
 46

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 11, No 2

Sofia • 2011

Development of a Refactoring Learning Environment

Mincho Sandalski, Asya Stoyanova-Doycheva,
Ivan Popchev, Stanimir Stoyanov

Plovdiv University “Paisii Hilendarski”, 4000 Plovdiv
E-mails: sandim@uni-plovdiv.bg, astoyanova@uni-plovdiv.bg, sandim@uni-plovdiv.bg,
stani@uni-plovdiv.bg

Abstract: The paper describes a Refactoring Learning Environment, which is
intended to analyse and assess programming code, based on refactoring rules. The
Refactoring Learning Environment architecture includes an intelligent assistant,
Refactoring Agent, which is responsible for the analysis and assessment of the code,
written by students in real time by using a set of refactoring methods. According to
the situation and based on the refactoring method, which should be applied, the
agent could react in different ways. Its goal is to show the students, as much as
possible, the weak points of their programming code and the possible ways of
improving it.

Keywords: refactoring, e-learning, software engineering, agent-oriented
architectures.

1. Introduction

The existence of a large number of legacy systems and the necessity of their
improvement for the purposes and needs of their users give rise to the creation of a
specific process in software engineering, called reengineering. Reengineering is
demanded in different situations when the software needs to undergo an evolution
[1]. Here are some examples for the necessity of reengineering: the division of
monolithic software into separate modules with the objective of their easier
management, enhancement of the software productivity or portability, the use of
new technologies or a change in the clients’ requirements. When the software
constantly adapts or modifies, its source code becomes more complicated and its

 47

initial architecture and structure lose their identity. For this reason the major share
of the software development price is focused on their support [2]. In the application
of well-known and effective software development approaches such as iterative,
evolutionary and others, a solution has not been found in connection with the code
complexity. This is so because in these approaches the software engineers’ efforts
concentrate on developing new requirements while at the same time the software
has to be supported [3]. In order to solve the code complexity problem, within the
reengineering there emerged the special techniques restructuring [4] and refactoring
[5].

At the Faculty of Mathematics and Informatics of the Plovdiv University, a
Distributed e-Learning Center (DeLC) has been created [6, 7]. It has been
considered a good practice to include special techniques for code simplification in
the students’ education, especially in the Master software engineering programs. In
this publication we present in detail an e-Learning environment for assisting the
acquisition of the special technique of refactoring, called Refactoring e-Learning
Environment (ReLE). A brief overview of ReLE can be found in [21]. The rest of
the paper is organized as follows: Section 2 briefly presents the refactoring
technique and reviews existing supporting tools; Section 3 describes the ReLE
architecture; Section 4 presents an intelligent agent, called RA, which is the kernel
of the environment; in Section 5 some implementation issues have been discussed;
Section 6 demonstrates the use of the RA, and finally Section 7 concludes the
paper.

2. Refactoring

The main goal of refactoring is to improve the design of the existing programming
code. In [5] the refactoring is presented as a sequence of small transformations of
the source code in a software system, as they preserve the external behaviour of the
software system and lead to large restructuring of the source code. Each
transformation can be presented as a pattern that is called “refactoring”. Fig. 1
presents an example of refactoring.

Extract class

Condition: You have one class doing work that should be done by two classes.
Motivation: A class has many methods and quite a lot of data. A class is too

big to be understood easily.
Action: Create a new class and move the relevant fields and methods from the

old class into the new one.

Fig. 1. Extract Class refactoring method

Person
name

GetTelephoneNumber()

TelephoneNumber
areaCode
number

getTelephoneNumber()
1

office Telephon

1

Person
name
officeAreaCode
officeNumber

GetTelephoneNumber()

 48

The activities connected with the source code transformation are defined as follows
[5]:

• Localization of the “bad” places in the source code, which has to be
refactored.

• Selection of the right refactoring from a refactoring pattern list according to
the concrete situation in the source code.

• Provision that the applied refactoring will preserve the behaviour of the
software system – we create a unit test about this place in the source code.

• Application of refactoring.
• Execution of unit tests after refactoring.
• Determining the influence of refactoring on the software quality

characteristics (complexity, intelligibility, support possibilities) or on the process
(productivity, price, efforts).

• Coordination support between the code to which refactoring is applied, and
other software artefacts (project documents, requirements specification, tests, etc.)

