
 32

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 11, No 2

Sofia • 2011

Computing of Special Functions with Arbitrary Precision
in the Environment of .NET Framework

Velichko Dzhambov, Stanislav Drangajov
Institute of Information and Communication Technologies, 1113 Sofia

E-mails: sdrangajov@cc.bas.bg vili_jambov@abv.bg

Abstract: The paper describes the methods and algorithms used for realization of
special functions computing with arbitrary precision in the environment of .NET
Framework. .NET Framework C# is used as a tool, with the help of the MPIR
library. An example is demonstrated, with a program, using the current state of the
special functions library realization. Some perspectives for future development are
outlined.

Keywords: High precision computation, special functions, computational
mathematics.

1. Introduction

Arbitrary precision computations are not а self-purpose. They are related to
receiving precise values when solving mathematical models in different areas,
including, for instance, non-linear dynamic systems. But due to their essence,
similar calculations are not intended for direct real time control of quickly running
technological processes, i. e., widely spread industrial production processes. The
present paper describes the first stage of the realization of a system for arbitrary
precision computing in the environment of .NET Framework, concerning special
functions calculations. The used methods and algorithms for their realization are
described

The library MPIR [19] is used as a tool. It is a detached version of the arbitrary
precision mathematical calculations library, based on GMP (GNU MP – library for
arbitrary precision mathematics of GNU). X-MPIR ensures interface in .NET

 33

Framework C# to a library of previously compiled functions of MPIR, realized in
C. To our knowledge the latest overview of the special functions calculation is
given in Chapter 4 of [1]. In monograph [2] there is a detailed list of sources, which
may be used for contingent check up. It is to be noted that intentionally preference
is given to the methods, using quickly convergent series in the present realization of
the special function library, wherever this is possible and/or practical. In most cases
alterative methods exist such as continued fractions, integral presentation, using of
iterative relations, and so on. But for computing with arbitrary precision the
possibility for simple error evaluation is crucial. The approach adopted is not free of
its specific requirements, for instance ensuring consistency of the main series and
asymptotic presentation. About the specificity of the asymptotic presentation with
divergent series see also [3]. Nonetheless this approach seems to be simpler in the
arbitrary precision context, which is anyway apriori specified and should be easily
calculated.

2. Realization and methods used

The realization of the functions, at present, is for a real argument. A basic version
of a program-calculator is created implementing immediate usage of the library for
the purpose of testing the functions. It is described in details in section 3 “Testing
calculator”. The generally accessible sources used for the methods realized are
[1- 6]. Reference [4] is most intensively used although even there the references
“Methods of computation” are not always sufficient, but this does not belittle the
exclusive value of the writing for any calculator. Sites [20-22] provide good initial
references. Possible sources about specific special functions and constants, as well
as respective computational methods when they are non-standard, e.g. power series
and asymptotic presentations, are given in place in this section. Many of the
functions in the library are internally used to express other functions, e.g. in a
respective range or an index type, and some of them, as well as calculating the
numerator and denominator in the Bernoulli numbers, are not still represented in the
calculator. The special cases of the hyper geometric function are a typical example:

() () ()
() () !

;,,;,,
0 1

1
11 n

z
bb
aa

zbbaaF
n

n nqn

npn
qpqp ∑

∞

=

=
K

K
KL .

Only the special cases are used in the representations below, where p = 0,
q = 1, and p = 1, q = 1, at which (p < q + 1) series is everywhere convergent, if
b = b1 is not a negative integer. However at great argument values other
presentations are used.

2.1. Constants

Two variants of using the constants are applicable from a program point of view:
- storing in static fields which are initialized at first usage of the class and then

they are immediately used when needed;

 34

- calling functions which return the result required with the current precision
for the calculations.

The first one is faster under the condition that the specified precision is not
changed in the frame of the given calculation or the constants are computed with
sufficiently high precision, which would not be overridden at computation. The
second method is used for the moment

After accurate realization of elementary functions constantsπ , e , ln2, ln10,
log2, log e, roots and powers of integers and their various combinations including
arithmetic operations are available. The constant with the current precision of
computing is returned at calling the respective functions. The algorithm proposed
by B r e n t and M c M i l l a n in [7] is used for Euler’s constant γ .

