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1. Introduction

The low cost strapdown inertial navigation systems of medium accuracy are widely
utilized in robotics, control of unmanned air vehicles, personal transportation and
many other applications [2, 4, 9]. The development of such systems is based on the
implementation of Micro Electro Mechanical Systems (MEMS) gyroscopes and
acce-lerometers characterized by the presence of significant noises in the output
signals. The usual practice in modeling the sensor noises in low cost inertial
systems is to take into account only the white noise terms and eventually random
walk terms in order to reduce the order of the Kalman filter implemented. With the
appearance of new powerful signal processors the volume of computational work
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related to the implementation of Kalman filter does not present further a significant
problem, which allows the use of more sophisticated sensor noise models thus
improving the navigation system accuracy.

The aim of this paper is to investigate an algorithm for a low-cost strapdown
inertial navigation system aided with a magnetometer and GPS sensor
measurements based on improved MEMS error models. The system utilizes the
Analog Devices tri-axial Inertial Measurement Unit (IMU) ADIS16405 involving
MEMS gyroscopes, accelerometers and magnetometers. As shown earlier (see for
instance [7]), the output signals of these sensors have noises which consist of bias
instability, random walk and white noise terms. As usual, the attitude, velocity and
body position are estimated by using an Extended Kalman Filter (EKF)
implemented on digital signal processor. The main contribution of the paper is the
usage of more accurate models of MEMS sensor noises which take into account not
only the white noises and random walk terms but also the bias instabilities of the
corresponding sensor noises. This leads to an EKF of 22nd order.

The content of the paper is as follows. In Section 2 we present a kinematic
model of the navigation system under some reasonable assumptions. In Section 3
we derive an improved model of the inertial sensor noises which is incorporated
into the system model in Section 4. The design of the Extended Kalman Filter is
done in Section 5 and the full algorithm is presented in Section 6. The results from
system simulation are presented in Section 7 and some conclusions are derived in
Section 8.

The units for gyro and accelerometers noises used in the paper conform to the
units used in [1].

2. Kinematic model of the navigation system

To determine the vehicle attitude, velocity and position in space we use the model
of a rigid body with six degrees of freedom. The velocity and position of the vehicle
are represented in the North-East-Down (NED) Earth fixed reference frame and the
angular rate and linear acceleration are represented in a body fixed reference frame.
In deriving the model we neglect the Earth rotation because the Earth rate is much
smaller than the sensitivity of the gyro sensors used and we do not take into account
the non-spherical shape of the Earth. The model equation thus obtained is [9]

1
g EQ(Q)W
(1) V= Cbeas+[0 0 g]T )
P Vv
where q is the unit quaternion vector
) g=[a b c dI’,

V is a vector containing the linear velocity components,
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3) V=, v, v
and the vector
P=[p, P, PJ

contains the body position coordinates.
The matrix C,,in (1) is the direction cosine matrix [2, 9] which gives the
relationship between vectors in the body fixed reference frame and the

corresponding vectors in the Earth fixed reference frame. This matrix has the form
Cu Cp Cp

4) Cpe=|Cx Cp Cx
Cs1 Gz Cg3

where the elements of C,, are given by [9]:

¢, =a’+b*-c?-d?,
¢, =2(bc—ad),
C;3 =2(bd + ac),
C,, =2(bc + ad),
¢, =a’ —b? +¢® —d?,
C,; =2(cd —ab),
Cy, =2(bd —ac),
Cy, = 2(cd + ab),
Cis=a? —b® —c? +d?

The matrix C,, in (4) is orthogonal so that

(5) Cep =Cpe =Coe

where the matrix C,, gives the relationship between vectors in the Earth fixed

reference frame and the corresponding vectors in the body fixed reference frame.
The matrix Q(q) is determined by the expression

b ¢ -d
-d ¢
(6) Q(q) = d a _b !
- b a
and
(7 W= [Wx Wy W, ]T



is the vector of true angular rates measured in the body fixed reference frame. The
full acceleration, expressed in the body fixed frame, is represented as the sum

af:as+Ceb[0 0 g]T

where a;=[a, a, a,]" is the specific acceleration and g is the Earth’s

gravitational acceleration, computed for the given latitude. Note that the
accelerometers can measure only the components of the specific acceleration a; .
After introducing the state variables
X,=a, X,=b, X3=c¢, x,=d, x3=V,,

