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1. Introduction  

The low cost strapdown inertial navigation systems of medium accuracy are widely 
utilized in robotics, control of unmanned air vehicles, personal transportation and 
many other applications [2, 4, 9]. The development of such systems is based on the 
implementation of Micro Electro Mechanical Systems (MEMS) gyroscopes and 
acce-lerometers characterized by the presence of significant noises in the output 
signals. The usual practice in modeling the sensor noises in low cost inertial 
systems is to take into account only the white noise terms and eventually random 
walk terms in order to reduce the order of the Kalman filter implemented. With the 
appearance of new powerful signal processors the volume of computational work 
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related to the implementation of Kalman filter does not present further a significant 
problem, which allows the use of more sophisticated sensor noise models thus 
improving the navigation system accuracy. 

The aim of this paper is to investigate an algorithm for a low-cost strapdown 
inertial navigation system aided with a magnetometer and GPS sensor 
measurements based on improved MEMS error models. The system utilizes the 
Analog Devices tri-axial Inertial Measurement Unit (IMU) ADIS16405 involving 
MEMS gyroscopes, accelerometers and magnetometers. As shown earlier (see for 
instance [7]), the output signals of these sensors have noises which consist of bias 
instability, random walk and white noise terms. As usual, the attitude, velocity and 
body position are estimated by using an Extended Kalman Filter (EKF) 
implemented on digital signal processor. The main contribution of the paper  is the 
usage of more accurate models of MEMS sensor noises which take into account not 
only the white noises and random walk terms but also the bias instabilities of the 
corresponding sensor noises. This leads to an EKF of  22nd order. 

The content of the paper is as follows. In Section 2 we present a kinematic 
model of the navigation system under some reasonable assumptions. In Section 3 
we derive an improved model of the inertial sensor noises which is incorporated 
into the system model in Section 4. The design of the Extended Kalman Filter is 
done in Section 5 and the full algorithm is presented in Section 6. The results from 
system simulation are presented in Section 7 and some conclusions are derived in 
Section 8. 

The units for gyro and accelerometers noises used in the paper conform to the 
units used in [1]. 

2.  Kinematic model of the navigation system 

To determine the vehicle attitude, velocity and position in space we use the model 
of a rigid body with six degrees of freedom. The velocity and position of the vehicle 
are represented in the North-East-Down (NED) Earth fixed reference frame and the 
angular rate and linear acceleration are represented in a body fixed reference frame. 
In deriving the model we neglect the Earth rotation because the Earth rate is much 
smaller than the sensitivity of the gyro sensors used and we do not take into account 
the non-spherical shape of the Earth. The model equation thus obtained is [9] 
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where q is the unit quaternion vector 

(2) T][ dcbaq = , 

V is a vector containing the linear velocity components, 
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(3) [ ]Tzyx VVVV = , 

and the vector 

[ ]Tzyx PPPP =  

contains the body position coordinates. 
The matrix beC in (1) is the direction cosine matrix [2, 9] which gives the 

relationship between vectors in the body fixed reference frame and the 
corresponding vectors in the Earth fixed reference frame. This matrix has the form 
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The matrix beC in (4) is orthogonal so that 

(5) T
be

1
beeb CCC == −   

where the matrix ebC  gives the relationship between vectors in the Earth fixed 
reference frame and the corresponding vectors in the body fixed reference frame. 
The matrix ( )qΩ  is determined by the expression 
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and 

(7) [ ]Tzyx wwww =  
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is the vector of true angular rates measured in the body fixed reference frame. The 
full acceleration, expressed in the body fixed frame, is represented as the sum 

[ ]Tebsf 00 gCaa +=  

where  ][ T
s zyx aaaa = is the specific acceleration and g is the Earth’s 

gravitational acceleration, computed for the given latitude. Note that the 
accelerometers can measure only the components of the specific acceleration sa . 

