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Abstract: This research work considers the problem of scalar and matrix solution
bounds derivation for one class of parameter dependent Lyapunov equations
(PDLEs). It is assumed, that the coefficient matrix is a matrix polytope, where the
uncertain vector is defined on the unit simplex. It is shown that this problem can be
efficiently solved by making use of some previously obtained results, concerning the
exact conditions for positive definiteness of homogeneous matrix polynomials
(HMPs). The main contribution consists in the definition of two upper bounds —for
the trace and the maximum eigenvalue of the solution of a PDLE. The applicability
of these results is illustrated by a numerical example.
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1. Introduction

The problem of valid bounds definition for the solution of the algebraic Lyapunov
equation has a long history. The current interest is due to both theoretical and
practical reasons. In some cases the direct solution of this equation is impossible,
due to its high order and in other ones, it is sufficient to have at disposal only some
estimates for it. The main difficulty arises from the fact, that the available upper
bounds are valid under some very conservative restrictions on the coefficient
matrix. Due to this, valid solution bounds are possible only for some special subsets
of positive (negative) stable coefficient matrices [1, 4, §].

Robustness of a linear dynamic system, subjected to structured real parametric
uncertainty, belonging to a compact vector set (e.g., the unit simplex), has been
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recognised as a key issue in the analysis of control systems, since it is not realistic
to expect that the exact model of any system is available. As a consequence, several
attempts to get bounds for the solution of the PDLE were made. Additional
difficulties arise from the simple fact, that the coefficient matrix is not exactly
known any more.

This research work is the first attempt to get always valid upper bounds for the
PDLE in the case when the coefficient matrix is a matrix polytope and the
uncertainty vector is defined on the unit simplex. It is shown that this problem can
be solved by making use of some known results concerning the positive
definiteness of HMPs. This results in the definition of two always valid upper trace
and maximum eigenvalue solution bounds, which are parameter independent. Up to
our best knowledge, these are the first suggested bounds for the solution of the
considered class of PDLEs. Their applicability is illustrated by a numerical
example.

2. Preliminaries and problem formulation

The notation A > (=)0 indicates, that A is a positive (semi-) definite matrix,

A=[a;]eR, and a=(a)e R" denote a real nxn matrix and an Nx1 vector

with entries @; and @;, respectively. The sum of N nonnegative scalars «; is |a|

and A — B [£] 0 means, that all entries of matrix A — B are non-positive. Define

also, the vector sets X, = {xeR": x'x=1} and 0, ={a=(a)e RN :|a| =1}.
(k+N-=1)!

Consider a HMP of an arbitrary degree k with Z(k)=m,0!=1,
symmetric coefficients:
(1) (a. k)= D af'ay...af Py, \, €R,. acoy,

which can be equivalently represented as a HMP of even degree 27 with y(27)

coefficients:
d x(27)
) (. k) =|e| Tl(a, k) =[l(a. 20) = Y aa I, d+k= 2z,

i,j=Li<j

~v =i N
Here, a; =a,'a,’...a),

r|=7,i=1,2,..., y(r), denotes the i-th monomial of

degree 7, and II; is the coefficient, corresponding to monomial &;c; of degree

27 . Let &, =(a;)" €R*"") be the vector containing all y(z) monomials of degree

7 and consider the homogeneous scalar polynomial (HSP):
x(27)
3) p(a,27,) =X"Tl(a, 20)x= Y @@, p; (¥ =a, C(a, ,

i,j=Li<]

Cx) =[c;(x)]eR XEX,,

x(7)°
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Where p;;(X) = x" [T; x. The symmetric matrix C(X) is said to be a Coefficient

Matrix (CM) for the HSP in (3). Define also, the HSP:
x(27)
(4) p(a.20)= Y @a;p;=%,Ca,,

i, j=Li<]
P < Py (%), Vxex, = C =[¢;][<]C(X), x e X,,.
Having in mind thate € @ , one gets
(5) p(a,27)< ple, 27,X) Va,X
Consider the PDLE
(6) A" (a)P(a) + P(a)A(@) =Q(a)=Tly(a,dy) >0,

A(a):iaiAi acmy,

where all matrices A € R are positive stable and the right-hand side is an arbitrary
given positive definite HMP. Let the matrix polytope A(&x) be positive stable on the
whole uncertainty set, then P(cr) is the unique positive definite solution to (6). It is
desired to find upper bounds for the solution, its trace and maximum eigenvalue.