x6=Vy, X; =V, Xg=P, x9=Py, X0 =P,

the state space description of model (1) is obtained as

[ 1 1 1 i
—§X2Wx _§X3Wy —§X4Wz
M % ] 1 1 1
1 EX]_WX —EX4Wy +EX3WZ
X
'2 ! Xq Wy + L X W, ! XoW.
% = = _=
.3 2 4V 2 1y 2 2VVz
X4 1 1 1
L _EX3WX +EX2WV +Ex1wZ
%s R
8) x= =
®) Xg (x2 2 2 2
§ X5 — X3 —Xj)ay +2(XpXz — x1x4)ay +2(XpXg + X X3)8;
X7 2 2 2.2 2 2
o (XoXg + X4 )ay + (X =X +X3 —Xg)ay +2(X3Xs =X X4)3,
Xg 2(XoXq — X X3)ay +2(X3Xyq + xlxz)ay + (xl2 - x% - x§ + x‘%)aZ +9
%q S
L X10 i Xg
X6
L X7 J

In equations (1) and (8) the input variables are the non-measurable exact rate
w and the non-measurable true specific acceleration a,, which makes these
equations inappropriate for Kalman filter design. The measurable signals are the
angular rate w,, , measured by the gyros and the specific acceleration a,,, measured
by the accelerometers. These signals involve sensor noises which are investigated in
the next Section.



3. Noise models of the inertial sensors

In the case under consideration the measurement of the angular rates and linear
accelerations in the body fixed reference frame is done by using tri-axial MEMS
gyroscopes and accelerometers combined with a tri-axial magnetometer in an
Inertial Measurement Unit. For this aim we make use of the miniature IMU
ADIS16405 (Fig. 1) [1].

Fig. 1. Inertial Measurement Unit ADIS16405

The gyros outputw,, is expressed as
9) Wy, =W +by, +177,
where b, is the gyro noise bias vector and 7, is the angular random walk vector.
Each component of the gyro noise bias
(10) by =[bwx Buy bue
is modeled as a sum of two components — bias instability and rate random walk
[4, 7], so that

(11) bux = X1+ X2, By = X3+ X14, Bz = X5+ X6,
where xqq, X0, X3, X4, X5, X are solutions of the following differential equations:
: 1 Kg,
Xll = —T—Xll + T WW1’
9 g9
X, = Ky, Wy,
Xig = —— X3 + —2W,
13 — 13 '
(12) Ty Ty,
X = Ko, Wy,
Kg
X5 =—— X5 + —W,
15 15 T w; 1
g g
X6 = KQZWWB'



Tg is a time constant, Kgl , ng are constants and

Wy, Wy, Wy, Wy, W, , W, arewhite noises with unit variances.

Wy * 4 5
The angular random walk vector is given by
77Wx K93WW3
(13) M=\, |= Kg3Ww6
77Wz K93WW9

where K, isa constantand w,,, wy, , w,, are white noises with unit variance.

In a similar way the measured specific acceleration a,, is determined as
(14) a,=a,+b, +n,,
where b, is the vector of three-axis accelerometer bias and 7, is the vector of
velocity random walks. Each component of the accelerometer bias

b, = [0, by b

is expressed as a sum of bias instability and acceleration random walk,
(15) Do = Xi7 + Xig, By = Xig + Xp0, 05 =Xpp + Xpy,
where xi7, Xig, X1g, X209, Xo1, Xpo are solutions of the differential equations

az

% =~
17 T, 17 T, a
X18 = Kazwaz’
fre = — X W
19 — 7+ M9 ’
(16) T, T,
X0 = Kg, W,
fy = —tx, + Ka W,
21 T, 21 T, a;!
X = Ky, Wy,
T, is a time constants, Kal, Kalz are constants, and
W,, W,, W,, W,_, W,, W, arewhite noises with unit variances.
1 2 4 5 7 8

The velocity random walk vector is determined from

M, Ka3Wa3
(17) Ma =\, |= Ka3Wa6 J
M, Ka3Wa9

where K, isa constant, and w, ,w, ,w, are white noises with unit variances.

