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Abstract: In coding theory the importance of burst error correcting and detecting 
codes is well known. In general communication the messages are long and the 
strings of bursts may be short, repeating in a vector itself. The idea of repeated 
bursts, introduced by Beraradi, Dass and Verma has opened this area of study. 
They defined 2-repeated bursts and obtained results for detection and correction of 
such type of errors. Later on, Dass and Verma generalized this idea and defined  
m-repeated bursts. They also obtained results regarding the correction and 
detection of m-repeated bursts. 

In this paper we obtain results on weights of all vectors having m-repeated 
bursts of the same size. Another section is devoted to the study of vectors having  
m-repeated bursts with weight constraints. This study can help developing more 
efficient codes with these vectors as error patterns. 

Keywords: m-repeated bursts, efficient codes, weights of vectors.   

1. Introduction 

It is noticed that in different kind of communication channels there are different 
types of errors. One of the types which occurs more frequently in many channels is 
that of  burst errors. This led to the study of burst error correcting codes, introduced 
by F i r e [5] and R e g i e r [8], and thoroughly treated by P e t e r s o n  and W e l - 
d o n [7]. S t o n e [11], B r i d e w e l l  and W o l f [1] considered multiple bursts. 
C h i e n  and T a n g [2] also considered a different type of a burst, known as CT 
burst. Moreover the study of burst error correcting codes is now becoming more 



 4

important from an application point of view because of its easy implementation and 
efficient functioning. 

Yet another kind of an error pattern, called 2-repeated burst has been 
introduced by D a s s, V e r m a  and  B e r a r d i [3]. This is an extension of the 
idea of open-loop burst given by Fire. Later on D a s s  and V e r m a [4] defined  
m-repeated bursts and obtained results regarding the number of parity-check digits 
required for codes, correcting such errors. While some results have been obtained 
on bounds for  m-repeated burst error correcting codes with specific distance and 
parity-check digits, but the importance of weight is still untouched. 

The study of bursts in terms of weight was initiated by S h a r m a  and D a s s 
[9]. K r i s h n a m u r t h y [6] extended their work by obtaining some 
combinatorial results regarding the weight of burst error correcting codes. Recently, 
S h a r m a and R o h t a g i [10] obtained some results on weights of 2-repeated 
bursts. 

In this correspondence we obtain results regarding the weight of all vectors 
having m-repeated bursts of length b each. This correspondence is organized as 
follows. Basic definitions, related to our study are stated with some examples in 
Section 2. In Section 3 some results on m-repeated bursts are derived. In Section 4 
combinatorial results on weights of m-repeated bursts are obtained. Thus we 
generalize the results obtained in our earlier paper [10]. 

Further on we shall consider the space of n -tuples whose nonzero components 
are taken from the field of q code characters with elements 1...,,2,1,0 −q . The 
weight of a vector is considered in Hamming sense as the number of non-zero 
entries.  

2. Preliminaries 

We give the definition of a burst, defined by Fire, as taken in [8]. 
Definition 2.1. A burst of length b  is a vector, all of whose nonzero 

components are confined to some b  consecutive components, the first and the last 
of which are nonzero.  

A vector may have not just one cluster of errors, but more than one. Lumping 
them into one burst amounts to neglecting the nature of communication and 
unnecessarily considering a longer burst which may have a part, which is not of 
cluster in-between. For example, in a very busy communication channel, sometimes 
bursts repeat themselves. D a s s, V e r m a  and  B e r a r d i [3] introduced the idea 
of repeated bursts.  In particular, they defined the “2-repeated burst”.  

A 2-repeated burst of length b may be defined as follows: 

Definition 2.2. A 2-repeated burst of length b is a vector of length n whose 
only nonzero components are confined to two distinct sets of b consecutive 
components, the first and the last component of each set being nonzero. 