Brent and McMillan algorithm:
Suppose we want to compute Euler’s constant γ with precision up to d

decimal digits. If we choose n to be the greatest integer which is less than
c + (1/4) ln10d with an appropriate constant c, then

()
()

dce
nV
nU −−<− 1044πγ ,

where U(n) and V(n) are computed as follows:
Define

()

,,
!

,,ln
!

0

2

0

∑

∑

=

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

k

j
jk

k

k

k

j
jkk

k

k

BV
k
nB

AUkH
k
nA

where Hk is the k-th harmonic number (1 + 1/2 + … + 1/k). Then A0 = – ln n,
B0 = 1, U0 = A0, V0 = 1 and for k = 1, 2, …, we receive

.,

,,

11

2

1

2

2

1

kkkkkk

kk

kkk

BVVAUU
k

B
k
nA

A
k
nBB

+=+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

==

−−

−

−

2.2. Elementary functions

Numerous sources exist for computing elementary functions. The paper of
B r e n t [8] should be especially noted. The realization of the elementary
transcendental functions will not be considered in details. It should be just noted
that for calculating logarithm with base 2, an algorithm is used, giving sequentially
the digits, in an iterative and not recursive variant, which is appropriate for arbitrary
precision calculations.

 35

2.3. Gamma function [13]

An approximation method described on [9] is used, after respective scaling of the
argument.

For an argument in the interval [1, 2) the gamma function is calculated in the
following way [13]:

() () () ()⎥
⎦

⎤
⎢
⎣

⎡
+

+
++=+Γ= ∑

−

=

+−+ x
kx

cceaxxx
a

k

kaxx επ
1

1
02

1
21! .

Here a is a positive precision controlling parameter (see below) and the
coefficients ck are determined as follows:

()
() () .1,,2,1,

!1
1

2
1

,1

2
11

0

−=+−
−

−
=

=

+−−
+

akeak
k

c

c

akk
k

k K
π

The relative error for x > 0 and a > 2 is () ⎟
⎠
⎞

⎜
⎝
⎛ +−−

≤ 2
1

2
1

2 aa πε , so after leaving
out the first multiplier, that raises the estimation, we get

.log84.1
2log

log ε
π
ε

−≈−=a

If we want precision of n meaning digits, then n−= 10ε and hence

nna 26.1
2log

1
≈=

π
.

For negative arguments Г(x) = π /[sin(π *x)* Г(1 – x)] is used.
For positive arguments:
If x < 1, then Г(x) = Г(x+1)/x is used. If x ≥ 2, then x = y + n, where y ∈[1, 2)

and Г(x) = (y + n – 1) … (y + 1)y Г(y).

2.4. Incomplete gamma functions, probability integrals

Standard series and asymptotic decompositions are used.

()

()

() () ().,,

,,

,,

1

0

1

sxsxs

dtetxs

dtetxs

t

x

s

t
x

s

Γ=Γ+

=Γ

=

−
∞

−

−−

∫

∫

γ

γ

For small x the presentation () ()xssFsxxs s −+−= ;1;11
1,γ is used, and for

big ones − the asymptotic presentation

() ()()
⎟
⎠
⎞

⎜
⎝
⎛ +

−−
+

−
+=Γ −− K2

1 2111,
x

ss
x

sexxs xs .

()x,0γ is not definite, but for 0→s ()xs,Γ has a limit

 36

() () () () ()∑
∞

=
→

−−−−=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−−Γ=Γ

1
0 !

1ln1,1lim,0
n

n
n

s nn
xx

s
xs

s
sx γγ .

For the time moment, the asymptotic presentation of the first argument is not
included.

()

()

() () 1

,2

,2

2

2

0

=+

=

=

∫

∫
∞

−

−

xerfcxerf

dtexerfc

dtexerf

x

t

x
t

π

π

The following presentation is used

() ()
()∑

∞

=

+

+
−

=
0

12

12!
12

n

nn

nn
xxerf

π
,

and for a big argument value

() () ()
()n

n

n
x

x

n
x

exerfc
2

0 2

123.11~
2

−
−∑

∞

=

− L

π
.