Although the refactoring process could be realized by hand, the possibility of
applying automatic tools is of great importance. At present, a number of such tools
are available, where the aspect and degree of the process automation vary
depending on the particular tool and supported maintenance. Tools like Refactoring
Browser [8], XRefactory [9] and jFactor [10] apply semi-automatic approach, after
which the place and type of refactoring are chosen by the user. According to some
scientific researches completely automated refactoring is also an acceptable
approach. Guru, for example, belongs to this category and is used for restructuring
hierarchies of successors and methods for refactoring in SELF programs [11]. Some
other approaches for automated refactoring are presented in [12-15]. A current
tendency in this field consists in the integration of refactoring tools in powerful
industrial environments for software development. Such is the case with Smalltalk
Visual Works from v7, Eclipse from v2, Together Control Center from v6, IntelliJ
IDEA from v3, Borland JBuilder from v7, etc. All these tools focus on applying
refactoring in compliance with the user requirements. Another group of tools, which
are less in comparison with the previous ones, provide the opportunity to define
when and where to apply refactoring. In [16], an approach is presented after which
the implementation is realized via metrics, whereas in [17] the possibility is
described for automation via invariants by means of the Daikon tool. The latter
approach is based on a dynamic analysis of the behaviour of the run-time of the
system and its most proper application is as a complement to the other approaches.

The proposed environment differs from the existing tools in several aspects:
• The environment is a prototype and is intended, first of all, for teaching

students.
• The code analysis is done in real time, i.e. during the code development

phase the students can be assisted in improving its quality.
• An agent-oriented implementation is realized.

 49

3. ReLE Architecture

The ReLE architecture consists of two components (Fig. 2):
• Front-End (FE) – the environment, which is used by the students for the

development, compilation and testing of the source code;
• Back-End (BE) – the Refactoring Agent (RA), which is an intelligent agent

assisting the students during the code development.
The Refactoring Agent is an autonomous software application that

continuously analyses and assesses the code that is developed in FE. Consequently,
from the RA point of view, FE is its environment. The Refactoring Agent
communicates with its environment by means of its sensors and effectors. Via the
sensors the RA accesses the complete source code. This implies not only the files
being edited, but also the completed ones that have not been opened in the FE for
editing. In this way the agent could make a profound analysis and give an adequate
assessment for the required changes on the basis of all the code rather than the part
that is currently being modified. The sensors also provide some basic metric
information to the agent, which is used for initial filtering of the possible
refactoring methods that can be further evaluated. The possible metrics are LOC
(Line Of Code) per class/method, number of methods/attributes per class, and so on.
The role of the effectors is to trigger different events that assist the students during
the accomplishment of their tasks in FE, where they are working. Such events could
be:

• Underlying particular parts of the code by highlighting them with an
appropriate colour;

• Displaying messages in dialog windows, balloon messages, etc.;
• Emitting sound-signals, vocal messages;
• “Incarnating” the agent in the form of animation to exalt the effect.

Fig. 2. ReLE architecture

Refactoring Knowledge
Base

Refactoring
Agent

sensors
effectors

Local Control

RAnalyzer RParser

Rules

Refactoring classes

FE (IDE) BE (JADE)

 50

The collaboration of the sensors and effectors is coordinated by the Local
Control of the agent, which is based both on the information, incoming from the
sensors, and the refactoring rules, stored in the Refactoring Knowledge Base (RKB)
of the agent.

The analysis of the source code, written by the students in FE, is made by the
RAnalyzer. Before the RAnalyzer starts its work, the RParser parses the source
code and creates a tree structure from it. This tree structure can be analysed by the
RAnalyzer.

The RKB consists of a set of rules together with a set of classes, which build a
consistent knowledge base. Each rule describes in a common form the conditions,
which allow a particular refactoring method to enter the “short list”, based upon
some metrics.

For example, a possible rule for choosing the “Extract class” refactoring
method could be LOC_by_class > predefined_value, which actually means that the
refactoring method will be fired when the class becomes too big (depending on the
predefined value).

In this way, the rules are used by the RAnalyzer in order to make the initial
filtering of the refactoring methods, which should be evaluated at the next step.