Example: (0120400100300) is a 2-repeated burst of length 4 over GF(5). 
An  m-repeated burst of length b may be defined as follows: 
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Definition 2.3. An m-repeated burst of length m is a vector of length n whose 
only nonzero components are confined to m distinct sets of b consecutive 
components, the first and the last component of each set being nonzero. 

Example: (001020024100314030100) is an m-repeated burst of length 3 over 
GF(5). 

Since the weight structure is of considerable interest, in the next section we 
present some results on weights of m-repeated bursts. 

3. Results on weights of m-repeated bursts 

Let mbW  denotes the total weight of all vectors having m-repeated bursts of length b 
in the space of all n -tuples.  Before obtaining mbW  in terms of n  and b  we derive 
two results in the lemmas below, counting the m-repeated bursts.  

Lemma 3.1. The total number of m-repeated bursts, each of length 1>b , in 
the space of all n -tuples over GF(q) is 

(1) 2,
2

)2)(1(])1([ 2)2( ≥
+−+−

−− mmbnmbnqq mb .  

P r o o f: Consider an n-tuple in which an m-repeated burst of length b is 
defined as follows. 

An m-repeated burst of length b is a vector whose only nonzero components 
are confined in m distinct sets of b  consecutive components, the first and the last 
components of each set being nonzero.  

To make m-repeated bursts of length b each, the first burst can start from i-th 
position, where i varies from 1 to n – mb+1. The second burst can then start from a 
position after the first one ends. This process continues till the m-th burst ends.  

Let us first consider the vector having m-repeated bursts, in which the first 
burst starts from the first position, their number being 22)1( −− bqq , then the second 
burst, their number also being 22)1( −− bqq , continuing  upto m-th burst their 
number is also 22)1( −− bqq , then there will be 1+−mbn starting positions.  Thus 
the total number of m-repeated bursts, in which the first burst starts from the first 
position, is given by 

)1(])1[( 22 +−− − mbnqq mb . 
Next, considering the vector with m-repeated bursts, in which the first burst 

starts from the second position, the starting positions of all bursts being reduced  
by 1, their number will be 

)(])1[( 22 mbnqq mb −− − . 

A little consideration will show that the process of constructing m-repeated 
bursts will end when the m-th burst has just one starting position, the number then 
being .1.])1[( 22 mbqq −−  
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Summing all, the total number of n-vectors having m-repeated bursts of length 
b each will be 

2
)2)(1(])1([])1([ 2)2(

1

1

2)2( +−+−
−=− −

+−
− ∑ mbnmbnqqiqq mb

mbn
mb . 

This proves the result. 
Next we impose weight restriction on m-repeated bursts and count their 

numbers. The result is given in the lemma below. 

Lemma 3.2. The total number of vectors having m-repeated bursts of length 
1>b  with weight )2( mbwmw ≤≤  in the space of all n-tuples is 

(2) 2,
2

)2)(1()1(
2

2
≥

+−+−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

mmbnmbnq
mw

mmb w . 

P r o o f:  Let us consider a vector having m-repeated bursts of length b  each.  
Its only nonzero components are confined to m distinct sets of b  consecutive 
components, the first and the last component of each set being nonzero.  Each of 
them, the first and the last components may be any of the 1−q  nonzero field 
elements.  Since we are considering m-repeated bursts of length b, in a vector of 
length n , having weight w, this will have non-zero positions as follows: 

i. The first and the last position of all m bursts. 
ii. Some 21 −w  amongst the 2−b  in-between positions of the first 

burst, 22 −w  amongst the 2−b  in-between positions of the second burst, 
2−mw  amongst the 2−b  in-between positions of m-th burst, where 

mwww ,...,, 21  are weights of the first, second, …, m-th bursts respectively 
and wwww m =++ ...21 . 

iii. The other positions have the value 0. 
Thus, in combinatorial ways, each m-repeated burst will give its number by  

(3) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−− −

2
2

...
2

2
2

2
)1()1(

21

22

m

mwm

w
b

w
b

w
b

qq . 