The noise model of the inertial unit ADIS16405, described by the equations
(9)-(17), is determined by using the methodology presented in [7]. The model
parameters are computed by a least-squares method minimizing the integral of the
quadratic error representing the difference between the spectral density of the model
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and the spectral density of the actual noise. The power spectral density of the noise
is determined on the basis of 1 000 000 measurements for a fixed inertial unit. The
power spectral densities of the model noises and actual gyro and accelerometer
noises are shown in Figs 2 and 3, respectively. The model parameters obtained are
shown in Table 1. The model of the magnetometer noises is discussed later in

Section 4.

Table 1. Noise model parameters of gyroscopes and accelerometers

Gyroscopes Accelerometers
180 180 180
Tg Kg, X - rad| K, x — rad | Ky x — rad| T, Ka1 Kaz Ka3
36.041| 0.869087 6.42582x107 0.382397  [3.95616] 7.941589x10°g | 4.29474x10~'g | 3.45394g

Gyro noise power spectral density
T T

— — — real noise
noise model

Power/frequency (degzlslez)

I I I
107 107 10
Frequency (Hz)

o

Fig. 2. Power spectral density of gyro noise

Accelerometer noise power spectral density
T T

:| = — — real noise
noise model

Power/frequency (gZ/Hz)

10” 107 10
Frequency (Hz)

Fig. 3. Power spectral density of accelerometer noise



4. Navigation system model incorporating sensor noises

Taking into account (9) and (14), the measurement vector is obtained as
W, w+b, +
(18) u{ m}:{ w "W}.
am aS + ba + 77a
In order to use the measured variables instead of true variables we shall
implement the approach presented in [8]. After solving (18) with respect to the true
angular rate and specific acceleration one obtains
w=w, —b, —
(19) m w 77W.
a=ay, — ba —1a
Substituting (19) in (1) and extending (8) with the equations of gyro and

accelerometer biases, the vehicle attitude, velocity and position are described by the
nonlinear model ot 22nd order

4] ~0@)Wy -5, ~71,)

V. Cbe (q)(am _ba _na) + [O 0 g]T
(20) f(x,m,u)= P = Vv ,

" f, (b, w,)

]| f. (b,,w,) |

W, Z[W W, W, W, W, W, W, W, Wag]T,

a; a, az ay, ag ag a; ag
n= [Ww W, ]T )
where f,, and f, are the right hand sides of the differential equations (12) and (16)
for the gyro and accelerometer biases, respectively. The state vector is defined as
X=[X X2 X3 X4 X5 Xg X7 Xg Xg X10 X11 X2 X13 X14 X15 X6 X17 X8 X19 X20 X1 X22]-
The elements of the vector » are non-correlated white noises with zero means
and unit variances. Thus, for the variance matrix of noise » one obtains
(21) Q=lg,
where 15 is the 18x18 unit matrix. The equations (20) describe completely the

kinematic of the six degrees of freedom rigid body and in contrast to equation (1),
are functions of the measurable angular rates and specific accelerations.

As noted in Section 1, the inertial navigation system is aided with
measurements from GPS and tri-axial magnetometers which allow to improve the
accuracy of the updated estimate produced by a Kalman filter. That is why the
model of the output signals is given by

Bb Ceb (q) Be
(22) z=y+V, Y=h(X)=|Veps |=| Veps ,
Pars Pars
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where By is the vector of magnetic field measurements in the body fixed reference
frame, B, is the magnetic field vector in the Earth fixed reference frame, Vgqand
Psps are the linear velocities and positions, respectively, measured by a GPS sensor
and

(23) V= |:VBX VBy VBZ V\/X VVy VVZ VPX VPy VP2:| T

is a vector that consists of magnetometer measurement noises (vg, ,vgy,Vg, ) and
GPS measurement noises (W, .y, W, . Vpy : Vpy. Vp, )- It is assumed that the elements
of (23) are non-correlated white noises with zero means and the variance matrix of
vis

R =diag(Dvg , Dvg ,Dvg,,Dv,, ,Dvyy, Dw,, DVp , Dpy, Dvp ),

where the diagonal elements of R are equal to the variances of the corresponding
components of v. In equation (22) the magnetic field in the body fixed frame is

expressed as a function of the constant magnetic field in the Earth fixed reference
frame by using the inverse of direction cosine matrix.