Each refactoring class contains the code for the particular refactoring method,
as well as a code for the final evaluation of the possibility of applying this
refactoring method. The refactoring methods filtered by the RAnalyzer are then
examined by using the evaluation part of each refactoring class. In this way, the
agent takes a final decision about which refactoring method to be used at what
place.

At the last step, the refactoring is applied by using the actual refactoring class
after a negotiation with the user – as described in the next topic.

4. Refactoring Agent RA

As mentioned, the kernel of ReLE is an intelligent agent assisting the students in the
process of refactoring. Its main task consists in checking the code, which is being
developed by the students in FE, and appropriately displaying instructions for
improving its quality, whenever necessary. Depending on the refactoring method,
which should be applied, the agent could react in three different ways (Fig. 3):

• Automatic Refactoring – to apply the method automatically after
receiving a confirmation from the user.

• Refactoring Proposal – to display detailed instructions, explaining to the
user where and how the particular refactoring method should be applied.

• Refactoring Questionnaire – to ask the user additional questions in order
to clarify the conditions and define the appropriate refactoring method.

 51

[no]

[yes]

[automatic]

[no]

[yes]

[proposal]

[questionnaire]

Analyzing

found "smell code"

Check refactoring type

Ask the user for automatic refactoring

user confirms

Apply refactoring

Make a proposal to the user User inquiry

Fig. 3. Activity diagram of RA functionality

In the cases when the refactoring method is comparatively simple and the
criteria for its application are clear, the agent could offer the user to implement the
required changes automatically. Some of the appropriate methods for this approach
are: Move Method, Move Field, Extract Class, Extract Method, etc. Here is an
example (Move Method):

• On the basis of the refactoring rules in RRB, the agent finds out that there
is a method in class A, that uses resources mainly from class B, which implies the
application of the Move Method.

• The agent displays a message, in which it offers the user to move this
method to class B.

• In case the user agrees, the agent moves the whole method from class A to
class B by:

- correcting all references to the resources in class A, so that they are
accessible from class B, and adding the required parameters to the method
if needed;

- substituting all method invocations, so that they use its new position in
class B.

The intervention of the user in this process is not excluded, of course, and it is
possible in case he/she would like to correct the code of the method after it has been
replaced in the other class.

 52

Often, the criteria for refactoring are clear but the application of the particular
method implies a significant change in the code or its structure. In these cases an
approach is recommended, after which the agent informs the user about the specific
situation and offers them detailed explanations about the possible improvements
that could be made in the particular situation. Some of the proper refactoring
methods that belong to this category are Replace Conditional with Polymorphism,
Replace Delegation with Inheritance, Replace Inheritance with Delegation, etc.
Here is an example (Replace Conditional with Polymorphism):

• In compliance with the rules in RRB, the agent finds out that there is a
condition, which chooses a different behaviour on the basis of an attribute of a
given object. This is an appropriate case for applying the method Replace
Conditional with Polymorphism;

• The agent underlines this part of the code and displays a balloon message,
which points out that refactoring of the marked code is required;

• If the user would like to become familiar with some additional information
concerning the agent’s recommendation, such could be presented in the form of
consistent steps, which he/she should implement in order to improve the quality of
the code.

Often the choice of applying one or another method for refactoring is made on
the basis of an almost uniform set of criteria where just a few differ from one
another. In the cases when some of the requirements for applying the refactoring
methods are met and yet this is not sufficient to define uniquely the most
appropriate one, the agent could “ask” the user several questions in order to clarify
the concrete situation. Having clarified the requirements, the agent defines again the
type of the situation, which could be one of the types described above: automated
refactoring or a refactoring proposal. Here is an example:

• The agent finds out that a given class contains a numeric “type code” but
cannot determine if this code changes the behaviour of the class;

• The agent displays a question to the user, asking them whether this “type
code” influences the behaviour of the class;

• If the answer is “no”, the agent offers the user to apply the Replace Type
Code with Class method;

• If the answer is “yes”, the agent asks the user whether the “type code”
attribute changes during the lifecycle of the object;

• If the user’s answer is “no”, the agent offers the user to apply the Replace
Type Code method with Subclass;

• Otherwise, the agent offers the Replace Type Code with State/Strategy.

5. Implementing the RA’s prototype

A brief overview of the RA’s prototype is described in this section. It is a big
challenge to create an integrated development environment, consisting of the RA’s
environment and the working environment for the students. Furthermore, the

 53

implementation of the RA’s internal architecture and the embedded knowledge base
are presented in the section.