After introducing the state variables 
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the state space description of model (1) is obtained as 
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In equations (1) and (8) the input variables are the non-measurable exact rate 
w  and the non-measurable true specific acceleration sa , which makes these 
equations inappropriate for Kalman filter design. The measurable signals are the 
angular rate mw , measured by the gyros and the specific acceleration ma , measured 
by the accelerometers. These signals involve sensor noises which are investigated in 
the next Section.  
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3. Noise models of the inertial sensors 

In the case under consideration the measurement of the angular rates and linear 
accelerations in the body fixed reference frame is done by using tri-axial MEMS 
gyroscopes and accelerometers combined with a tri-axial magnetometer in an 
Inertial Measurement Unit. For this aim we make use of the miniature IMU 
ADIS16405 (Fig. 1) [1]. 

 
Fig. 1. Inertial Measurement Unit ADIS16405 

 
The gyros output mw  is expressed as 

(9) wwbww η++=m , 
where wb  is the gyro noise bias vector and wη  is the angular  random walk vector. 
Each component of the gyro noise bias  
(10) [ ]Twzwywxw bbbb =  
is modeled as a sum of two components – bias instability and rate random walk  
[4, 7], so that 
(11) 11 12 13 14 15 16,  ,  wx wy wzb x x b x x b x x= + = + = + , 
where 11 12 13 14 15 16,  ,  ,  ,  ,  x x x x x x  are solutions of the following differential equations: 
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gT  is a time constant, 
21 gg  , KK  are constants аnd 

1 2 4 5 7 8
, , , , ,w w w w w ww w w w w w  are white noises with unit variances. 

The angular random walk vector is given by 
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where 
3gK  is a constant and 

3 6 9
,  ,  w w ww w w  are white noises with unit variance.  

In a similar way the measured specific acceleration ma  is determined as 
(14) aasm η++= baa , 
where ba  is the vector of  three-axis accelerometer bias and aη  is the vector of 
velocity random walks. Each component of the accelerometer bias 

[ ]Taaaa zyx bbbb =  
is expressed as a sum of bias instability and acceleration random walk, 
(15) 2221a2019a1817a  , , xxbxxbxxb zyx +=+=+= , 
where 17 18 19 20 21 22,  ,  ,  ,  ,  x x x x x x  are solutions of the differential equations 
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aT  is a time constants, 
21 aa  , KK  are constants, and 

875421 aaaaaa ,,,,, wwwwww  are white noises with unit variances.  
The velocity random walk vector is determined from 
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where 
3aK  is a constant, and 

963 aaa  , , www  are white noises with unit variances.  
The noise model of the inertial unit ADIS16405, described by the equations 

(9)-(17), is determined by using the methodology presented in [7]. The model 
parameters are computed by a least-squares method minimizing the integral of the 
quadratic error representing the difference between the spectral density of the model 
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and the spectral density of the actual noise. The power spectral density of the noise 
is determined on the basis of 1 000 000 measurements for a fixed inertial unit. The 
power spectral densities of the model noises and actual gyro and accelerometer 
noises are shown in Figs 2 and 3, respectively. The model parameters obtained are 
shown in Table 1. The model of the magnetometer noises is discussed later in 
Section 4. 
Table 1. Noise model parameters  of gyroscopes and accelerometers 

Gyroscopes Accelerometers 

gT  rad,
180

1g π
×K  rad,

180
2g π
×K  rad,

180
3g π
×K aT  

1aK  
2aK  

3aK  

36.041 0.869087 6.42582×10–3 0.382397 3.95616 7.941589×10–3g 4.29474×10–4g 3.45394g 
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Fig. 2. Power spectral density of gyro noise 
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Fig. 3. Power spectral density of accelerometer noise 
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4. Navigation system model incorporating sensor noises 

Taking into account (9) and (14), the measurement vector is obtained as 
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In order to use the measured variables instead of true variables we shall 
implement the approach presented in [8]. After solving (18) with respect to the true 
angular rate and specific acceleration one obtains 
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Substituting (19) in (1) and extending (8) with the equations of gyro and 
accelerometer biases, the vehicle attitude, velocity and position are described by the 
nonlinear model от 22nd  order 
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[ ]Tawww=η , 
where wf  and af  are the right hand sides of the differential equations (12) and (16) 
for the gyro and accelerometer biases, respectively. The state vector is defined as 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22[ ]x x x x x x x x x x x x x x x x x x x x x x x= . 