5. Design of an extended Kalman filter

After discretization of equation (20) with first order right differences one obtains
(24) % = D1, 71, Uk-1) P(Xg, k-1, Uk—1) = T (Xeog k-1, Uk To + X1

where T, = 0.01 s is the sampling period. Equations (22) and (24) are used in the
design of a discrete Extended Kalman Filter (EKF) [3]. The EKF equation to
predict the state estimation is

(25) Xy (+) = X (5) + K, (26 = Vi)

where

)A(k("') = ék b ék d ka Vyk Vzk ka Pyk sz bWVk bww bWzk bayk bayk bazk]r
IS a vector containing the state estimates of (24). The estimate %, (-) is determined
from

t
(26) R =Ra @)+ [T Rea ()t
V]
and the predicted output ¥, is found from
(27) i =h(X () -
The EKF gain K is obtained from [3, 8]
(28) Kekr, = F (H{ [H P (H +RT,
where the matrix H, is given by
(29) H =0 .
ox x=% (=)

The apriori covariance matrix B (-) is determined from
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(30) P.(5)=F.4R.,() FkT—l + ToszleGkal ,

where
oo oo
(31) Fea = v Gk == :
X %=X 4 (+),77_1=0 u x=R 1 (+),774=0
The aposteriori covariance matrix B (+) is determined as
(32) Po(+) =[5 — Keg H( IR (5)

where 1,, is the 22x22 unit matrix. It is seen from equations (28), (30) and (32)

that the determination of covariance matrices requires computation of the partial
derivatives (29) and (31). After differentiation of @ according to (31) one obtains

qu Ous Oug Fqbw O
oD FVq Oss Oz Ose I:Vba

(33) F “x Osu Fpy Oz O Osg [Ty + 1y,

Oss Oss Oeus Fbwbw Os.6

_06x4 Oz Oz Ogss Fbaba i
where

0 —wy -w, -w,
1w, 0 T Fa Fub Fre  Fud
qu — ) F\/q= “Rg -Re Fw Rals

w, wy -w, 0

F.=2(aa,—da,+ca,) b b ¢ ¢ d d
R = Z(b'ax +ca, + d'az) Foo 1/-a -a d d -c¢ -
F. =2(-ca, +ba, +aa,) ®"2/-d -d -a -a b b
Fy =2(-d.a, —aa, +ba,) c ¢ -b b -a -a

—Cy —Cy —Cp —Cp —C3 —Cp 100
R, =|—Cx —Cu —Cp —Cp —Cp3 —Cp|, Fpy=|0 1 0f,
0 0 1

—C3 —C3 —C3 —C3p —C33 —Cgy

S 0O 0 0o 0 0 _1 0O 0 O 0 0
Ty T
a
0 01 0 0o 0 0 O 0 O
0 -— 0 0 O 0 0 - 1 0O 0 O
I:bwbw - Tg ! Fbaba - Ta
0 0 0O 0 0 0O 0 O
1 1
0 - 0o 0 0 0 -— 20
Ty T,
0o 0 o0 o0 o0 O 1 0 0 0 0 0 O]

The matrix G is found as
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o (=21 (=2}
g & &
— O O «

(34)

where

}

—— Q2 8, -
s %a % 9,0 0 o o o o o
) © D © © @ ©
o> o
KV_AKV_A V_AV_AV_A o o o o 5
X
o O o o o O o
oo oo oo o o o o o o
Cd,.a%bmmw & ﬂC& o o o o o
%%KK o Co o
KK © © © ~
I Y ¥ X o o o Kg o
| | |
o o o o
o o o S| o
o o o o © O vIiFe ©
o o o
basdsc 4 o o o o o
LN N d & 0@
KQKKK S o O N
| I S & & o > O o o
X ¥ ¥ X
o o o o Lo
Sl oo o o o
o O o o o O O Y |-
e | L
| o o o I
| .
__g - -
£ S
...lq Y—

waa

After differentiation of haccording to (29) one finds
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H Bq O3><3 03x3 O3><6 O3><G
(35) H=—= 03><4 |3><3 03><3 03><6 Osxe |
3x4 O3><3 I 3x3 OSXG O3><6
where
Hg, =2(aB,, +dB,, —CB,,)
Hea  Heo  Hee Hea |y -20B, +cB, +dB,)
a=| Hed “Mec Moo ~Heals = 2(~cB,, +bB,, —aB,,)
_H Bc —H Bd H Ba H Bb Be ™ & & &
Hgy =2(-dB,, + aB,, + bB,,)

Hg

6. Algorithm of the navigation system aided with a GPS and
magnetometer measurements

The pseudo code of the navigation system algorithm involves the following steps:
Step 1. The estimate X, (-)is determined from equation (26) performing
numerical integration by the fourth-order Runge-Kutta method.

