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Abstract: In order to integrate the quantitative, objective and probabilistic concept
of information with the qualitative, subjective and non — stochastic concept of
utility, researchers over the past years have proposed several weighted information
measures. These measures find applications in fields dealing with random events
where it is necessary to take into account both the probabilities with which these
events occur and some qualitative characteristic of these events. However it seems
to the author that very little effort has been devoted by researchers in obtaining
bounds on these weighted information Measures. In the present work, we have
obtained bounds on these weighted information measures using the Lagrange’s
multiplier method and some well known inequalities. Without essential loss of
insight we have restricted ourselves to discrete probability distributions.

Keywords: Weighted entropy, utility distribution, Arithmetic, Geometric &
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1. Introduction

Let

(O, ={p, P2, PP =0, i=1,2, ..,n Yopi=1}, n=2 3,..
denote the set of all finite discrete (n-ray) complete probability distributions.
Shannon [7] introduced the following measure of information

(2) H,(P) = —Xi 1 p; logp;

for all P = (py, p2, ., Pn) € I, The expression (2) is famous as Shannon's
entropy or measure of uncertainty. The function H,,(P) represents the expected
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value of uncertainty associated with the given probability scheme and it is uniquely
determined by some rather natural postulates. Underlining the importance of
Shannon’s entropy, it is necessary to notice at the same time that this formula gives
us a measure of information as a function of the probabilities with which various
events occur, only. But there exists many fields dealing with random events where
it becomes necessary to take into account both these probabilities and some
qualitative characteristic of events. Belis and Guiasu [1] raised this very
important issue of integrating the quantitative, objective and probabilistic concept
of information with the qualitative, subjective and non-stochastic concept of utility,
and proposed the following weighted measure of information

(3) H(P, U) = = Xi_  up; log p;.

Here u; denotes the weight of an elementary event with probability p;. In
general, u; is a non-negative, finite, real number accounting for the relevance,
significance or the utility of the occurrence of an event with probability p;. Also, if
one event is more relevant, more significant, and more useful (with respect to a
given goal or from a given qualitative point of view) than another one, the weight of
the first event will be greater than that of second one. Longo [5] studied the
measure (3) in detail and raised objections about its applicability in various coding
procedures. He further suggested that the concept of utility should be introduced in
a different way in any information scheme and that a utility measure should exhibit
a relative character rather than only a non — negative character. Kapur [3, 4]
further studied the measure (3) and asserted that (3) is not a measure of information
since it depends on the units in which utility is measured and as such (3) can be
expressed in dollar-bits or hour-bits and not in terms of bits only. Keeping in mind,
Kapur [4] considered the following probability distribution

Uipi .
-, 1=12, ..,n,
Zis wipi
and used this distribution in obtaining the following weighted information measure
4 HP, U) = -3" 2 log o2,
“) ( ) ST up OB T, up

Munteanuand Tarniceriu [8] considered a different set of axioms and
proposed the following weighted information measure:

&) H*(P, U) = = XL pi log p; + X1y wip;-

In the present work, we have obtained bounds on the weighted information
measures given by (2)-(5) using the Lagrange’s multiplier method and some well
known inequalities such as the weighted arithmetic, geometric & harmonic mean
inequality and the Shannon inequality including its generalizations.

Remarks: From now onwards, logarithms are taken to base 2.

2. Optimization of weighted entropy functionals
Consider the following function

©)  @(P1, P2 s Prs U, Uz, o Un) = — Kizguipi logpy + AQ pi — 1D
where A is a real positive number (the lagrange multiplier).

61



The maxima of the function ¢ with respect to p; for fixed u; coincides with
the maxima of the function H(P, U). The necessary condition for the existence of
extreme is given by the system

09 (D1, P2) P Ut Upy oo Un)

=0,1<i<n
) op;
mapi =1
Applying (7) on the function ¢ given by (6), we obtain
(8) pi=,, 1<i<n
The extreme given by (8) is a maximum because
(0%¢ .
—=-ny, 1<i<n
dap;
EL0)
=0, e
0p;0p;

However the above maximum holds for fixed utility distributions. To obtain a
more general result, we consider the weighted Arithmetic, Geometric & harmonic
Mean inequality (weighted AGM inequality) which is as follows.

Let x4, x5, ..., X, be positive real numbers and let aq, a5, ..., @, be non-
negative real numbers whose sum is 1. Then it follows that for n > 2
1 .
(9) Zn aj S ?::lxl'al S Z?:l alxl (Z?:l al = 1)
i:1x_l.

with equality if all x;s are equal.
Taking logarithm on both sides in (9), we obtain

(10) —log Z?=1z_i <Y ailogx; <log(Xit, ax;).
Now replacing @; by p; and x; by p;*“i in the above inequality, we obtain
(11) —log(Xiz; p**) < H(P,U) < log(Xiy pi' ™ ™).