5.1. Integrated development environment

The integrated development environment consists of an agent-oriented development
tool – JADE [19], and an environment for developing Java programs – Eclipse [18].
Both environments have a rich set of integration features, providing a possibility to
work together. On the one hand, Eclipse uses the “plugins” concept, which brings a
powerful mechanism for interaction with external components. On the other hand,
the agents’ sensors and effectors are the environment interaction mechanism. This
raised the idea of both the sensors and the effectors to be developed as plugins in
Eclipse. In this way, one of the significant concepts in the agent-oriented systems is
implemented with Eclipse components. As a result, the integration between the two
environments was implemented entirely by their own tools.

The RA’s implementation is distributed in both environments – JADE and
Eclipse (Fig. 4). Some of the Java classes, implementing RA, are built in the
Eclipse Platform in the form of plugins. In this way, the RA has access to the
needed data (Resources) in Eclipse – mainly this is the source code, produced by
the students. The agent can interact with the graphical User Interface (UI) as well as
other APplication Interfaces (API). In this way the communication between the
student and the RA is implemented.

The RA has to reside a particular JADE container. During the RA operation
different behaviours can be added to the agent. Each behaviour implements logic
for the analysis and modification of the source code. In this way each refactoring
method is presented as separate behaviour. Furthermore, the RA can communicate
with other agents in the same container and assign them tasks, using JADE API.
The RA’s access to Eclipse Java Editor is possible by the help of Java Development
Tools (JDT) plugin.

Fig. 4. Integrated development environment

JADE Container (a runtime environment for JADE agents)

Refactoring Agent

Behavior 1 Behavior 2 Behavior N

Plugins in IDE environment

UI Resources JDT
. . .

 54

5.2. RA knowledge base

The knowledge base of the Refactoring Agent is a fundamental part of its
architecture. It contains a set of rules determining whether a situation requires
refactoring and which refactoring methods should be applied.

Each class of the agent’s knowledge base on refactoring includes a code,
which implements a specific refactoring method, and a code, enabling the final
evaluation of the possibilities for applying the refactoring method (the evaluation
part). The refactoring methods, chosen by the RAnalyzer (Fig. 2), are under
investigation. For that purpose there is used the evaluation part of the classes, which
implement the refactoring methods in the knowledge base. In this way the agent
takes a final decision about which refactoring method to use and in which location
to apply it in the code, written by the student.

The current implementation of the RA knowledge base is presented on the
package diagram in Fig. 5. The main package in the knowledge base, called
“Pattern”, contains the common functionality for the rules and for the refactoring
methods. Each refactoring method is a set of classes that extends the abstract
functionality from the “pattern” package in such a way as to reach the needed
refactoring behaviour. The set of classes of the refactoring method is put in a
different package for each refactoring method. Currently the knowledge base
contains packages for seven different refactoring methods, represented with a
separate package on the diagram in Fig. 5.

remove

conditional_to_polym

typecode_questionnarie

encapsulate

inline

decompose

consolidate pattern

Fig. 5. Package diagram of the RA knowledge base

The structure of the refactoring packages in the knowledge base is illustrated
by the “decompose” package (Fig. 6). The classes on this class diagram correspond
to the classes in Fig. 5, but here they are shown in a more specific way. The Visitor
class traverses the current syntax tree and looks for package specific situations in
the code, and the Resolution class, which contains the logic for the agent reaction
for this particular package.

 55

Fig. 6. Implementation of the refactoring method

The structure of the other refactoring packages is similar. Тhe implementation
of a new refactoring method needs two additional classes that implement the
concrete behaviour.

5.3. RA Components

The major classes and their relationships, implementing the RA, are shown as a
class diagram (Fig. 7). The RA life cycle is depicted in the sequence diagram
(Fig. 8). The main steps of the life cycle are described in more details.

The first step is the initiation of the RA (1-5 in the diagram). The Activator
class creates a JADE container, in which the RA operates. This class contains
RALifecycleListener objects, the so called observers/listeners (in the Observer
pattern [20]), and methods for notification of all registered observers. Each
refactoring method corresponds with a separate observer. The observers inherit the
MarkerManager class used for highlighting code fragments, considered for
refactoring. The highlighting option can be deactivated by the student through the
start/stop button of the RA.