To find a closed expression for 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

2
2

...
2

2
2

2

21 mw
b

w
b

w
b

, 

we consider the following identity: 

(4) terms.toupof...)1()1()1( 222 mxxx bbmmb −−− ++=+  

Equating the coefficients of mmbx 2−  on both sides, we get  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

2
2

...
2

2
2

2
2

2

21 mw
b

w
b

w
b

mw
mmb

. 
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Using this identity, the total number of m-repeated bursts of length b  and 

weight w , with a sum of their starting position 
2

)2)(1( +−+− mbnmbn , is 

2
)2)(1()1(

2
2 +−+−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
− mbnmbnq

mw
mmb w . 

This proves the lemma ■ 
Now we return to finding an expression for mbW , the total weight of all vectors 

having m-repeated bursts of length b in the space of all n -tuples. 

Theorem 3.1.  For bn ≥  and 2≥m  

(5) 2)1(
)(

)1)...(2)(1(
−

Γ
+−−−

= q
m

mnnnnWm  

and 

(6) .]2)1([)1(
2

)2)(1( )12(2 mqmbqqmbnmbnW mmbm
mb +−−

+−+−
= −−   

P r o o f: The value of mW  follows simply by considering all vectors having 
m  nonzero entries out of n . Their number  

22 )1(
)(

)1)...(2)(1()1( −
Γ

+−−−
=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
q

m
mnnnnq

m
n

 

clearly gives the value of mW . 
Next, for 1>b , using Lemma 3.2, the total weight of all vectors having  

m-repeated bursts of length b  each, is given by 

].2)1([)1(
2

)2)(1(

]2)1)(2[()1(
2

)2)(1(

])1(2.)1)(2)[(1(
2

)2)(1(

])1[()1(
2

)2)(1(

])}1(1{)1[(
)1(

1)1(
2

)2)(1(

)1(
2

)2()1(
2

)2)(1(

)1(
2

)2)(1(
2

2

122

122

122122

22

22
12

2

2

0

2

2

mqmbqqmbnmbn

mqqmmbqqmbnmbn

qmqqqmmbqmbnmbn

qq
dq
dqmbnmbn

qq
dq
d

q
qmbnmbn

q
i

mmb
miqmbnmbn

qmbnmbn
mw

mmb
w

mmbm

mmbm

mmmbmmbm

mmbm

mmbm
m

m

i
mmb

i

m

w
mb

mw

+−−
+−+−

=

=+−−−
+−+−

=

=−+−−−
+−+−

=

=−−
+−+−

=

=−+−
−

−
+−+−

=

=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+−

+−+−
=

=−
+−+−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−−

−−

−−−−

−

−
−

−

=

=

∑

∑

 

This completes the proof of the theorem ■ 
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Further, in coding theory, an important criterion is to look for the minimum 
weight in a group of vectors.  Our next theorem is a result in this direction.  

Theorem 3.2. The minimum weight of a vector having m-repeated burst of 
length 1>b  in the space of all n-tuples is at most 

(7) .2,)2(
≥

−
− m

q
bmmb   

P r o o f: From Lemma 3.1 it is clear that the number of m-repeated bursts of 
length b  in the space of all n-tuples with symbols taken from the field of 
q elements is 

2
)2)(1(])1([ 2)2( +−+−

−− mbnmbnqq mb  

also from Theorem 3.1, their total weight is 

].2)1([)1(
2

)2)(1( 122 mqmbqqmbnmbn mmbm +−−
+−+− −−  

Since the minimum weight element can be at most equal to the average 
weight, an upper bound on minimum weight of an m-repeated burst of length b is 
given by  

.)2(
2).2)(1(])1([

]2)1([)1)(2)(1(2
2)2(

122

q
bmmb

mbnmbnqq
mqmbqqmbnmbn

mb

mmbm

−
−=

=
+−+−−

+−−+−+−
−

−−

 

This proves the result ■ 

4. Combinatorial results on weights of vectors having m-repeated 
bursts with a weight constraint  

Let wmbW ,  denotes the total weight of those vectors having m-repeated bursts of 
length b each, which are of weight w  or less in the space of all n -tuples over 
GF(q). Before obtaining the main results, we state a simple result in the lemma 
below. 