The above inequality gives a lower bound and an upper bound for the
weighted information measure given by (3). Further if we take uy =u, = ... =
» = 1in (11), we obtain

n
—log (Z pi2> < H,(P) <logn

which gives a lower & an upper bound for the well known Shannon entropy given
by (1).

Further if we take u; = u, = ...=u, =uand p; = %, i=12,..,nin(11),
we obtain

logn — (1 —u)logn < H(P,U) < —logn + (1 + u) logn

The above inequality gives a lower bound & upper bound for weighted
entropy in case of fixed weights and uniform probabilities. Again consider the
following reﬁnements [6] of the weighted AGM inequality given by

a;(x; — Z a;(x; — A)?
<log(4) —1 ————
AZ x; + max(xL,A) < log(4) —log(6) < A ZLax; + min(x;, A)
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H)? — H)?
< log(G) — log (H) <~ 2
AleH+max(xl,H) 0g(G) — log (H) A le+m1n (xi, H)

where A =YL, a;x;,G = [[j=, ;% ,H =

1 ) ) .
ST denote the weighted arithmetic
i=1x_i

mean, weighted geometric mean and weighted harmonic mean of the x;'s. Now
replacing «; by p; and x; by p;“ in the above inequalities, we obtain

n
1 pi(p™ — Xl pit)? “
(Zn “l“)Z pi%i + max(piui, 1plul+1) < log Zplul —HPU) <

i=1

n
< ( 1 )2 PP~ Xiy Pi“‘“)2
>~ Z‘{;lpiui“'l e pLuL + min(piui, ?=1 piui+1)'

1 2
(p‘ _W) N
Z(pll R = I ) < H(P,U) +log Zpil‘“i
ST 1-u; i=1

= it =1

1 2
(Plu‘ _n—l—ul>
Z(p 1) =P
L
——— S 1=y T min (pl ,;11()
l lp i= 1p L

which gives a refinement of the inequality given by (11).

I

If we consider the function

cp(pl. P2y e Ppi Uty Uz ey Un) =
U;pi
+ 1 Zp-—l
ZZ U;p; anluipi <i=1 ! )

the maximum entropy discrete probability distribution is obtained as

Uuipi 1 .
(12) P =—-, 1<i<n
Yimiuipi n

Again if we consider the function

n n n
Q(P1, D2) oo Ps Up, Up, e, Up) = — Z p; logp; + z uip; +4 (Z pi — 1)

i=1 i=1 i=1
the maximum entropy discrete probability distribution is obtained as

2% .
(13) pi = S Zu,1S1Sn.

In fact we will now derive some 1nequa1ities which gives an upper and a lower
bound for the weighted entropy defined by (5) with equality at the point given by
(13). We proceed as follows:
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Let p;,q; >0, where 1<i<n and Y, p;=1=X",q. Then the
following estimates hold.

ql(ql pi)z
(14) z (ql)Z + (max(qu pl))

q:(qi — p)?
Z pl“’g Z (4% + (min(q;, p))?

The above inequality is a refinement of well known Shannon inequality given
by Xiz1 pllog = 0.

Now replacmg q; by =5— Z" - in the above inequality, we obtain

Ui

2 ( 2
= n ou \YR Ui pi)
Z Zl=1 2 2l=1 2 > _ H*(P, U) S

( 2u )2+(max(L ))2 slog(;%

S, 2 PP

n

2ui Qui z

- i Zn U (Z?=1 2u Pi)
- ui \? 2ui 2
(s, zm) +(min (s ))

which gives

22U QUi 2
= —_ .
w(§r)- 3 T
8 o

2 Uy 2
= F(grm) + (min(grzm )
22U 22U

2
- - n oy ( nou; pi)
< log (Z 2“i> — Z 25”21 SR ™

2 2
= gim) + (max (g )

Equality holds in the above inequality if p; = nz—;ul for each i.

i=1

3. Discussion

In the present work, we have obtained bounds on the weighted information
measures given by (3), (4) and (5) using the Lagrange’s multiplier method and
some well known inequalities. The optimum obtained for the weighted entropy
given by (8) coincides with the optimum for the Shannon entropy given by (1) if the
weights are fixed. However we have obtained a more general result using the
weighted AGM inequality when the weights associated with events are not fixed. .
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Further the maxima given by (12) are obtained for the weighted entropy given by
(4). But it seems very difficult to find a utility (weight) & a probability distribution
which satisfy (12). The effect of weights seems more significant in a maximum
given by (13) which is obtained for weighted entropy given by (5). Work on one
parametric generalization of these results is in progress and will be reported
elsewhere.
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