 56

markerManager

util

1..1
0..*

AgentBehaviour

-
-
-

serialVersionUID
markerManager
util

+
#

<<Constructor>> AgentBehaviour (..)
onTick () : void

FindPossibil itiesVisitor

-
-

methodsToFragments
declarationToUses

+
+
-
-

visit (..)
endVisit (..)
addToFinalDataStructure (..)
addToIntermediateStructure (..)

: boolean
: void
: void
: void

ASTVisitor
(dom)

MarkerManager

*
-
-

createMarkers (..)
createDeclarationMarker (..)
encodePositions (..)

: void
: void
: String

RALifecycleListener
(refagent)

+
+

refagentTurnedOn ()
refagentTurnedOff ()

: void
: void

ResolutionGenerator

+
+

hasResolutions (..)
getResolutions (..)

: boolean
: IMarkerResolution[]

IMarkerResolutionGenerator
(ui)

RAUtil ities
(refagent)

*
*

editor
parser

+
-
-

getActiveAST (..)
getActiveEditor ()
getFileNode (..)

: ASTNode
: void
: ASTNode

Activator
(refagent)

- raLifecycleListeners

+
+
+
+

fireRefagentTurnedOnEvent ()
fireRefagentTurneOffEvent ()
addRefagentLifecycleListener (..)
removeRefagentLifecycleListener (..)

: void
: void
: void
: void

Fig. 7. RA class diagram

After the initialization of a JADE container, the control is passed to the agent.
The refactoring methods are implemented as instances of the AgentBehaviour class.
In the second step the current Java program is transformed into a syntax tree (AST)
by RAUtilities, which uses the JDT plugin in Eclipse (mark 6 in the diagram). The
syntax tree is kept continuously in conform to the actual state of the source code by
the JDT plugin. Furthermore, the agent works with the syntax tree to localize the
places suitable for refactoring. In order to generate the syntax tree there is used the
Java pattern shown as a class diagram in Fig. 9. In the third step a Visitor is created,
which crawls the syntax tree and fills in the data structures, unique for each
refactoring situation (marks 8-11). The agent determines its reaction according to
the gathered information. It can react in one of the following three ways: automatic
refactoring, refactoring proposal, and refactoring questionnaire. The fourth step
(mark 12) is for the creation of markers, which are visually represented as
underlined parts of the source code. This is possible because each AST node
contains actual and detailed information about the position of the corresponding
syntax element. In this way the student attention is focused on the most interesting
parts of the source code.

 57

 : Student : Student

XXXMarkerManagerXXXMarkerManager

XXXVisitorXXXVisitor

XXXBehaviourXXXBehaviour

RAUtilitesRAUtilites

ActivatorActivator

1: Store reference to RA

2: Create XXXMarkerManager

3: Create RAUtilites

4: Register XXXMarkerManager as observer

5:

6: Request AST

7: AST

8: Create XXXVisitor

9: Processing the AST

10: Fill in the inside structures

11: Complete the AST processing

12: Create markers from the XXXVisitor structures

13: Markers created

14: See marked areas, activates resolutions

15: Push the button to stop the Agent

16: Notify

17: Remove the markers

Fig. 8. RA sequence diagram

Until now we have not discussed the way in which the RA’s behaviour reacts
with the automatic refactoring, the refactoring proposal or refactoring questionnaire.
This is because the connection between the JADE-behaviour and the so called
marker resolutions is not direct. It is set by a configuration file. In principle a class
is created, in which the logic’s reaction is encapsulated. This logic is executed by
the user when they points with the mouse cursor at the marker’s annotations and
extract the data, needed for its execution, from the marker’s attributes.

Fig. 9. AST class diagram

 58

6. RA based student teaching

The RA agent can be used for teaching students in the following three scenarios:
• Inline Temp
• Replace Conditional with Polymorphism
• Typecode Questionnaire Behaviour

6.1. “Inline temp” scenario

An example for automatic refactoring behaviour of the RA is the “Inline Temp”
situation. By definition, this situation occurs when a temporary variable is used to
hold the result of a simple expression, mostly the result of a method call. According
to Fowler’s guides [5] this refactoring method can be described as: “Replace all
references to that temp with the expression”.

