n c e s 

1. 3GPP TS 29.198-04-03, Open Service Access (OSA); Application Programming Interface (API). 
Part 4: Call Control Sub-Part 3: Multi-party Call Control Service Capability Feature;  
V. 9.0.0, 2009.  

2. 3GPP TS 29.198-05, Open Service Access (OSA); Application Programming Interface (API). Part 
5: User Interaction Service Capability Feature (SCF), V.9.0.0, 2009. 

3. 3GPP TS 29.199-02, Open Service Access (OSA); Parlay X Web Services. Part 2: Third Party Call,  
V. 9.0.0, 2009. 

4. 3GPP TS 29.199-11, Open Service Access (OSA); Parlay X Web Services. Part 11: Audio Call,  
V. 9.0.0, 2009. 

5. C a b r e r a, L., F. K u r t, D. B o x. An Introduction to the Web Services Architecture and Its 
Specifications, 2004.  
http://msdn2.microsoft .com/en-us/library/ms996441.aspx 

6. C h e n, R., E. S u, V. S h e n, Y. W a n g. Introduction to IP Multimedia Subsystem (IMS). Part 1: 
SOA Parlay X Web services. Computer and Information Science, 2006.  
http://www.mendeley.com/research/introduction-ip-multimedia-subsystem-ims-part-1-
soa-parlay-x-web-services/ 

7. C h e n a, X., R. N i c o l a. Algebraic Characterizations of Trace and Decorated Trace 
Equivalences over Tree-Like Structures. – In: Theoretical Computer Science, 2001, 337-361. 

8. D a r v i s h a n, A., H. Y e g a n e h, K. B a m a s i a n, H. A h m a d i a n. OSA Parlay X Gateway 
Architecture for 3rd Party Operators Participation in Next Generation Networks. – In: Proc. 
of 12th International Conference on Advanced Communication Technology ICACT’2010, 
2010, 75-80. 

9. I s l a m, S., J.-C. G r e g o i r e. Convergence of IMS and Web Services: A Review and a Novel 
Thin Client Based Architecture. – In: Proc. of 8th IEEE International Conference on 
Communication Networks and Services Research CNSR’10, 2010, 221-228.  

10. L o f t h o u s e, H., M. Y a t e s, R. S t r e c h. Parlay X Web Services. – BT Technology Journal, 
Vol. 22, 2004, Issue 1, 81-86. 

11. M o o r e, S., L. L i u. Web Services in Telecommunications. – IEEE Communications Magazine, 
Vol. 45, 2007, Issue 7, 26-27. 

12.  P a n a n g a d e n, P. Notes on Labelled Transition Systems and Bisimulation. 2004.  
http://www.cs.mcgill.ca/~ prakash/Courses/comp330/Notes/lts09.pdf 

13. T h o l o, S., H. H a n r a h a n. Expansion of Parlay X API for Enhanced Web Services. – In: Proc. 
of Southern Africa Telecommunication Networks and Applications Conference, 
SATNAC’2004, 2004, Western Cape, South Africa. 

14. V a n n u c c i, D., H. H a n r a h a n. OSA/Parlay-X Extended Call Control Telecom Web Services. 
– In: Proc. of Southern Africa Telecommunication Networks and Applications Conference, 
SATNAC’2007, 2007, Mauritius. 

15. Y a m a t o, Y., H. O h n i s h i, H. S u n a g a. Development of Service Control Server for Web-
Telecom Coordination Service. – In: Proc. of IEEE International Conference on Web 
Services ICWS’08, 2008, 600-607. 

16. Y a n g, J., H. P a r k. A Design of Open Service Access Gateway for Converged Web Service. – 
In: Proc. of 10th International Conference on Advanced Communication Technology, 2008, 
1807-1810. 

17. Y i m, J., Y. C h o i, B. L e e. Third Party Call Control in IMS using Parlay Web Service Gateway. 
– In: Proc. of 8th International Conference on Advanced Communication Technology 
ICACT’2006, 2006, 221-224.  


