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Abstract: An algorithm for multiple model adaptive control of a time-variant plant 
in the presence of measurement noise is proposed. This algorithm controls the plant 
using a bank of PID controllers designed on the base of time invariant input/output 
models. The control signal is formed as weighting sum of the control signals of 
local PID controllers. The main contribution of the paper is the objective function 
minimized to determine the weighting coefficients. The proposed algorithm 
minimizes the sum of the square general error between the model bank output and 
the plant output. An equation for on-line determination of the weighting coefficients 
is obtained. They are determined by the current value of the general error 
covariance matrix. The main advantage of the algorithm is that the derived general 
error covariance matrix equation is the same as this in the recursive least square 
algorithm. Thus, most of the well known RLS modifications for the tracking time-
variant parameters can be directly implemented. The algorithm performance is 
tested by simulation. Results with both SISO and MIMO time variant plants are 
obtained.  

Keywords: Multiple model adaptive control, input-output model, PID controllers, 
time variant plants.  

1. Introduction  

The control system design has to be often realized under apriori uncertainty of the 
process model parameters. On the other hand, many processes are significantly 
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changing their parameters during their normal functioning. Consequently, a general 
control system design problem is to provide efficient control of the processes with 
significant parameters changes. The Multiple Model Adaptive Control (MMAC) is 
one of the major approaches for control under significant parameters uncertainty [1-
5]. The main idea of MMAC is that the complex plant dynamics can be represented 
by a discrete finite set of simple local models with constant parameters. Each of 
them describes the dynamics for one or more regimes. Then a limited discrete set of 
simple local controllers tuned according to the corresponding simple model is 
designed. The control is formed as weighting sum of local controllers control 
signals. The weighting coefficients are determined on-line.  

Historically, the MMAC arises with the necessity to use the set of linear 
controllers in a state space system under the conditions of apriori uncertainty in the 
plant dynamics. In order to estimate the corresponding state vector in the plant 
linearized in a certain operation mode, linear Kalman filters are used [4]. The first 
idea for utilizing a set of linear Kalman filters is formed into the so called static 
multiple-model state space estimator [6]. Later a scheme of interactive multiple-
model estimator is proposed in [7], where a general state vector is calculated with 
different weight of each local filter operation according to apriori defined transition 
matrix. There are many different MMAC algorithms based on the state space 
controllers and Kalman filters [8] and there is a lack of such based on the input-
output model. Very close to MMAC based on the input-output model is the 
Multiple-Model Adaptive Switching Control [9-12]. The main idea is that each 
controller of the bank takes an independent action in the control system tuned 
according to the corresponding plant model at the corresponding regime. The on-
line controller switching is based on the performance index evaluation of the bank 
of models and/or controllers [3, 13]. This approach is suitable when the plant 
operating regimes are apriori known and/or well defined. The useful MMAC 
algorithm based on the linear input-output model and deadbeat controller is 
proposed in [12, 14, 15]. This algorithm does not use Kalman filters. It is especially 
suitable for control in case of low variance measurement noise. The weighting 
coefficients are determined based on the current value of the inverse output model 
error or the current value of the inverse exponential smoothing output model error.  

In this paper MMAC algorithm based on input-output models and PID 
controllers is proposed. Each model has the same structure but different values of 
the parameters. The MMAC algorithm is similar to the multiple model adaptive 
control and state estimation algorithm presented in [16]. The principal difference is 
that the algorithm suggested in [16] is based on the state space models. It uses the 
bank of linear Kalman filters and the corresponding bank of LQR controllers. The 
other significant difference is in the objective function minimized to determine the 
weighting coefficients. The proposed algorithm minimizes the sum of the square 
general error between the model bank output and the plant output whereas the 
algorithm described in [16] minimizes the trace of the general residual variance or 
the trace of the general innovation term variance. The general residual and the 
innovation term are a multiple model Kalman filter residual and an innovation term. 
The advantage of the algorithm proposed here is that the current values of the 
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weighting coefficients are determined by the current value of the general error 
covariance matrix. As it can be later seen the derived general error covariance 
matrix equation is the same as this in the recursive least square algorithm (RLS). 
This means that most of the well known RLS modifications for the tracking time-
variant parameters can be directly implemented in the suggested algorithm. 

The content of the paper is as follows. In Section 2 the proposed MMAC 
algorithm is derived. In Section 3 the pseudo code of the MMAC algorithm is 
given. The results from the simulation of MMAC of both SISO and MIMO systems 
are presented in Section 4 and some conclusions are made in Section 5. 