2.5. Fresnel’s integrals

Standard series and asymptotic decompositions are used.
For calculating Fresnel’s integrals

() () dttxSdttxC
xx

∫∫ ⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

0

2

0

2

2
1sin,

2
1cos ππ

with not large argument presentations with series are used:

() ()
()

()
()

34

0

12
2

14

0

2
2

34...3.1
1

2
1sin

143.1
1

2
1cos

+
∞

=

+

+
∞

=

∑

∑

+
−

⎟
⎠
⎞

⎜
⎝
⎛+

+
+

−
⎟
⎠
⎞

⎜
⎝
⎛=

n

n

nn

n

n

nn

x
n

x

x
n

xxC

ππ

ππ
K

() ()
()

()
()

14

0

2
2

34

0

12
2

143.1
1

2
1sin

343.1
1

2
1cos

+
∞

=

+
∞

=

+

∑

∑

+
−

⎟
⎠
⎞

⎜
⎝
⎛+

+
+

−
⎟
⎠
⎞

⎜
⎝
⎛−=

n

n

nn

n

n

nn

x
n

x

x
n

xxS

K

K

ππ

ππ

For big argument values, asymptotic series are used.

() () () ⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+= 22

2
1cos

2
1sin

2
1 xxgxxfxC ππ ,

() () () ⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−= 22

2
1sin

2
1cos

2
1 xxgxxfxS ππ ,

 37

where

() () ()
() n

n

n

x

n
x

xf 22
0

143.111~
ππ

−
−∑

∞

=

K ,

() () ()
() .143.111~ 22

0
32 n

n

n

x

n
x

xg
ππ

+
−∑

∞

=

K

2.6. Bessel functions of first and second kind, modified Bessel functions, Airy
functions [14]

Standard series and asymptotic decompositions are used.
The following presentation is used for not large values of the argument:

() () .
2

10
4
1;1;

1
2
1

⎟
⎠
⎞

⎜
⎝
⎛ −+

+Γ

⎟
⎠
⎞

⎜
⎝
⎛

= xF
x

xJ ν
ν

ν

ν

For big values of the argument asymptotic presentation is used

() () () () () ,1sin1cos2~ 12
12

0
2

22
1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−⎟

⎠
⎞

⎜
⎝
⎛ ∑∑ +

+
∞

=
k

kk

k
k

kk

x
a

x
a

x
xJ νωνω

πν

where:
()

() ()() ()()

.
4

12

,1,
8!

1243414

,1
222222

0

πνω

νννν

ν

⎟
⎠
⎞

⎜
⎝
⎛ +

−=

≥
−−−−

=

=

x

k
k

ka

a

kk
K

Bessel’s functions of second kind with a non integer index are expressed
through those of first kind by

() () () ()
()νπ

νπ νν
ν sin

cos xJxJxY −−
= .

The presentation for an integer index is

() () ()

() ()[] () ,
!!

2
1

112
1

2
ln2

2
1

!
!12

1

2

0

2
1

0

knk

x
knk

x

xJxx
k
kn

x
xY

k

k

n

n

kn

k

n

n

+

⎟
⎠
⎞

⎜
⎝
⎛−

++++
⎟
⎠
⎞

⎜
⎝
⎛

−

−⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−−

⎟
⎠
⎞

⎜
⎝
⎛

−=

∑

∑

∞

=

−

=

−

ψψ
π

ππ

where ψ is the logarithmic derivative of the gamma function. For positive integer
values

 38

()

() .2,1

,1
1

1

≥+−=

−=

∑
−

=

k
k

n
n

k

γψ

γψ

Here γ is Euler’s constant.
The asymptotic presentation is

() () () () () () ()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−⎟

⎠
⎞

⎜
⎝
⎛ ∑∑ +

+
∞

=
12

12

0
2

22
1

1cos1sin2~ k
kk

k
k

kk

x
a

x
a

x
xY νωνω

πν ,

the denotations being the same as above.
For modified Bessel’s I functions, for big and small argument respectively:

() () ⎟
⎠
⎞

⎜
⎝
⎛ +

+Γ

⎟
⎠
⎞

⎜
⎝
⎛

= 2
10 4

1;1;
1

2
1

xF
x

xI ν
ν

ν

ν ,

() () ()
n

n

n

n
x

x
a

x
exI ν
πν

\

0

1
2

~ ∑
∞

=

− ,

with the previous denotations for the asymptotics.
For the modified Bessel’s K functions, for a non-integer index

() () ()
()πν

π νν
ν sin2

1 xIxIxK −
= −

and for an integer index

() ()

() ()

() () ()[] () ;
!!