In cases when the refactoring method is relatively simple and the criteria for its
execution are unambiguous the agent could offer the student to do the required
changes automatically. In this situation the student has to:

• Accept the offer from the agent, because they are not sure what to do with
the code or just likes the agent’s proposal – in this situation the agent is an assistant,
that helps the student with refactoring rules;

• Do not accept the agent’s offer, because the idea, which lies behind the
code, would be ruined – in this situation the student evinces creativity and the agent
only shows them a piece of advice, according to the refactoring rules in the
Refactoring Rules Base.

From the implementation point of view, in the scenario “Inline Temp“ the RA
looks for local variables, which can be removed from the program code. The
residence of the RA agent in the integrated environment is indicated by a toggle
button appearing on the toolbar (in the frame) (Fig. 10). In this time the Eclipse
environment is launched.

Fig. 10. The refactoring agent’s toggle button

 59

When clicked for the first time after launching Eclipse, the toggle button
creates and initializes a JADE container, which the Refactoring Agent resides. A
repetitive behaviour is then added to the agent, where every 5 seconds the agent’s
environment (source code in the active Java editor) is scanned, and a syntax tree is
generated. The syntax tree is searched for local variables that could be inline objects
of a declaration. These are in fact nodes, modelling the underlined syntax
construction. The variables, which are reassigned a value after the initialization, are
not considered. When local variables, which the “Inline Local Variables”
refactoring method can be applied to, are discovered, they are highlighted in the
editor by changing their background (Fig. 11). In this way the student, working with
the Java source code, can see them.

Fig. 11. Highlighted code in the editor

Furthermore, on the left vertical ruler, the Refactoring Agent’s icons appear
for every line, containing either the declaration or a usage of a local variable
suitable for in-lining. On the right vertical ruler there appear markers (see Fig. 10)
that, when clicked, scroll the editor to the corresponding line of code. When any of
the icons on the left vertical ruler are clicked, the corresponding code is selected
and there appears a dialog with options (Fig. 12). The first option is the one offered
by the Refactoring agent.

Fig. 12. A dialog window

When double-clicked, this option inlines the local variable - the declaration is
removed and its usages are replaced with its value (Fig. 13).

Fig. 13. Replacing the declaration with its value

The information, used to perform this action, for example a location in the
source code, is obtained from the generated syntax tree. If the toggle button on the
Eclipse’s toolbar is pressed again, the agent’s behaviour is suspended until the

 60

button is pressed once again. The highlighting of the code stops and the icons and
markers on the left and right vertical rulers disappear.

6.2. “Replace conditional with polymorphism” scenario

Often the refactoring criteria are clear but the execution of the particular method
implies a significant change in the code or its structure. An example for such
situation is the “Replace Conditional with Polymorphism” situation where there is a
“conditional that chooses different behaviour depending on the type of an object”
[5]. For this situation the refactoring method looks quite complex: “Move each leg
of the conditional to an overriding method in a subclass. Make the original method
abstract.”

In such cases the recommended approach is for the agent to inform the student
about the specific situation and to propose to them detailed explanations about
possible improvements that could be made in the particular situation. The student’s
possible decisions in this situation are:

• To execute the proposed refactoring method – in this situation the agent
guides the student by showing them a detailed list with steps for that particular
refactoring method.

• To refuse the proposed refactoring method – the idea of the current code of
the student is different and the suggestion of the refactoring agent is not appropriate
for it. In this situation the refactoring agent only assists the student by showing
them a possible decision.

• To use the proposed refactoring method but having modified it in the
appropriate manner according to the particular case in the code and the concrete
goal – in this situation the student evinces creativity, because they use current
information about the refactoring method, proposed by the refactoring agent, and
applies additional knowledge to resolve the problem.

From the implementation point of view the resulting data structure, which is to
be obtained by processing the syntax tree, is a list of the “switch statements” tree
nodes. The node is the syntax construction, or the switch. Furthermore, the
expression has to receive as a switch condition a variable from the integer type,
which is a class field (again for simplicity sake). The student’s attention is attracted
by an annotation in the Java editor of the corresponding code part. By clicking on
the icon, through which the annotation is designated, the refactoring proposal view
opens (Fig. 14), showing an HTML document. The reason for this, as we have
already mentioned, is that the Replace Conditional with Polymorphism method is
too complicated for execution so it is advisable to present the student with a
detailed list of steps, which they need to follow in order to apply it in practice (the
steps are also the contents of the displayed HTML document). That would be much
more useful for the student’s education than an automated refactoring even without
considering the complexity of its implementation. The algorithm for obtaining the
resulting list is simplified as much as possible. The only case, taken into
consideration, is when the conditional expression has taken the form of a switch
construction.