2. Multiple model adaptive control algorithm 

The block-diagram of the control system based on the proposed MMAC algorithm 
is shown in Fig. 1. 
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Fig. 1. Block-diagram of the control system based on MMAC algorithm 

Let the controlled plant is time variant and be described with the equation 
(1)  )()(),()(o ssutsWsy ξ+= , 

where rRsy ∈)(o is a vector containing plant outputs, mRsu ∈)( is a vector 
containing plant inputs, rRs ∈)(ξ is a vector containing the measurement noises and 

),( tsW  is the transfer matrix. It has the form 
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The elements of ),( tsW  are given by   
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where )(...,),(),( 21 tbtbtb
ijijij n and )(...,),(),( 21 tatata

ijijij n  are the transfer function 

parameters. It is supposed that the parameters 
ijlb and

ijla , nl ...,,2,1=  are changing 

according to known value intervals ][ maxmin ijijij lll bbb ∈  and ][ maxmin ijijij lll aaa ∈ . 

Then the complex plant dynamics can be approximated with a limited set of time 
invariant models referred as local ones. Each local model contains a combination of 

ijlb and 
ijla  values of parameters into the known variation intervals. These 

continuous-time transfer functions are put into a discrete-time form in order to 
design a set of discrete PID controllers.  

The set of local models forms the model bank in the structure scheme 
presented in Fig. 1. The description of i-th discrete-time local model is given by 
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where 
ijijij dndd bbb ...,,, 21 , and 

ijijij dndd aaa ...,,, 21  are the local model parameters. For 

each sample the combination of the local models is used to model the global plant 
behavior. A PID controller is designed for each local model.  

The set of PID controllers forms the controller bank in the scheme presented in 
Fig. 1. The control signal is obtained as weighting sum of the local controllers 
control signals 
(3)  )(...)()()( 2211 kukukuku qqμμμ +++= , 

where ,...,,2,1),( qikui = are the local controllers control signals and 
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The description of the j-th digital PID controller is given by: 
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is the reference signal, 
jpK – the proportional gain of the j-th PID controller, int j

T – 

integral time of the j-th PID controller, 
jdT – derivative time of the j-th PID 

controller, 
j

d

N

T
j – a time constant of the j-th first-order low pass filter, T0 – the 

sample time, jj cd , – weighting coefficients of the j-th PID controller. 
The block named “Supervisor” determines on-line the current value of the 

weighting coefficients according to the proposed MMAC algorithm. In the 
algorithm a general model output y~ is used. It is formed as weighting sum of the 
local models outputs 
(9)  ,~ TTT yy μ=   
where  
(10)  [ ]T21 ... qμμμμ =  
is a vector containing the normalized weighting coefficients, and  
(11)  [ ]qyyyy ...21=  

is a qr×  matrix containing the local model outputs ....,,2,1, qiyi =  The equation 
(4) can be described in the form 
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The general output error e~  is given by 
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o
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Taking into account equations (9) and (12) the general output error can be 
expressed as 
(14)  eyyyye TTT

o
TTTT

o
TT ]1[1~ μμμμ =−=−=

−−
, 

where 
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is a rq×  matrix containing the errors  
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between the plant output and the local model output. 

The main contribution of the paper is the objective function used for 
determination of the weighting coefficients. This function is defined as 
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From expressions (16) and (14) the following equation is obtained 
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is a qq× matrix. 
After taking into account the normalization (4), the weighting coefficients are 

determined from 
(19)  ),(min λμ

μ
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where 
(20)  ]11[)(),( T −+=

−
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and λ  is the Lagrange gain. The necessary conditions for the extremum of (20) are  
(21)  0=∇ μL , 0=∇ λL , 
where Lμ∇  is the gradient with respect to c and λL∇ is the gradient with respect to 
λ . After differentiation of (20), according to (21) one obtains 
(22)  11,01)( T1 ==+

−−
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Thus, the vector μ can be obtained from 
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−
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After multiplying (23) to the left by T1
−

one finds 
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Thus, taking into account the normalization (4), the Lagrange gain can be 
expressed as 
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After substituting (25) into (23), the vector μ  is determined from 
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The matrix )(kP  is inverse of the one defined by (18). The equation (18) can 
be expressed as 
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It is important to note that the equation (27) is the same as the one for the 
inverse covariance matrix in the RLS algorithm. The determination of the weighting 
coefficients current values requires real time computation of the matrix )(kP rather 

than of the matrix )(1 kP− . Thus it is necessary to derive a recursive equation for the 
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computation of )(kP . Then the matrix inverse lemma is useful [17]. After applying 
the matrix inverse lemma to equation (27) one obtains 