As it was already said, the problem of deriving valid upper bounds for
Lyapunov equation faces serious difficulties, even in the case, when the coefficient
and the right-hand side matrices A and Q are fixed. Upper bounds have been
obtained for only two special cases:

(i) AT+A>0 [1,4]and
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(i) AT(ATA)2 +(ATA)2A>0 [6,9].

It has been proved that (i) always implies (ii), i.e., requirement (ii) is less
conservative with respect to validity. As it can be expected, the difficulties in the
case considered here are even more, due to the parameter dependence in (6).

3. Main result

Several important previous results are required.

Theorem 1. The HMP in (1) is positive definite, if and only if there exists
some sufficiently large integer d, such that all y(27) matrix coefficients of the
HMP (2) are positive definite.

The necessity part of Theorem 1 is proved in [5, 14] and it generalizes the
famous Polya’s Theorem [2], concerning positive HSPs in & € o, for the case of
matrix valued functions. Theorem 1 represents an asymptotically exact condition
and it provides a systematic way to decide whether a given HMP is positive
definite. Unfortunately, this result is very conservative, due to the obvious fact, that
(2) can be positive definite, even if some coefficients are not strictly positive
definite. In an attempt to overcome this shortcoming (conservativeness), by means
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of considering inequalities between some entries of the uncertainty vector, an
alternative approach has been suggested and consecutively improved and
generalized in [10, 12, 13], and it can be briefly summarized as the following list of
statements.

Theorem 2. For any given vector & , there exist two sets of HSPs, such that
P (e, 27, X)=X"TI;(a,27)Xx=
=a,"C; (0@, < p(, 2, %), C; () =[c; ; (0] f =L...t
() ps(@.20)=a,'C1@, < py (e, 27, ),
Cr =[C ¢ ISIC(X), Cjj ¢ = Apin ([T ¢) VX, f=1..,t

A HMP in (1) is positive definite, if and only if there exists an integer 7, such
that C; >0, f =1,...,t.

Remark 1. If there exists some integer d, such that all y(27) matrix
coefficients of the HMP (2) are positive definite, then all t matrices C, are diagonal

and positive definite.

The definition of the polynomials and the respective CMs in (7) is discussed in
details in [7, 10, 12, 13] and that is why it is omitted here. More attention is paid to
the problem how Theorems 1 and 2 can be applied to get valid upper bounds for the
solution of the PDLE (6).

Lemma 1. [11] A()is positive stable on the uncertainty set, if and only if
there  exists HMP Il(e,dg)=R(a), dz<0.5n(n—-1)+1 such that
[, (ar, dg +1) = AT(@)R() + R(a) A(r) > 0.

Lemma 2. Let the positive scalar ¢z be chosen to satisfy the matrix inequality
(8) ul(e,dg +1)-Q(a) >0 Ve

Then Ry () = 4R(x) is an upper matrix bound for the solution of the PDLE.

Proof: Having in mind (6) and (8), it is easy to get the following PDLE
A (@)[Ry (@) - P(@)]+[Ry (@) - P(@)]A(@) 20 Va.
Since A(er) is positive stable for all o, matrix Ry, () — P() must be positive

semi-definite by necessity, in accordance with Lyapunov Stability Theorem, i.e.,
Pl@)<Ry(a)Vam

Denote X' [ITy, (@, dg +1) = Q(a)1X = pga (@, dg +1,X) = p(a,dg, X).  Then

the problem for determining an upper matrix bound for the solution of (6) can be
equivalently stated as follows: given a HMP R(«), such that I, (e, dg +1)>0,

determine integers d,, d, and a positive scalar z, such that
d
lu|a| pRA((ladR+1:X):uupRA(O'/adl—}_dR—FLX)Z

2|0(|d2 Po(a,dg, X) = pg(a,d, +dy) Va,x.
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The integers d,,d, can always be chosen to satisfy the equalities
d, +dg +1=d, +d, =27, which helps to put the problem in a quadratic with
respect to the vector of monomials of degree 7 compact matrix form:
) Preq (@, 27, X, 44) = tge (@1, 27, X) = Po (@, 27, X) =

=&, [UCrp(X) —Co(X)]@ 20 Va,x,

where the entries of the two CMs are denoted as Cyyj(X)= XTHij X,
Coij(X) = XTQij X, respectively.