The elements of the vector η  are non-correlated white noises with zero means 
and unit variances. Thus, for the variance matrix of  noise η   one obtains 
(21) 18Q I= , 
where 18I  is the 18×18 unit matrix. The equations (20) describe completely the 
kinematic of the six degrees of freedom rigid body and in contrast to equation (1), 
are functions of the measurable angular rates and specific accelerations. 

As noted in Section 1, the inertial navigation system is aided with 
measurements from GPS and tri-axial magnetometers which allow to improve the 
accuracy of the updated estimate produced by a Kalman filter. That is why the 
model of the output signals is given by 
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where bB  is the vector of  magnetic field measurements in the body fixed reference 
frame, eB  is the magnetic field vector in the Earth fixed reference frame, GPSV and 

GPSP  are the linear velocities and positions, respectively, measured by a GPS sensor 
and  
(23) B B B V V V P Py Pzv v v v v v v v v vx y z x y z x

⎡ ⎤= ⎢ ⎥⎣ ⎦
T 

is a vector that consists of  magnetometer measurement noises ( , ,B By Bv v vx z ) and 
GPS measurement noises ( , , , , ,V Vy V P Py Pv v v v v vx z x z ). It is assumed that the elements 
of (23) are non-correlated white noises with zero means and the variance matrix of 
ν is 

),,,,,,,,(diag
zxxyx PPyPVzVyVzBBB DvDvDvDvDvDvDvDvDvR = , 

where the diagonal elements of  R are equal to the variances of the corresponding 
components of v. In equation (22) the magnetic field in the body fixed frame is 
expressed as a function of the constant magnetic field in the Earth fixed reference 
frame by using the inverse of direction cosine matrix. 

5. Design of an extended Kalman filter 

After discretization of equation (20) with first order right differences one obtains 
(24) 1 1 1 1 1 1 1 1 1 0 1( , , ), ( , , ) ( , , )k k k k k k k k k k kx x u x u f x u T xη η η− − − − − − − − − −= Φ Φ = + , 
where T0 = 0.01 s is the sampling period. Equations (22) and (24) are used in the 
design of a discrete Extended Kalman Filter (EKF) [3]. The EKF equation to 
predict the state estimation is 
(25) )ˆ()(ˆ)(ˆ EKF kkkk yzKxx

k
−+−=+ , 

where 

[ ]Tˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ)(ˆ
kkkkkkkkkkkk azayaxwzwywxzyxzyxkkkkk bbbbbbPPPVVVdcbax =+  

is a vector containing the state estimates of (24). The estimate ˆ ( )kx −  is determined 
from 

(26) ∫
−

−−− +++=−
k

k

t

t
kkkk dtuxfxx

1

)),(ˆ()(ˆ)(ˆ 111 , 

and the predicted output ˆky  is found from 
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The EKF gain 
k

KEKF  is obtained from [3, 8] 
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where 22I  is the 22×22 unit matrix. It is seen from equations (28), (30) and (32) 
that the determination of covariance matrices  requires computation of the partial 
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The matrix G  is found as 
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After differentiation of h according to (29) one finds 
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(35) 
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6. Algorithm of the navigation system aided with a GPS and 
magnetometer measurements 

The pseudo code of the navigation system algorithm involves the following steps: 
Step 1. The estimate ˆ ( )kx − is determined from equation (26) performing 

numerical integration by the fourth-order Runge-Kutta  method.  

Step 2. Normalize the quaternion dividing its elements by 2 2 2 2a b c d+ + + . 
Step 3. Compute the matrices F and G  according to (31), (33) and (34). 
Step 4. Determine the apriori covariance matrix ( )kP −  from equation (30)  

Step 5. Compute the matrix H according to (29) and (35). 
Step 6. Compute the predicted value of the output according to (27). 
Step 7. Compute the EKF gain EKFK  according to (28). 

Step 8. Compute the current state estimate ˆ ( )kx +  according to (25). 

Step 9. Normalize the quaternion. 