(28) ),1()()]()1()()[()1()1()( T1T −−+−−−= − kPkekekPkeIkekPkPkP r  

where rI is the unit matrix. The current value of μ is determined from equation (26) 
where the current value of )(kP  is determined from equation (28). As can be seen 
for the single output plant the equation (28) is the same as one for the covariance 
matrix in the RLS algorithm if the regressors are substituted by the error )(ke . It is 
well known that the determination of )(kP according to equation (28) makes the 
recursive algorithm insensitive to the plant parameters changes. There are many 
useful modifications of RLS that modify the covariance matrix equation in order to 
keep algorithm’s sensitivity. The main advantage of the proposed MMAC algorithm 
is that most of these RLS modifications are applicable for equation (28).   

In this paper four well known modifications for covariance matrix 
determination are used. Their covariance matrix equations are presented in Table 1 
[18]. 
Table 1 
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directional 
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for SISO system) 
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where λ′  can be chosen as in RLS with exponential forgetting algorithm 
RLS with 

exponential 
forgetting 
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3. Pseudo code of MMAC algorithm 

The pseudo code of the MMAC algorithm involves the following steps. 

Step 1. Input initial conditions for the design process and choice of a limited 
model set.  
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This step is performed off-line and it includes: 
- Choice of the model number q. This is a very important task. MMAC offers 

an approach to model the complex plant dynamics by combination of simple local 
models. MMAC algorithm will ensure control system performance if the model set 
represents adequately the plant dynamics. On the other hand, utilization of 
unnecessary large number of models and controllers cannot guarantee the control 
performance. There are no general rules for the local model choice. The solutions 
for the particular tasks based on the state space models can be found in [19, 20]. 
The amount of the selected models is usually related to the operating condition at 
which the control system is expected to work. If the value intervals of the plant 
parameters changes are unknown, then the parameters of the local models can be 
estimated by an identification procedure for the time variant plant. 

- Choice of the sample time 0T , 
- Choice of the weighting coefficients initial values. The initial values of the 

weighting coefficients are usually chosen as ....,,2,1,1)0( qj
qj ==μ   

- Tuning of a limited set of local PID controllers. 
Each local PID controller is tuned off-line according to the corresponding local 

model in the model bank. 
- Choice of the initial value of the covariance matrix.  
The initial value of the covariance matrix has to be chosen in a similar manner 

as the one in the corresponding RLS algorithm. 
- Set the zero initial conditions for the local models and local controllers. 
Step 2. The output )(kyi  of each local model is determined from equations 

(2). 
Step 3. The error ie  of each local model is determined from equation (15) 
Step 4. The covariance matrix )(kP  is determined from one of the equations 

presented in Table 1. 
Step 5. The weighting coefficients ic , ,...,,2,1 qi =  are evaluated according to 

equation (26). 
Step 6. The control signal of each local PID controller is determined from the 

equations (5). 
Step 7. The general control signal ( )u k is calculated from equation (3). 

4. Simulation results 
The performance of the proposed MMAC algorithm in presence of measurement 
noise is tested by several simulated experiments. For this purpose software working 
in MATLAB and Simulink environment is developed. The MMAC algorithm 
performance is investigated in comparison with the control system based on the 
conventional PID controller tuned for an average plant model.   
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Example 1 
The time variant SISO plant is described by equation (1). The transfer function 

is given by 

(29) 
)18.0)(17.0)(1(
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+++

+−
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sss
stTtKtsW , 

where [ ]52)( ∈tK  and [ ]15.0)( ∈tT . The measurement noise )(tξ is zero mean 
white Gaussian noise with covariance 203.0=ξD . It is supposed that the plant 
dynamics can be approximated by three local models. Their transfer functions are 
chosen as: 
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The sample time is chosen as 0.25 s. During the simulation the reference signal 
and the parameters of transfer function (29) are varied as follows 
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It is important to note that only in the time range of 0-280 s the transfer 
function of the plant matches with some of the transfer functions in the model bank. 
The local PID controllers are tuned by optimization technique. The objective 
function used in the optimization procedure is given by 

∫ −=
20

0

2
ise ))()(( dttytrI . 