The application of Theorem 1 for the problem solution will be illustrated now.

Lemma 3. There exists some integer 7, such that for
yzmaxﬂmax(Qinﬁl), i,j=1,.., ¥(27), i< ], one hasP(a)<R,(a) Va, where

IT;,Q; denotes the (ij)-th matrix coefficient of |a|d’ I (a,dg +1)and
|0(|sz(0£) , respectively and d, +dg +1=d, +d, =27.

Proof: There exists some integer 7, such that all entries of the CM
Crej (X)>0 VX< II; >0, in accordance with Theorem 1. The above choice
for 41 guarantees that the CM in (9) is non-negative for all X, which sufficiently
satisfies inequality (9), since ¢, is a non-negative vector for allar € @ .

The asymptotically exact condition of Theorem 2 can also be used to derive
upper bounds. Before that, a well known result is recalled.

Theorem 3 [3]. Let M =[m;] be an arbitrary square matrix and denote
|M|:[‘mij

], p(M) = max|/1(M )| (spectral radius). In this case

pP(M)< p(M]) < p(N), N[2]M].
Corollary 1. Let M(x)=[m;(0)], m;(x)=Xx"Mx, M; =M

j- For any

XEX,

Apax IM (0] < pM ()] p(M7), M T = [mi}r]a mi}— =max{4,,,(Mj), = A (M)}
Proof: It follows easy from Theorem 3, since ||\/| (X)|[S] M~ forallxe X, =
Consider the set of HSPs in (7) and the HSP in (8). Denote

Co (X)Ci' = Cor(X), f=1,...,t, and Cq, .. =[Comaxii > Comanii = Amax (Qjj)-
Lemma 4, Let M (a, dg +1) = A" (a)R(a) + R(a) Ala) > 0,

[I(e, dg) = R(e). There exists some integer 7 , such that for

p=min(, 1),y =max p[(C4 1 I, 4 =max A, (ComaCr)s f =101,
one has P(a) <Ry (a)=uR(a) Va.
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Proof: In accordance with Theorem 2, there exists some 7 , such that all
CMs in (7) are positive definite and having in mind the HSP in (9), for any given
uncertain vector, there exists some HSP which is a lower bound for it, i.e.,

MPgre (e, 27, X) 2 up¢ (o, 27, X) 2 up; (ax, 27) =y§vTCf§V Ya,x,f=1, ..t

which means that if £ is chosen to satisfy JVT[,qu —Co(¥)]a 20 Va,x, f, then
the inequality (9) will be sufficiently satisfied, as well. Let iz = g, . It follows from
Corollary 1, that all matrices ¢C; —C(X) are positive semi-definite for all X, or
P(a)<Ry(a)=uR(a), Va. Since EVTCQ(X)J < JVTCQmaX
choice 4= p,, one has 4C¢ —Cq . >0 Vf, or P(a)<Ry(a)=u,R(a) Va.

This proves the matrix bound for the solution of the PDLE (6) m

a, Ya,X, then for the

Before presenting some scalar solution bounds, the following result is needed.

d_ d, dy _
a| = 20d1~~~ddN a' ..o =1 .
|d|=d

For any positive integer d and vector @ € ®y,

Having in mind this fact, any HSP p(e,d), «ae, can be represented and
bounded from above as follows

(10) p(a,d)= Dl aycy o, =
=
Z(edl“..ddN aldl ...af,” )y, q, ) Cy, g, SMax(ly g )_lcdl...dN .
=

Corollary 2. Let P(a)<Ry(a)=uR(a)=u Zaldl ...a,c\"N Ry .4, Va. Then
‘d‘=dR

the following upper trace and maximum eigenvalue bounds are valid:
(11) tr[P(a)] < pmax{(6y g, )" tr(Ry, a0}
ﬂ’max[P(a)] < :umax{(edl...d,\, )71 llnax[Rd,“.dN ]} Va .