 61

Fig. 14. An HTML file with explanations concerning the Replace Conditional with Polymorphism,
visualized in the RefactoringProposalsView

The only technical peculiarity of this behaviour is that the HTML files, which
have to be presented to the student and are located in a resources subfolder of the
project (see the “Resources organization” section), serve as a pattern. In these files
there can be placed variables, which would obtain a value when visualized. For this
purpose the variables have to be surrounded by the symbols ${ and } (for example,
${TYPECODE}).

6.3. “Typecode questionnaire behavior” scenario

There are cases, where additional information is needed for the choice of applying a
refactoring method, obtained by means of a dialog with the student. For example
the refactoring situations “Replace typecode with class, subclasses or state/strategy”
need to be “discussed” with the student in order to recognize the correct refactoring
scenario. After the requirements become clear the agent defines the type of the
situation again. It could then be brought to one of the types described above:
automatic refactoring or refactoring proposal. When the agent is in the refactoring
questionnaire situation, the student’s response can be one of the following:

• To answer the question that is asked by the refactoring agent. According to
the student’s answer the refactoring agent offers them a particular refactoring
method that belongs to the refactoring proposal, or an automatic refactoring. The
response of the student depends on different possibilities, described in the previous
situations;

• Not to answer the question, asked by the refactoring agent – based on the
asked question, the student can make a decision that the code is clear and there is no
need to be refactored. In this situation the refactoring agent helps the student only
by asking the question. The student is given the chance to think about the problem
based on the content of the question. The student evinces creativity and they can
resolve the problem without the proposal of the refactoring agent.

From the implementation point of view for the discussed situation (Replace
typecode with class, subclasses or state/strategy) the resulting structure from the
processing of the syntax tree is again as simple as possible – a list of variable
declaration fragments, corresponding to class member variables of the integer type,
the names of which contain a substring of the “mode”, “type”, “class”, “kind”,
“group”, “variant”, “variation”, and “code” set. This criterion serves to determine

 62

situations, where it is not completely clear which of the refactoring methods is
applicable:

• Replace Typecode with Class;
• Replace Typecode with Subclasses;
• Replace Typecode with State/Strategy.
The characteristic feature of this behaviour is expressed in showing a

questionnaire (Fig. 15), which is implemented as a JFace wizard as a result of the
student’s choice of an option from the marker context menu.

Fig. 15. A context menu for opening of a refactoring questionnaire

The questionnaire consists of two questions and three possible refactoring
methods depending on the answers (Fig. 16).

Fig. 16. The first page of the refactoring questionnaire

 63

The answers to the questions, given by the student, are stored and serve as a
basis for the selection of the exact refactoring method, which is to be displayed in
the refactoring proposals view. The state (active/inactive) of the Next, Back and
Finish buttons depends of the same answers. Тhe second question from the
questionnaire, if the answer to the first one has been positive, is shown in Fig. 17.

Fig. 17. The second question from the refactoring questionnaire.

The answer to the first one was “Yes”

Conclusion

The implementation of the Refactoring Agent shows that the two environments –
Eclipse and JADE – can work together and that their APIs could be exploited to
provide the wanted behaviour:

• constant analysis of the source code on site (within the Java editor of
Eclipse);

• highlighting the portions of code, which could be refactored, according to
the analysis results, and proposing options to the student;

• changing the source code.
In future, the Refactoring Agent should be augmented with more logic for

locating portions of source code suitable for refactoring and for providing options to
resolve these situations.

The user should be able to see and navigate to all the portions of code which
are considered suitable for refactoring (by means of an Eclipse “view”), as well as
to ignore any of those portions, so that they are not highlighted anymore. The
analysis should occur immediately at the source loading and after that in response to
changing the source code by the user (i.e., writing a new code), so that it does not
take up too many resources.