The following PID controller parameters are obtained: 
PID controller 1: ,10,1,1,9002.0,9597.1,5157.0 111int1 11

====== NbcTTKp d  
PID controller 2: ,10,1,1,9954.0,8144.1,2397.0 222int2 22

====== NbcTTKp d  
PID controller 3: .10,1,1,9912.0,8192.1,1398.0 333int3 33

====== NbcTTKp d  
The conventional PID controller is tuned for Model 2. In Fig. 2 the output 

signals of the system based on MMAC algorithm with regularization of the 
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covariance matrix (denoted by “MMACR”) and the system based on the 
conventional PID controller (denoted by ”PID”) are shown. The simulation of the 
MMAC algorithms are done for the following initial conditions  

MMACR algorithm: ,3.0min =c  ,100max =c  310)0( IP = , 
MMACCI algorithm: 1min =c , 4max =c , 2.0=c , 31.0)0( IP = , 
MMACDF algorithm: 9.0=′λ , 31.0)0( IP = . 
For better visualization the output signals of the same systems within the range 

of 700-1000 s are depicted in Fig. 3. In Figs. 4-5 the output signals of the system 
based on MMACR algorithm, the system based on MMAC algorithm with a 
directional forgetting factor (denoted by “MMACDF”) and the system based on 
MMAC algorithm with dependent updating of the covariance matrix (denoted by 
“MMACCI”) are indicated. In Figs. 6-9 the control signals of the same systems as 
the ones shown in Figs. 2-5 are presented. 
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Fig. 2. Output signals of the control systems based on MMACR and PID controllers 
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Fig. 3. Output signals of systems based on MMACR and PID controllers in the range 700-1000 s 
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Fig. 4. Output signals of systems based on MMACR, MMACDF and MMACCI controllers 
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Fig. 5. Outputs of systems based on MMACR, MMACDF and MMACCI controllers in the range  

700-1000 s 
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Fig. 6. Control signals of systems based on MMACR and PID controllers 
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Fig. 7. Control signals of systems based on MMACR and PID controllers in the range 700-1000 s 

It is seen from the figures that the performance of the systems based on all 
MMAC algorithms is better than this of the system based on a PID controller. The 
“PID” system response has large oscillations in the time range of 700-1000 s where 
the plant gain is higher than this used for the PID controller tuning. In the same 
range the systems based on MMAC algorithms kept their performance. The settling 
time of the systems based on all MMAC is considerably smaller than this of the 
system based on a PID controller. Furthermore, the “PID” system cannot work the 
reference in the time of 800-900 s. The “PID” system performance is good in the 
range 280-530 where the plant model is close to the one used for PID controller 
tuning. The results in Figs. 4-5 show that the output signals of the systems based on 
MMACR and MMACDF have smaller oscillations than those of the system based 
on MMACCI. Furthermore, the output response of MMACDF system is without 
overshoot in more cases. The MAACCI maximum deviation is greater than this of 
MMACR and MMACDF when the plant gain changes from 2 up to 4.   

In order to characterize more precisely the dynamic behaviour of the control 
systems their maximal overshoot maxσ  in the range 0-1100 s and the square mean 
error are computed. The square mean error isee  is determined as 

∫ −=
T

dttytr
T

e
0

2
ise ))()((1 . 

The computed performance indices are shown in Table 2. 
Table 2. Mean square error and maximal overshoot of the 
control systems 

Indices MMACR MMACCI MMACDF PID 

isee  0.0323 0.0294 0.0319 0.0545 

%,maxσ  8 7.5 9 172 

The indices presented in Table 2 point out the advantages of the proposed 
MMAC algorithms. The maximal overshoot of MMACR, MMACCI and 
MMACDF is approximately 9 times smaller than the corresponding value for PID. 
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The mean square error of the proposed algorithms is approximately 50% smaller 
than the corresponding value of the PID.  
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Fig. 8. Control signals of systems based on MMACR, MMACDF and MMACCI controllers 
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Fig. 9. Control signals of systems based on MMACR, MMACDF and MMACCI algorithms in the 

range of 700-1000 s 
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Fig. 10. Weighting coefficients of systems based on MMACR 

In Figs. 10-12 the weighting coefficients of the system based on MMAC 
algorithms are shown. As can be seen from the figures, the value of coefficient 1μ  
for MMACR and MMACCI is close to 1 in the  time range 0-280 s where the plant 
has the same transfer function as the one of Model 1. The weighting coefficient of 
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MMACR and MMACCI are reevaluated faster after each change of the parameters 
k% and/or T% than the corresponding values of MMACDF. The value of coefficient 

