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Abstract: This research work considers the problem of scalar and matrix solution 
bounds derivation for one class of parameter dependent Lyapunov equations 
(PDLEs). It is assumed, that the coefficient matrix is a matrix polytope, where the 
uncertain vector is defined on the unit simplex. It is shown that this problem can be 
efficiently solved by making use of some previously obtained results, concerning the 
exact conditions for positive definiteness of homogeneous matrix polynomials 
(HMPs). The main contribution consists in the definition of two upper bounds − for 
the trace and the maximum eigenvalue of the solution of a PDLE. The applicability 
of these results is illustrated by a numerical example. 
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1. Introduction 

The problem of valid bounds definition for the solution of the algebraic Lyapunov 
equation has a long history. The current interest is due to both theoretical and 
practical reasons. In some cases the direct solution of this equation is impossible, 
due to its high order and in other ones, it is sufficient to have at disposal only some 
estimates for it. The main difficulty arises from the fact, that the available upper 
bounds are valid under some very conservative restrictions on the coefficient 
matrix. Due to this, valid solution bounds are possible only for some special subsets 
of positive (negative) stable coefficient matrices [1, 4, 8].  

Robustness of a linear dynamic system, subjected to structured real parametric 
uncertainty, belonging to a compact vector set (e.g., the unit simplex), has been 
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recognised as a key issue in the analysis of control systems, since it is not realistic 
to expect that the exact model of any system is available. As a consequence, several 
attempts to get bounds for the solution of the PDLE were made. Additional 
difficulties arise from the simple fact, that the coefficient matrix is not exactly 
known any more.  

This research work is the first attempt to get always valid upper bounds for the 
PDLE in the case when the coefficient matrix is a matrix polytope and the 
uncertainty vector is defined on the unit simplex. It is shown that this problem can 
be solved by making use of some known results concerning the positive 
definiteness of HMPs. This results in the definition of two always valid upper trace 
and maximum eigenvalue solution bounds, which are parameter independent. Up to 
our best knowledge, these are the first suggested bounds for the solution of the 
considered class of PDLEs. Their applicability is illustrated by a numerical 
example. 

2. Preliminaries and problem formulation 

The notation 0)(≥>A  indicates, that A is a positive (semi-) definite matrix, 

nijaA R∈= ][  and N
iaa R∈= )(  denote a real n×n matrix and an N×1 vector 

with entries ija  and ia , respectively. The sum of N nonnegative scalars αα  is i  
and A – B [≤ ] 0 means, that all entries of matrix A – B are non-positive.  Define  
also, the vector sets nx ≡ }1:{ T =∈ xxx nR  and Nω ≡ }1:)({ =∈= ααα N

i R .   

Consider a HMP of an arbitrary degree k with
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which can be equivalently represented as a HMP of  even degree τ2  with (2 )χ τ  
coefficients: 
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Here, ),(...,,2,1,,...21
21 τχτταααα τττ === iN

Ni  denotes the i-th monomial of 
degree τ , and ijΠ  is the coefficient, corresponding to  monomial i jα α  of degree 

τ2 . Let )(R τχαα ∈= T)( iv  be the vector containing all ( )χ τ  monomials of degree 
τ  and consider the homogeneous scalar polynomial (HSP):  
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Where .)( T xxxp ijij ∏=  The symmetric matrix C(x) is said to be a Coefficient 
Matrix (CM) for the HSP in (3). Define also, the HSP: 

(4) ij
jiji

ji pp ∑
≤=

=
)2(

,1,

)2,(
τχ

αατα = ,T
vv aCa  

⇒∈∀≤ nijij xxpp x),( [ ][ ] ( ),ijC c C x= ≤ .nx x∈  
Having in mind that Nω∈α , one gets 

(5) .,),2,()2,( xxpp ατατα ∀≤  
Consider the PDLE 

(6) 0),()()()()()(T >Π==+ QQ dQAPPA αααααα , 

∑=
N

ii AA
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where all matrices niA R∈ are positive stable and the right-hand side is an arbitrary 
given positive definite HMP. Let the matrix polytope )(αA be positive stable on the 
whole uncertainty set, then )(αP is the unique positive definite solution to (6). It is 
desired to find upper bounds for the solution, its trace and maximum eigenvalue.  