Proof: It can be easily obtained, having in mind the estimate (10) and taking
into account that for any symmetric matrix sum

S= Zmlss =>1tr(S)= Zm:tr(ss), Amax (S) < Zm:imax(si) m
s=1 s=1 s=1

The obtained bounds (11) will be illustrated next.
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4. Numerical example

3
Consider the polytopes A(r) and R(a) = Z R, , described by their vertices:

i=1

0.6895 —4.137 -4.728
A =| 9.8500 3.152  0.197 |,
—13.1999 13.987 15.169

0.3276 —0.3432 -0.4836 0.7056 —-2.856 -—2.352
A, =12.0280 0.5616 —0.2184|, A, =4.8496 1344  0.224 |
1.9968 1.4976  1.2480 5.600 8232  7.168

0.7880 0.1970 0.2955
R =/0.1970 0.5910 03940,
0.2955 03940 0.7880

0.1404 0.0312 0.0156 0.3864 0.0560 0.1120
R, ={0.0312 0.0624 0.0312|, R, =]0.0560 0.3920 0.2240|.
0.0156 0.0312 0.0780 0.1120 0.2240 0.3360

The minimal eigenvalues of the six coefficient matrices of the HMP

A" (a@)R(a) + R(a)A(a) are:
Ay, =0.1403, A,, = 0.00172,
A, =0.05448, 1, =0.02293, 4,, =-0.001035, 4,, =—0.01998.

Therefore, for d = 0, robust stability of the polytope cannot be concluded,
according to Theorem 1.

Step 1. Application of Theorem 2 leads to the following results. The two
coefficient matrices in (7) are:

Ay 0 0.5, A 0 054,
Ci=| 0 Ay 054;[,Co=| 0  A,, 054,
0.54; 054, Ay, 054, 054, A

where 4;;, =0.63, 1,, , =0.0025 , i.e.,
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0.1403 0 —-0.0005175
C = 0 0.00172 -0.00999 |,
| —0.0005175 —0.00999 0.63
0.1403 0 —-0.0005175
C,= 0 0.0025 —-0.00999
| —0.0005175  —0.00999 0.05448

Simple computations show that both matrices are positive definite, which
means that A" (@)R(a) + R(@)A(a)is a positive HMP for allaem,, or
equivalently, A(c)is a positive stable polytope on the whole uncertainty set.

Step 2. Determination of the parameter y =min(g,, 4,).
Let Q(a) =Q in (6) be an arbitrary fixed positive definite matrix. By making

use of the representation X' QX = |a|2 x'Qx = aTCQ(X)a, Co(X)= XTQX[Cij lc; =1,
the problem is put in the required form (9). It is easy to see that in this
case it = i, = i, . Computation of the maximum eigenvalues of the matrices
CQmaXCf_l, f =1, 2, shows that

P(e)<Ry(a)=wR(a),Va, pu=4,,(Q)max(669.65,2124.2)=2124.2_.. (Q).

max

Step 3. The traces and the maximum eigenvalues of the three vertices of R(«x)
are:
tr(R,) =2.167, tr(R,) =0.2808, tr(Ry)=1.1144,
Ao (R =1.328, 4., (R,)=0.1596, 4., (Ry) =0.6431.

max max

Now, one can easily compute the upper scalar bounds for the solution trace
and maximum eigenvalue from (11) as follows:

tr[P(a)]<4603.144,,,(Q), A,.[P(2)]<2820.944, ..(Q) Va,

and any fixed positive right-hand side matrix Q with maximum eigenvalue
Anax (Q) -

Consider now, a PDLE (6) with a parameter dependent right-hand side matrix
given by Q(a)=(a +a; +a;)Q, +2(aa, +a,a, + a,2;)Q,, where the two
matrix coefficients are:

max

31 1 -1.333  -0.6667 —0.6667
Q=1 4 -1/>0,Q,=| 06667 —1333 0.6667 |>0.
1 -1 6 -0.6667 0.6667 -2

By using Theorem 2, the positive definiteness of this HMP on the uncertainty
set is concluded. The entries of matrix CQ(X) are Coj(X) = x'Qx, i=j=1,23,
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and Cqj(X)= x'Q,X, i,j=1,2,3, i< j. The following computational results have

been obtained:

P(a)<Ry(a)=uR(a) Ya, pu=min(y,, 1,)=min(9438.5,9983) =9438.5.
After the important parameter g is determined, the computation of the

respective upper scalar bounds can be easily obtained.
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