 64

Acknowledgment: The authors would like to acknowledge the support of the Bulgarian Ministry of
Education and Science for Research Project Ref. No ДО02-149/2008.

References

1. M e n s, T., S. D e m e y e r. Software Еvolution, Berlin, Springer-Verlag, 2008.
2. C o l e m a n, D., D. A s h, B. L o w t h e r, P. O m a n. Using Metrics to Evaluate Software

System Maintainability. – IEEE Computer, Vol. 27, 1994, No 8, 44-49.
3. T a h v i l d a r i, L., K. K o n t o g i a n n i s. A Methodology for Developing Transformations

Using the Maintainability Soft-Goal Graph, – In: Proc. Working Conf. Reverse Engineering,
IEEE Computer Society, 2002, 77-86.

4. C h i k o f s k y, E. J., J. H. C r o s s. Reverse Engineering and Design Recovery: A Taxonomy. –
IEEE Software, Vol. 7, 1990, No 1, 13-17.

5. F o w l e r, M. Refactoring: Improving the Design of Existing Programs. Addison-Wesley, 1999.
6. S t o y a n o v, S., I. G a n c h e v, I. P o p c h e v, M. O’D r o m a. From CBT to e-Learning. – Journal

Information Technologies and Control, 2005, No 4, Year III, 2-10.
7. S t o y a n o v, S., I. P o p c h e v, O. R a c h n e v a, A. R a c h n e v. DeLC – Technological

Environment Supporting the Transition from CBT to e-Learning. – International Scientific
Conference “Informatics in the Scientific Knowledge”, 28-30 June 2006, Varna Free University,
113-127.

8. R o b e r t s, D., J. B r a n t, R. J o h n s o n. A Refactoring Tool for Smalltalk. – Theory and
Practice of Object Systems, Vol. 3, 1997, No 4, 253-263.

9. XRef-Tech, XRefactory, 2002.
http://xref-tech.com/speller/

10. Instantiations, jFactor, 2002.
http://www.instantiations.com/jfactor/

11. M o o r e, I. Automatic Inheritance Hierarchy Restructuring and Method Refactoring. – In: Proc.
Int’l Conf. OOPSLA ‘96, ACM SIGPLAN Notices, 1996, 235-250.

12. C a s a i s, E. Automatic reorganization of Object-Oriented Hierarchies: A Case Study. – Object
Oriented Systems, 1, 1994, 95-115.

13. C i n n è i d e, M. Automated Application of Design Patterns: A Refactoring Approach. Ph. D.
Thesis, Department of Computer Science, Trinity College, University of Dublin, 2000.

14. J a h n k e, J. H., A. Z ü n d o r f. Rewriting Poor Design Patterns by Good Design Patterns. S.
Demeyer, H. Gall, Eds. – In: Proc. of ESEC/FSE ‘97 Workshop on Object-Oriented
Reengineering, Technical University of Vienna, 1997, Technical Report TUV-1841-97-10.

15. S c h u l z, B., T. G e n s s l e r, B. M o h r, W. Z i m m e r. On the Computer Aided Introduction of
Design Pattern into Object-Oriented Systems. – Technology of Object-Oriented Languages
and Systems, 1998, 258-267.

16. S i m o n, F., F. S t e i n b r ü c k n e r, C. L e w e r e n t z. Metrics Based Refactoring. – In: Proc.
European Conf. Software Maintenance and Reengineering, 2001, 30-38.

17. K a t a o k a, Y. M., D. E r n s t, W. G. G r i s w o l d, D. N o t k i n. Automated Support for
Program Refactoring Using Invariants. – In: Proc. of the International Conference on
Software Maintenance, 2001, 736-743.

18. Eclipse.
http://www.eclipse.org

19. Java Agent Development Framework.
http://jade.tilab.com/

20. G a m m a, E., R. H e l m, R. J o h n s o n, J. V l i s s i d e s. Design Patterns: Elements of Reusable
ObjectOriented Software. Reading, Massachusetts, Addison-Wesley, 1995.

21. S t o y a n o v, S., A. S t o y a n o v a - D o y c h e v a, I. P o p c h e v, M. S a n d a l s k i, ReLE – A
Refactoring Supporting Tool. Compt. Rend. Acad. Bulg. Sci., Vol. 64, 2011 (to be printed).