7. Navigation system simulation 

The efficiency and accuracy of the navigation system combining measurements 
from MEMS gyros, accelerometers and magnetometers along with measurements 
from a GPS sensor is tested by several simulated experiments. For this aim a 
software environment working in MATLAB and Simulink is developed. The 
sample period of the navigation system is chosen as 0.01s. To simulate the GPS 
signals an S-function is developed, which implements the model (20) for zero 
values of the gyro and accelerometer noises. The output signals of this S-function 
are mixed with non-correlated white noises with zero means and variances 

5V Vy VzDv Dv Dvx = = = , 5, 25P Py PDv Dv Dvx z= = = . 
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The values of these variances are chosen according to the practical data for 
GPS noises. These noises have significant variances and zero means while the 
output noises of the MEMS sensors are colored noises with significant biases. In the 
simulation we assume that the sampling period of GPS signals is 0.25 s. To 
simulate the exact body attitude we make use of the same S-function with exact 
outputs. The magnetometer outputs are obtained as  
(36) BvBqCB += eebb )( , 

where [ ]TBzByBB vvvv
x

= are non-correlated white noises with zero means and 
variances 

0.005B B BzDv Dv Dvx y= = = . 

The components of the vector eB  for the latitude of the city of Sofia are [6] 

.G 409335.0

G, 017658.0
G, 237744.0

e

e

e

=

=
=

z

y

x

B

B
B

 

The initial orientation of the system is NED (the axis bx  points to North, the 
axis by  points to East and the axis bz  points to the Earth center). With this 
orientation the first element of the quaternion is equal to 1 and the rest three are 
equal to zero. The velocity initial conditions are zero. It is assumed that the initial 
position of the system is known with some error. In the S-function for simulation of 
the exact body motion the initial position is set as 

m5=xP , m10−=yP , m7−=zP , 

while in the EKF the same initial values are taken as zeros. The accelerations are set 
in the Earth fixed reference frame, after that being multiplied by the inverse ebC of 
the direction cosine matrix in order to obtain the input acceleration in the body 
fixed reference frame. This allows the input of accelerations to the system which 
correspond to the realistic trajectories in the Earth fixed reference frame. 

The simulation of the navigation system work is done for angular rates  

)01.0sin(
180

3),01.0sin(
180

3),01.0sin(
180

3 ttt zyx
πωπωπω ===  

and the linear accelerations in the Earth fixed reference frame 
0.02, 0 200 0.01, 0 200
0.02, 200 400, 0.01, 200 400, 0.0001

0.02, 400 600 0.01, 400 600
x y z

t t
a t a t a

t t

≤ < ≤ <⎧ ⎧
⎪ ⎪= − ≤ < = − ≤ < =⎨ ⎨
⎪ ⎪≤ < ≤ <⎩ ⎩

 

during a period equal to 600 s.  
In Figs 4-7 we show the variation of the quaternion elements as functions of 

time in case of using EKF (denoted by “INS”) and in case of exact measurements 
(denoted as  “Accurate”). Clearly, after a short transient response these elements are 
computed with sufficient accuracy. 
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Fig. 4. Variation of the first quaternion element and its estimate 
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Fig. 5. Variation of the second quaternion element and its estimate 
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Fig. 6. Variation of the third quaternion element and its estimate 

In Figs 8-10 we show the errors in estimating the angular position of the body 
in case of using EKF (denoted by “INS”) and in case of using only the noisy 
MEMS measurements (denoted by “NOISY”). After some initial errors due to the 
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initial conditions errors, the estimate errors in the case “INS” become very small, 
while those in the case „NOISY” increase significantly along with time. 
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Fig. 7. Variation of the fourth quaternion element and its estimate 
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Fig. 8. Error of the roll angle estimate 
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Fig. 9. Error of the pitch angle estimate 
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Fig. 10. Error of the yaw estimate 

In order to characterize more precisely the error stochastic processes in the 
estimation of Euler angles we compute their means and standard deviations. The 
mean ( )em k  at k-th sample is determined as  