As it was already said, the problem of deriving valid upper bounds for 
Lyapunov equation faces serious difficulties, even in the case, when the coefficient 
and the right-hand side matrices A and Q are fixed. Upper bounds have been 
obtained for only  two special cases:   

(i) 0T >+ AA   [1, 4] and  

(ii) 0)()( 2
1

T2
1

TT >+ AAAAAA   [6, 9] .  
It has been proved that (i) always implies (ii), i.e., requirement (ii) is less 

conservative with respect to validity. As it can be expected, the difficulties in the 
case considered here are even more, due to the parameter dependence in (6).  

3. Main result 

Several important previous results are required.  
Theorem 1. The HMP in (1) is positive definite, if and only if there exists 

some sufficiently large integer d, such that all (2 )χ τ  matrix coefficients of the 
HMP (2) are positive definite.  

The necessity part of Theorem 1 is proved in [5, 14] and it generalizes the 
famous Polya’s Theorem [2], concerning positive HSPs in Nω∈α , for the case of 
matrix valued functions. Theorem 1 represents an asymptotically exact condition 
and it provides a systematic way to decide whether a given HMP is positive 
definite. Unfortunately, this result is very conservative, due to the obvious fact, that 
(2) can be positive definite, even if some coefficients are not strictly positive 
definite. In an attempt to overcome this shortcoming (conservativeness), by means 
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of considering inequalities between some entries of the uncertainty vector, an 
alternative approach has been suggested and consecutively improved and 
generalized in [10, 12, 13], and it can be briefly summarized as the following list of 
statements. 

Theorem 2.  For any given vectorα , there exist two sets of HSPs, such that 
=∏= xxxp ff )2,(),2,( T τατα

....,,1)],([)(),,2,()( ,
T tfxcxCxpxC fijfvfv ==≤= τααα  

(7) ),,2,()2,( T xpCp fvfvf τααατα ≤=   

....,,1,)(),(]][[ ,min,, tfxcxCcC fijfijfijf =∀Π=≤= λ  
A HMP in (1) is positive definite, if and only if there exists an integer τ, such 

that ....,,1,0 tfC f =>  

Remark 1. If there exists some integer d, such that all (2 )χ τ  matrix 
coefficients of the HMP (2) are positive definite, then all t matrices fC are diagonal 
and positive definite.  

The definition of the polynomials and the respective CMs in (7) is discussed in 
details in  [7, 10, 12, 13]  and that is why it is omitted here. More attention is paid to 
the problem how Theorems 1 and 2 can be applied to get valid upper bounds for the 
solution of the PDLE (6).  

Lemma 1. [11] )(αA is positive stable on the uncertainty set, if and only if 
there exists  HMP )(),( αα RdR =Π , 1)1(5.0 +−≤ nndR  such that 

.0)()()()()1,( T
RA >+=+Π ααααα ARRAdR  

Lemma 2. Let the positive scalarμ  be chosen to satisfy the matrix inequality 
(8) .0)()1,( αααμ ∀>−+Π QdR   

Then )()(U αμα RR =  is an upper matrix bound for the solution of the PDLE. 

P r o o f:  Having in mind (6) and (8), it is easy to get the following PDLE  
.0)()]()([)]()()[( UU

T ααααααα ∀≥−+− APRPRA  
Since )(αA  is positive stable for all α, matrix )()(U αα PR − must be positive 

semi-definite by necessity, in accordance with Lyapunov Stability Theorem, i.e., 
ααα ∀≤ )()( URP ■ 

Denote ).,,(),1,()]()1,([ RARA
T xdpxdpxQdx QRR αααα −+=−+Π  Then 

the problem for determining an upper matrix bound for the solution of (6) can be 
equivalently stated as follows: given a HMP )(αR , such that 0)1,(RA >+Π Rdα , 
determine integers 21, dd  and a positive scalarμ , such that  
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The integers 21, dd  can always be chosen to satisfy the equalities 
τ21 21 =+=++ QR dddd , which helps to put the problem in a quadratic with 

respect to the vector of monomials of degree τ compact matrix form: 
(9) =−= ),2,(),2,(),,2,( REREQ xpxpxp Q ταταμμτα   

,,0)]()([ RA
T xxCxC Qv ααμα ∀≥−=  

where the entries of the two CMs are denoted as ,)( T
,RA xxxc ijij Π=  

,)( T
, xQxxc ijijQ =  respectively. 