Lemma 4.1.  Let [ ] ),(1 rnx+ denotes the incomplete binomial expansion 

rx
r
n

x
n

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ ...

1
1 of nx)1( +  

up to the term containing rx , ,nr ≤ in the ascending powers of x . 

Then [ ] [ ] )1.1(),( 11 −−+=+ rnrn xnx
dx
d , where 

dx
d  stands for the derivative with 

respect to x . 
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Theorem 4.1. In the space of all n-tuples over GF(q), for wmbn ≥≥  >1 
and 2≥m , 

(8) 
[

].)]1(1)[2)(1(

)]1(1[2)1(
2

)2)(1(

)12,12(

)2,2(2
,

−−−−

−−

−+−−+

+−+−
+−+−

=

mwmmb

mwmmbm
wmb

qmmbq

qqmbnmbnW
 

P r o o f: We know from Lemma 3.2 that the total number of vectors having 
m-repeated bursts of length 1>b  each, with weight w  in the space of all n-tuples is 

2
)2)(1()1(

2
2 +−+−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
− mbnmbnq

mw
mmb w , 

therefore, wmbW ,  is the total weight of m-repeated bursts of length b  each with 
weight w or less, where ,2 mbwm ≤≤  is given by  

[ ] )]1(1[)1()1(
2

)2)(1(

)1(
2
2

...)1(
1

2

1)1()1(
2

)2)(1()1(
2
2

...

)1(
1

2
)1()1(

2
)2)(1(

)1(
2
2

...)1(
1

2
)12(

)1(2)1(
2

)2)(1(

2
)2)(1()1(

2
2

)2,2(2

2

2

122

12

12

2
,

mwmmbm

mw

mw

mm

wm

m

i
w

mi
wmb

qq
dq
dqmbnmbn

q
mw
mmb

q
mmb

q
dq
dqmbnmbnq

mw
mmb

q
mmb

q
dq
dqmbnmbn

q
mw
mmb

wq
mmb

m

qmqmbnmbn

mbnmbnq
mw

mmb
iW

−−

−

+

−

−

=

−+−−
+−+−

=

=
⎥
⎥
⎦

⎤

⎭
⎬
⎫

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

++−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

⎢
⎣

⎡

⎩
⎨
⎧
+−−

+−+−
=⎥

⎦

⎤
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

++

⎢
⎣

⎡
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+−−

+−+−
=

=⎥
⎦

⎤
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

++−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
++

⎢
⎣

⎡
+−−

+−+−
=

=
+−+−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

= ∑

 

and using Lemma 4.1, we get 

[
]

[
].)]1(1)[2)(1(

)]1(1[2)1(
2

)2)(1(
)]1(1[)1(2)]1(

1)[2()1()1(
2

)2)(1(

)12,12(

)2,2(2

)2,2(12)12,12(

2
,

−−−−

−−

−−−−−−−

−+−−+

+−+−
+−+−

=

=−+−+−+

+−−−
+−+−

=

mwmmb

mwmmbm

mwmmbmmwmmb

m
wmb

qmmbq

qqmbnmbn
qqq

mmbqqmbnmbnW

 

This proves the theorem ■ 
Next we give a recurrence relation for weights in this very general case. 
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Theorem 4.2. A recurrence relation between wmbW ,  and 1,1 −− wmbW  is given by 

(9) =⎥
⎦

⎤
⎢
⎣

⎡

−+−+−
−

+−+−
m

wmbm

qmbnmbn
W

dq
dqmbnmbn

2
,2

)1)(2)(1(
.2

)1(
2

)2)(1(  

)12,12(2

1,1

)]1(1)[2()1(
2

)2)(1(
)2(

−−−−

−−

−+−−
+−+−

+

+−=

mwmmbm

wmb

qmmbqmbnmbn
Wmmb

 