(37) 1 1( ) ( 1) ( )e e
km k m k e k

k k
−

= − + ,  

where ( )e k is the estimation error of the corresponding parameter. 
In Figs 11-13 we show the means of the estimate errors of Euler angles for the 

cases „INS” and „NOISY”. It is seen from the figures that after some time, 
depending on the initial condition errors, the error means in case „INS” tend to zero 
(EKF is producing unbiased estimates), while those in the case „NOISY” are 
divergent. 
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Fig. 11. Mean value of the roll angle estimate error 
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Fig. 12. Mean value of the pitch angle estimate error 
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Fig. 13. Mean value of the yaw angle estimate error 

The standard and maximum deviations of the errors are shown in Table 2. 
Table 2. Standard and maximum deviations of the errors in Euler angles (in radians) 

Deviation Roll angle Pitch angle Yaw angle 
INS NOISY INS NOISY INS NOISY 

 Standard deviation 0.0049 0.0171 0.0046 0.0124 0.0055 0.0125 
 Maximum deviation 0.0132 0.0439 0.0160 0.0424 0.0187 0.0651 

The results show that the standard and maximum deviations for the case „INS” 
are 3-4 times smaller than those in the case „NOISY”. 

In Figs 14-16 we show the exact positions (denoted as „Acurate”) and their 
estimates, obtained by “INS”, “NOISY” and GPS sensor. It is seen that “INS” gives 
very good estimates. For 10 min only “NOISY” accumulates significant errors in 
the position estimate, for instance the error along z-axis is about 400 m. Since the 
zero position corresponds to the Earth surface, such an error means that the 
navigation system based only on MEMS measurements would indicate that the 
body is 200 m beneath the surface. 
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Fig. 14. Estimate of the position along x-axis 
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Fig. 15. Estimate of the position along y-axis 
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Fig. 16. Estimate of the position along z-axis 
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In Figs 17-19 we show the estimation errors in the position determined by 
“INS” and “GPS”, the results for “NOISY” being not shown for better 
visualization.  Clearly, the errors for “INS” are significantly smaller than those for 
“GPS”.  
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Fig. 17. Errors of position along x-axis estimate 
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Fig. 18. Errors of position along y-axis estimate 
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Fig. 19. Errors of position along z-axis estimate 
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In Figs 20-22 we show the mean values of the errors in position estimates, 
computed by using the expression (37). It is seen that after the initial setting, the 
error mean value of the position estimate for “INS” is very close to this for the 
“GPS” sensor. This is to be expected, since EKF corrects the position on the basis 
of the GPS sensor signal. 
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Fig. 20. Mean value of position along x-axis estimate error 
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Fig. 21. Mean value of position along x-axis estimate error 
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Fig. 22.  Mean value of position along z-axis estimate error 
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In Table 3 we show the standard and maximum deviations of the position 
estimate errors for  “INS” and “GPS”. The deviations for “INS” are several times 
smaller than those for “GPS”. This may be explained by the fact that the errors in 
GPS estimates play the role of output noise in the EKF algorithm and the basic 
function of EKF is to reject this noise. 

Table 3. Standard and maximum deviations of the errors in position estimates, m 

Deviation Position along x-axisPosition along  y-axisPosition along z-axis
INS GPS INS GPS INS GPS 

Standard deviation 1.0268 2.4321 0.9207 2.3196 1.0424 5.0290 
Maximum deviation 4.1530 10.4987 3.8644 8.8379 3.4454 18.3583 

8. Conclusions 
An algorithm for a strapdown inertial navigation system based on improved error 
model of the IMU ADIS16405 and aided with a GPS and magnetometer 
measurements is developed. The algorithm efficiency is tested by simulation. For 
this aim a software environment in the MATLAB/Simulink is developed which is in 
a form convenient for automatic generation of a code for the Texas Instruments 
Digital Signal Controller TMS320F28335. The simulation results show the 
advantage of the algorithm proposed in the attitude and position estimation over the 
algorithms based only on MEMS or GPS measurements. Unbiased estimates of the 
attitude and position are obtained which show that the Euler angle estimates are 
determined with errors having standard deviation less than 0.35° and the position is 
determined with errors having standard deviation less than 1.5 m.  
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