The application of Theorem 1 for the problem solution will be illustrated now. 
Lemma 3. There exists some integer τ , such that for 

,),2(...,,1,),(max 1
max jijiQ ijij ≤=Π= − τχλμ  one has ,)()( ααα ∀≤ URP  where 

ijij Q,Π  denotes the (ij)-th matrix coefficient of )1,(1 +Π RRA
d dαα and 

)(2 αα Qd , respectively and τ21 21 =+=++ QR dddd .  

P r o o f :  There exists some integer τ, such that all entries of the CM 
,00)(,RE >Π⇔∀> ijij xxc  in accordance with Theorem 1. The above choice 

forμ guarantees that the CM in (9) is non-negative for all x, which sufficiently 
satisfies inequality (9), since vα is a non-negative vector for all .Nω∈α  

The asymptotically exact condition of Theorem 2 can also be used to derive 
upper bounds. Before that, a well known result is recalled. 

Theorem 3 [3]. Let ][ ijmM =  be an arbitrary square matrix and denote 

][ ijmM = , )(max)( MM λρ =  (spectral radius). In this case 

),()()( NMM ρρρ ≤≤  MN ][≥ . 

Corollary 1. Let .,)()],([)( TT
ijijijijij MMxMxxmxmxM ===  For any 

nx x∈  
)}.(),(max{],[),()]([)]([ minmaxmax ijijijij MMmmMMxMxM λλρρλ −==≤≤ ++++  

P r o o f: It follows easy from Theorem 3, since +≤ MxM ][)( for all nx x∈  ■ 
Consider the set of HSPs in (7) and the HSP in (8). Denote 

,...,,1),()( ,
1 tfxCCxC fQfQ ==−  and ).(],[ maxmax,max,max ijijQijQQ QccC λ==  

Lemma 4. Let ,0)()()()()1,( T
RA >+=+Π ααααα ARRAdR  

).(),( αα RdR =Π  There exists some integerτ , such that for  
,...,,1),(max],[(max),,min( 1

maxmax2,121 tfCCC fQfQ ==== −+ λμρμμμμ  

one has .)()()( U ααμαα ∀=≤ RRP  
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P r o o f:  In accordance with Theorem 2, there exists someτ , such that all 
CMs in (7) are positive definite and having in mind the HSP in (9), for any given 
uncertain vector, there exists some HSP which is a lower bound for it, i.e., 

),2,(),2,(RE xpxp f ταμταμ ≥ xCp vfvf ,)2,( T αααμταμ ∀=≥ , f = 1, ..., t, 

which means that if μ is chosen to satisfy  ,,,0)]([T fxxCC Qv f
ααμα ∀≥−  then 

the inequality (9) will be sufficiently satisfied, as well. Let 1μμ = . It follows from 
Corollary 1, that all matrices )(xCC Qf −μ  are positive semi-definite for all x, or 

ααμαα ∀=≤ ),()()( 1U RRP . Since ,,)( max
TT xCxC vQvQv ααααα ∀≤  then for the 

choice 2μμ = , one has fCC Qf ∀≥− 0maxμ , or ααμαα ∀=≤ )()()( 2U RRP . 
This proves the matrix bound for the solution of the PDLE (6) ■ 

Before presenting some scalar solution bounds, the following result is needed. 
For any positive integer d and vector Nω∈α , 1....1

1 1.... == ∑
=dd

d
N

d
dd

d N

Nd
ααθα . 