Step 2. Normalize the quaternion dividing its elements by va? +b? +¢? +d? .
Step 3. Compute the matrices Fand G according to (31), (33) and (34).
Step 4. Determine the apriori covariance matrix B (-) from equation (30)
Step 5. Compute the matrix H according to (29) and (35).

Step 6. Compute the predicted value of the output according to (27).

Step 7. Compute the EKF gain Kg. according to (28).

Step 8. Compute the current state estimate %, (+) according to (25).
Step 9. Normalize the quaternion.

7. Navigation system simulation

The efficiency and accuracy of the navigation system combining measurements
from MEMS gyros, accelerometers and magnetometers along with measurements
from a GPS sensor is tested by several simulated experiments. For this aim a
software environment working in MATLAB and Simulink is developed. The
sample period of the navigation system is chosen as 0.01s. To simulate the GPS
signals an S-function is developed, which implements the model (20) for zero
values of the gyro and accelerometer noises. The output signals of this S-function
are mixed with non-correlated white noises with zero means and variances

Dw, =Dwy =Dw, =5, Dvp, =Dvpy =5, Dvp, =25.
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The values of these variances are chosen according to the practical data for
GPS noises. These noises have significant variances and zero means while the
output noises of the MEMS sensors are colored noises with significant biases. In the
simulation we assume that the sampling period of GPS signals is 0.25 s. To
simulate the exact body attitude we make use of the same S-function with exact
outputs. The magnetometer outputs are obtained as

(36) By, =Ce (A)B; + V.,
where vg = [VBx Vgy vBZPare non-correlated white noises with zero means and
variances
DVBX = DVBy = Dvg, =0.005.
The components of the vector B, for the latitude of the city of Sofia are [6]
B, =0.237744 G,
B,, =0.017658 G,

B,, =0.409335 G.

The initial orientation of the system is NED (the axis x, points to North, the
axis y, points to East and the axis z, points to the Earth center). With this

orientation the first element of the quaternion is equal to 1 and the rest three are
equal to zero. The velocity initial conditions are zero. It is assumed that the initial
position of the system is known with some error. In the S-function for simulation of
the exact body motion the initial position is set as

P.=5m, P,=-10m, P,=-7m,
while in the EKF the same initial values are taken as zeros. The accelerations are set

in the Earth fixed reference frame, after that being multiplied by the inverse C, of

the direction cosine matrix in order to obtain the input acceleration in the body
fixed reference frame. This allows the input of accelerations to the system which
correspond to the realistic trajectories in the Earth fixed reference frame.

The simulation of the navigation system work is done for angular rates

, =3-——sin(0.01t), w, = 3——sin(0.01t), , = 3——sin(0.01t)
180 180 180

and the linear accelerations in the Earth fixed reference frame

0.02, 0<t<200 0.0, 0<t<200
ay =1-0.02, 200<t<400, ay, ={-0.01, 200<t <400, a, =0.0001
0.02, 400<t <600 0.01, 400<t <600

during a period equal to 600 s.

In Figs 4-7 we show the variation of the quaternion elements as functions of
time in case of using EKF (denoted by “INS”) and in case of exact measurements
(denoted as “Accurate”). Clearly, after a short transient response these elements are
computed with sufficient accuracy.
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a-quaternion
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Fig. 4. Variation of the first quaternion element and its estimate

b-quaternion

| | |
| | |
1 1 1
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Fig. 5. Variation of the second quaternion element and its estimate

c-quaternion
0.6

oal 4- -k

03§ -~

0.2

0.1

[¢]

-0.1

600

Fig. 6. Variation of the third quaternion element and its estimate

In Figs 8-10 we show the errors in estimating the angular position of the body
in case of using EKF (denoted by “INS”) and in case of using only the noisy
MEMS measurements (denoted by “NOISY”). After some initial errors due to the
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initial conditions errors, the estimate errors in the case “INS” become very small,

while those in the case ,,NOISY” increase significantly along with time.

d-quaternion

300
sec

200

100

Fig. 7. Variation of the fourth quaternion element and its estimate
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Fig. 8. Error of the roll angle estimate

f-angle estimate error
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Fig. 9. Error of the pitch angle estimate
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y-angle estimate error

rad

Fig. 10. Error of the yaw estimate

In order to characterize more precisely the error stochastic processes in the
estimation of Euler angles we compute their means and standard deviations. The
mean m, (k) at k-th sample is determined as

(37) me() =Ly (k1) +3-e(6),

where e(k) is the estimation error of the corresponding parameter.