3μ  is close to 1 in the time range of 750-1100 s where the plant parameters are 
close to the ones of Model 3. 
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Fig. 11. Weighting coefficients of systems based on MMACCI 

0 200 400 600 800 1000 1200
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time

w
ei

gh
tin

g 
co

ef
fic

ie
nt

s

MMACDF weighting coefficients

 

 
μ1

μ2

μ3

 
Fig. 12. Weighting coefficients of systems based on MMACDF 

Example 2 
The time variant two input two output plant is described by equation (1). Its 

transfer matrix has the form 
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where 11 =k , [ ]52~
2 ∈k , 5.03 =k , [ ]32~

4 ∈k , 11 =T , [ ]15.0~
2 ∈T , 7.03 =T and 

7.04 =T . The measurement noise )(tξ is zero mean white Gaussian noise with 
covariance 2

201.0 ID =ξ . It is supposed that the plant dynamics can be 
approximated with the help of three local models. Their parameters are chosen as: 

Model 1: ,11 =k  ,22 =k  ,5.03 =k  ,34 =k  ,11 =T  ,5.02 =T  ,7.03 =T  ,7.04 =T  
Model 2: ,11 =k ,5.32 =k  ,5.03 =k  ,24 =k  ,11 =T  ,75.02 =T  ,7.03 =T  ,7.04 =T  
Model 3: ,11 =k  ,52 =k  ,5.03 =k  34 =k , ,11 =T  ,12 =T  ,7.03 =T  .7.04 =T  

Two PID controllers are tuned for each local model. The first one of them is 
based on a feedback from the first output and the second one is based on a feedback 
from the second output. The conventional PID controllers are tuned for a model 
with parameters as follows: 

,11 =k ,32 =k  ,5.03 =k  ,5.24 =k  ,11 =T  ,5.02 =T  ,7.03 =T  .7.04 =T  
The sample time is chosen as 0.25 s. During simulation the reference signal 

and the parameters of the transfer matrix vary as follows: 
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The local PID controllers are tuned by optimization technique. The objective 
function is given by 

∫∫ −+−=
20
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11ise ))()(())()(( dttytrdttytrI . 

The following PID controller parameters are obtained: 

Model 1: PID1 ,1467.0,0126.0,1829.0,1.1610 111int1 −=−=== ddp babK  
PID2 0899.0,0130.0,3805.0,6922.0 111int1 ==== ddp babK , 

Model 2: PID1 2042.0,0117.0,0168.0,1.7463 111int2 −=−=== ddp babK , 
PID2 ,0871.0,0126.0,1642.0,6891.0 111int2 ==== ddp babK  

Model 3: PID1 ,1549.0,0128.0,1294.01.2062, 111int3 −=−=== ddp babK  
PID2 .0801.0,0124.0,1783.0,0.6480 111int3 ==== ddp babK  

Conventional PID controllers:  
PID1 ,0223.0,0039.0,0315.0,0.5780 111int ==== ddp babK  



 28

PID2 .1042.0,0153.0,0118.0,0.6822 111int −=−=== ddp babK  
The simulation of MMAC algorithm operation is done according to the initial 

conditions 
MMACR algorithm: 3.0min =c , 100max =c , 310)0( IP = , 
MMACCI algorithm: 1.0min =c , 10max =c , 1=c , 3)0( IP = , 
MMACEF algorithm: 98.0=λ , 3)0( IP = . 
In Figs. 13-14 the output signals of the system based on MMAC algorithm 

with regularization of the covariance matrix (denoted by “MMACR”) and the 
system based on the conventional PID controller (denoted by ”PID”) are shown. In 
Figs. 15-16 the output signals of the system based on MMACR algorithm, the 
system based on MMAC algorithm with dependent updating of the covariance 
matrix (denoted by “MMACCI”) and the system based on MMAC algorithm with 
exponential forgetting (denoted by “MMACEF”) are depicted. In Figs. 17-18 the 
control signals of the same systems as the ones shown in Figs 13-16 are presented. 
In Fig. 19 the square error in the range 0-1100 s is presented. The control systems 
maximal overshoots, the square errors and settling times are shown in Tables 3-5. 
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Fig. 13. First output of the control systems based on MMACR and PID controllers 
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Fig. 14. Second output of the control systems based on MMACR and PID controllers 
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Fig. 15. First output of the control systems based on MMACR, MMACI and MMACEF 
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Fig. 16. Second output of the control systems based on MMACR, MMACI and MMACEF 
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Fig. 17. First control signal of the systems based on MMACR, MMACI, MMACEF and PID 