Having in mind this fact, any HSP ),,( dp α   Nω∈α , can be represented and 
bounded from above as follows 
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Corollary 2. Let ....)()()( ...1U 1
1 αααμαμαα ∀==≤ ∑

= R

N
N

dd
dd

d
N

d RRRP  Then 

the following upper trace and maximum eigenvalue bounds are valid: 

(11) ≤)]([tr αP )},(tr)max{( ...
1

... 11 NN dddd R−θμ  

αλθμαλ ∀≤ − ]}[)max{()]([ ...max
1

...max 11 NN dddd RP . 

P r o o f: It can be easily obtained, having in mind the estimate (10) and taking 
into account that for any symmetric matrix sum  

)()(,)(tr)(tr
1

maxmax
11

i

m

s

m

s
s

m

s
s SSSSSS ∑∑∑

===

≤=⇒= λλ ■ 

The obtained bounds (11) will be illustrated next. 
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4. Numerical example 

Consider the polytopes )(αA  and ∑
=

=
3

1
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i
iRR α , described by their vertices:  
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The minimal eigenvalues of the six coefficient matrices of the HMP   

)()()()(T αααα ARRA + are: 
,00172.0,1403.0 2211 == λλ

01998.0 , 001035.0,02293.0,05448.0 23131233 −=−=== λλλλ . 

Therefore, for d = 0, robust stability of the  polytope cannot be concluded, 
according to Theorem 1.  

Step 1. Application of Theorem 2 leads to the following results. The two 
coefficient matrices in (7) are: 
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where 0025.0,63.0 2,221,33 == λλ , i.e., 
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Simple computations show that both matrices are positive definite, which 
means that )()()()(T αααα ARRA + is a positive HMP for all Nω∈α , or 
equivalently, )(αA is a positive stable polytope on the whole uncertainty set.  

Step 2. Determination of the parameter ).,min( 21 μμμ =   
Let QQ =)(α   in (6) be an arbitrary fixed positive definite matrix. By making 

use of the representation ,)(TT2T ααα xCQxxQxx Q==  1],[)( T == ijijQ ccQxxxC , 
the problem is put in the required form (9). It is easy to see that in this 
case 21 μμμ == . Computation of the maximum eigenvalues of the matrices  

2,1,1
max =− fCC fQ , shows that  

ααμαα ∀=≤ ),()()( U RRP ,  ).(2.2124)2.2124,65.669max()( maxmax QQ λλμ ==  

Step 3. The traces and the maximum eigenvalues of the three vertices of )(αR  
are:  

,1144.1)(tr,2808.0)(tr,167.2)(tr 321 === RRR  
.6431.0)(,1596.0)(,328.1)( 3max2max1max === RRR λλλ  

Now, one can easily compute the upper scalar bounds for the solution trace 
and maximum eigenvalue from (11) as follows: 

,)(94.2820)]([),(14.4603)]([tr maxmaxmax αλαλλα ∀≤≤ QPQP  

and any fixed positive right-hand side matrix Q with maximum eigenvalue 
)(max Qλ . 

Consider now, a PDLE (6) with a parameter dependent right-hand side matrix 
given by 23231211

2
3

2
2

2
1 )(2)()( QQQ αααααααααα +++++= , where the two 

matrix coefficients are: 

0
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141

113

1 >
⎥
⎥
⎥

⎦
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⎢
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⎣

⎡

−
−=Q , .0

26667.06667.0
6667.0333.16667.0
6667.06667.0333.1

2 >
⎥
⎥
⎥

⎦
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⎢
⎢
⎢

⎣

⎡

−−
−

−−−
=Q  

By using Theorem 2, the positive definiteness of this HMP on the uncertainty 
set is concluded. The entries of matrix )(xCQ  are ,3,2,1,)( 1

T
, === jixQxxc ijQ  
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and .,3,2,1,,)( 2
T

, jijixQxxc ijQ <==  The following computational results have 
been obtained: 

,)()()( U ααμαα ∀=≤ RRP  .5.9438)9983,5.9438min(),min( 21 === μμμ  
After the important parameter μ is determined, the computation of the 

respective upper scalar bounds can be easily obtained.  
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