In Figs 11-13 we show the means of the estimate errors of Euler angles for the
cases ,INS” and ,,NOISY™”. It is seen from the figures that after some time,
depending on the initial condition errors, the error means in case ,,INS” tend to zero
(EKF is producing unbiased estimates), while those in the case ,,NOISY” are
divergent.
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Fig. 11. Mean value of the roll angle estimate error
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Fig. 13. Mean value of the yaw angle estimate error

The standard and maximum deviations of the errors are shown in Table 2.

Table 2. Standard and maximum deviations of the errors in Euler angles (in radians)
Roll angle Pitch angle Yaw angle
INS NOISY INS NOISY INS | NOISY
Standard deviation 0.0049 0.0171 0.0046 0.0124 | 0.0055 | 0.0125
Maximum deviation 0.0132 0.0439 0.0160 0.0424 | 0.0187 | 0.0651

Deviation

The results show that the standard and maximum deviations for the case ,,INS”
are 3-4 times smaller than those in the case ,,NOISY™.

In Figs 14-16 we show the exact positions (denoted as ,,Acurate”) and their
estimates, obtained by “INS”, “NOISY” and GPS sensor. It is seen that “INS” gives
very good estimates. For 10 min only “NOISY” accumulates significant errors in
the position estimate, for instance the error along z-axis is about 400 m. Since the
zero position corresponds to the Earth surface, such an error means that the
navigation system based only on MEMS measurements would indicate that the
body is 200 m beneath the surface.
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Fig. 16. Estimate of the position along z-axis
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In Figs 17-19 we show the estimation errors in the position determined by
“INS” and “GPS”, the results for “NOISY” being not shown for better
visualization. Clearly, the errors for “INS” are significantly smaller than those for
“GPS”.
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Fig. 17. Errors of position along x-axis estimate
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Fig. 18. Errors of position along y-axis estimate
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Fig. 19. Errors of position along z-axis estimate
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In Figs 20-22 we show the mean values of the errors in position estimates,
computed by using the expression (37). It is seen that after the initial setting, the
error mean value of the position estimate for “INS” is very close to this for the
“GPS” sensor. This is to be expected, since EKF corrects the position on the basis
of the GPS sensor signal.
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Fig. 20. Mean value of position along x-axis estimate error
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Fig. 21. Mean value of position along x-axis estimate error
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Fig. 22. Mean value of position along z-axis estimate error
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In Table 3 we show the standard and maximum deviations of the position
estimate errors for “INS” and “GPS”. The deviations for “INS” are several times
smaller than those for “GPS”. This may be explained by the fact that the errors in
GPS estimates play the role of output noise in the EKF algorithm and the basic
function of EKF is to reject this noise.

Table 3. Standard and maximum deviations of the errors in position estimates, m
Position along x-axisPosition along y-axigPosition along z-axis|
INS GPS INS GPS INS GPS
Standard deviation | 1.0268 | 2.4321 | 0.9207 | 2.3196 | 1.0424 | 5.0290
Maximum deviation| 4.1530 | 10.4987 | 3.8644 | 8.8379 | 3.4454 | 18.3583

Deviation

8. Conclusions

An algorithm for a strapdown inertial navigation system based on improved error
model of the IMU ADIS16405 and aided with a GPS and magnetometer
measurements is developed. The algorithm efficiency is tested by simulation. For
this aim a software environment in the MATLAB/Simulink is developed which is in
a form convenient for automatic generation of a code for the Texas Instruments
Digital Signal Controller TMS320F28335. The simulation results show the
advantage of the algorithm proposed in the attitude and position estimation over the
algorithms based only on MEMS or GPS measurements. Unbiased estimates of the
attitude and position are obtained which show that the Euler angle estimates are
determined with errors having standard deviation less than 0.35° and the position is
determined with errors having standard deviation less than 1.5 m.
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