.2where ≥m  
P r o o f:  From Theorem 4.1 we have 

[
].)]1(1)[2)(1(

)]1(1[2)1(
2

)2)(1(

)12,12(

)2,2(2
,

−−−−

−−

−+−−+

+−+−
+−+−

=

mwmmb

mwmmbm
wmb

qmmbq

qqmbnmbnW
 

Therefore  

(10) 
[

].)]1(1)[12)(1(

)]1(1[2)1(
2

)3)(2(

)22,22(

)12,12(2
1,1

−−−−

−−−−
−−

−+−−−+

+−+−
+−+−

=

mwmmb

mwmmbm
wmb

qmmbq

qqmbnmbnW
 

and 

(11) 
[

].)]1(1)[2)(1(

)]1(1[2
)1)(2)(1(

.2

)12,12(

)2,2(
2

,

−−−−

−−

−+−−+

+−+=
−+−+−

mwmmb

mwmmb
m

wmb

qmmbq

q
qmbnmbn

W
 

Differentiating with respect to q  and then using Lemma 4.1, we get  

[

] [
].)]1(1[)]1(1)[1)(12(

)]1(1[2)2()]1(1)[2(

])]1(1)[12)(2)(1(

)]1(1)[2(2
)1)(2)(1(

.2

)12,12()22,22(

)12,12()12,12(

)22,22(

)12,12(
2

,

−−−−−−−−

−−−−−−−−

−−−−

−−−−

−++−+−−−+

+−+−=−+−+

+−+−−−−+

+−+−=
−+−+−

mwmmbmwmmb

mwmmbmwmmb

mwmmb

mwmmb
m

wmb

qqqmmb

qmmbqmmb

qmmbmmbq

qmmb
qmbnmbn

W
dq
d

 

The result now follows by substituting the value of 1,1 −− wmbW  ■ 
Finally we have the result of the upper bound on the minimum weight vector 

in the class of vectors considered in this section. 

Theorem 4.3. The minimum weight of an m-repeated burst of length b  with 
weight w  or less in the space of all n-tuples over GF(q), is at most 

(12) .2,
)]1(1[

)]1(1)[2)(1(2 )2,2(

)12,12(

≥
−+

−+−−
+ −−

−−−−

m
q

qmmbq
mwmmb

mwmmb

  

P r o o f: Using Lemma 3.2, the total number of m-repeated bursts of length b  
with weight w  in the space of all n-tuples over GF(q) is given by 
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.)]1(1[)1(
2

)2)(1( )2,2(2 mwmmbm qqmbnmbn −−−+−
+−+−  

From Theorem 4.1 the total weight is  

[
].)]1(1)[2)(1(

)]1(1[2)1(
2

)2)(1(

)12,12(

)2,2(2
,

−−−−

−−

−+−−+

+−+−
+−+−

=

mwmmb

mwmmbm
wmb

qmmbq

qqmbnmbnW
 

Since the minimum weight element is at most equal to the average weight, the 
minimum weight of an m-repeated burst of length b  with weight w  or less is at 
most 

.
)]1(1[

)]1(1)[2)(1(2

)]1(1)[1)(2)(1(2
)]1(1)[2)(1(2

)]1(1[2[)1)(2)(1(

)2,2(

)12,12(

)2,2(

)]12,12(

)2,2(2
,

mwmmb

mwmmb

mwmmb

mwmmb

mwmmbm
wmb

q
qmmbq

qqmbnmbn
qmmbq

qqmbnmbnW

−−

−−−−

−−

−−−−

−−

−+
−+−−

+=

=
−+−+−+−

−+−−
+

+−+−+−+−=

 

This proves the result ■ 

Conclusion 

In the study we are examining multiple burst error correction of length b each in 
Quasi-cyclic codes with shifts in b positions. 
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