It is seen from the figures that the performance of the systems based on all 
MMAC algorithms is better than this of the system based on a PID controller. The 
systems based on all MMAC algorithms have a step response with sufficiently 
small overshoot (except MMACEF in the time range of 300-400 s) and a settling 
time in the range of 0-1100 s.  
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Fig. 18. Second control signal of the systems based on MMACR, MMACI, MMACEF and PID 
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Fig. 19. Square error of the systems based on MMACR, MMACI, MMACEF and PID in the range  

0-1100 s 
Table 3. Overshoot of the control systems 

Time range MMACR MMACCI MMACEF PID 
300-400 18 20 34 24 
400-500 4.67 6.67 7.33 8 
500-600 15 15 15 25 
600-700 10.67 11.27 9.67 12.67 
800-900 7.33 7.35 10 10.67 

Table 4. Settling time of the control systems 

Time range MMACR MMACCI MMACEF PID 
300-400 20 20 5 32 
500-600 20 20 20 30 
600-700 15 15 15 30 
700-800 20 20 20 40 

900-1000 15 15 20 30 
Table 5. Square error of the control systems 

Time range MMACR MMACCI MMACEF PID 
0-300 2.43 2.42 2.42 3.12 
0-500 3.635 3.634 3.635 4.62 
0-700 4.84 4.84 4.84 6.15 
0-800 5.49 5.48 5.48 7 

0-1100 7.41 7.3 7.38 9.334 
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The indices presented in Tables 3-5 point out the advantages of the proposed 
MMAC algorithms. The overshoot of MMACR, MMACCI and MMACEF is 
smaller than the corresponding value for a PID. In almost all ranges the overshoot 
of MMACR is smaller than the corresponding value for MMACCI and MMACEF 
and considerably smaller than the corresponding value of PID. As can be seen from 
the results presented in Fig. 19 and Table 5 the square error of the proposed 
algorithms is approximately 25 % smaller than the corresponding value of PID in 
all ranges. The settling time of MMACR, MMACCI and MMACEF is 50-100 % 
smaller than the corresponding value of PID. 

In Figs. 20-22 the weighting coefficients of the system based on MMAC 
algorithms are shown. It is seen that no value of the weighting coefficients is 
converging to 1 in the range 0-1100 s. This is due to the fact that the plant 
parameters do not coincide with the corresponding values of the models in the 
model bank. Nevertheless, the performance of the control system based on MMAC 
algorithms is kept. The weighting coefficient of MMACR and MMACCI are 
reevaluated faster after each change of the parameters than the corresponding values 
of MMACEF. 
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Fig. 20. Weighting coefficients of systems based on MMACR 
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Fig. 21. Weighting coefficients of systems based on MMACCI 
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Fig. 22. Weighting coefficients of systems based on MMACR 

5. Conclusion 

In this paper a Multiple Model Adaptive Control (MMAC) algorithm for control of 
a time-variant plant in the presence of measurement noise is proposed. This 
algorithm controls the plant using a bank of PID controllers designed on the base of 
time invariant input-output models. The control signal is formed as weighting sum 
of the control signals of local PID controllers. The main contribution of the paper is 
the objective function minimized to determine the weighting coefficients. The 
proposed algorithm minimizes the sum of the square general error between the 
model bank output and the plant output. The equation for on-line determination of 
the weighting coefficients is obtained. They are determined by the current value of 
the general error covariance matrix. The main advantage of the algorithm is that the 
derived general error covariance matrix equation is the same as this in the recursive 
least square algorithm (RLS). Thus, most of the well known RLS modifications for 
the tracking time-variant parameters can be directly implemented in the suggested 
algorithms. Four well known RLS modifications (RLS with regularization, RLS 
with dependent updating, RLS with directional forgetting and RLS with exponential 
forgetting) are implemented. The algorithm performance is tested by simulation. 
For this aim software in Matlab/Simulink environment is developed. Simulation 
experiments with both SISO and MIMO time variant plants are carried out. 
Comparison between the control systems based on the developed MMAC 
algorithms and the control system based on a conventional PID controller tuned for 
average plant model, is performed. The results show the advantages of MMAC 
algorithms over the conventional PID. In more of the time ranges the evaluated 
performance indices are significantly smaller for the systems based on MMAC 
algorithms than the corresponding values for the system based on a single PID 
controller.  
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