2
1

11
2

1

2
ln1

2
1

!
!1

22
1

2

0

1

2
1

0

knk

x
knkx

xIx

x
k
knxxK

k

k

n
n

n
n

kn

k

n

n

+

⎟
⎠
⎞

⎜
⎝
⎛

++++⎟
⎠
⎞

⎜
⎝
⎛−+

+⎟
⎠
⎞

⎜
⎝
⎛−+

+⎟
⎠
⎞

⎜
⎝
⎛−−

⎟
⎠
⎞

⎜
⎝
⎛=

∑

∑

∞

=

+

−

=

−

ψψ

and the asymptotic presentation is

 () ()∑
∞

=

−

02
~

n
n

nx

x
ae

x
xK νπ

ν , with the previous designations.

Asymptotic presentation for big index values is not included for the moment.
For Airy’s functions we use expressing through Bessel’s functions:
For x = 0

 39

() ()
⎟
⎠
⎞

⎜
⎝
⎛Γ

=

⎟
⎠
⎞

⎜
⎝
⎛Γ

=

3
23

10,

3
23

10
6
1

3
2 ii BA ;

for x > 0

() () ;
3
2

3
2

3
,

3
2

3
1 2

3

3
1

2
3

3
1

2
3

3
1 ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
= − xIxIxxBxKxxA ii π

for x < 0

() () .
3
2

3
2

3
,

3
2

3
2

3
2
3

3
1

2
3

3
1

2
3

3
1

2
3

3
1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=− −− xJxJxxBxJxJxxA ii

2.7. Riemann’s Zeta Function [15-17]

Algorithm 3 of Borwein’s publication[10] is used.
Riemann’s ζ -function is an analytic continuation

() () ()
() () 0Re,1

21
11Re,1

1

1

1
1

>
−

−
=>= ∑∑

∞

=

+

−

∞

=

s
n

s
n

s
n

s

n

s
n

sζ .

The algorithm mentioned in [10] may be outlined as follows:
Let’s define

() () ⎥
⎦

⎤
⎢
⎣

⎡
−

−
−= ∑

−

=

n
nj

k

j
j knk

ne 2
!!

!1
0

,

where the empty sum is considered zero. Then

() () ()
()s

j

e
s n

n

j
s

j
sn γζ +

+−
−

= ∑
−

=
−

12

0
1 1212

1
,

where for Re(s) > 0

()
s

s

nn

e
s
s

s
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

≤
1

2
Im

21
Re
Im1

8
1

π

γ ,

and for Re(s) in [–(n−1), 0)

()
()s

s
sn

s

n
Γ−

≤
−1

Re

218
4γ .

The residual member evaluation is easier to use in the case of a real argument.

2.8. Full elliptic integrals of first and second kind [18]

Arithmetic and geometric mean

 40

() () .sin1,
sin1

2

0

22
2

0
22

θθ
θ

θ
ππ

dkkE
k

dkK ∫∫ −=
−

=

Let 0a and 0g be positive numbers. We define

K,2,1,0,,
2 11 ==
+

= ++ ngaggaa nnn
nn

n

Series { }na and { }ng have a common limit ()00 ,AGM ga (arithmetic-

geometric mean). If we define 22
nnn gac −= ,

we have

() () ()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

−
= ∑

∞

=

−

2

212
1

2
2,

1,1AGM2)(n
n

n cakKkE
k

kK π .

The asymptotic behavior near the particular point k = 1 is not yet realized.

2.9. Bernoulli numbers

A method proposed by M c G o w n [11]
The algorithm described in [1] may be reduced essentially to the following.
Supposing that 2≥m is even consecutively compute:

Step 1.
()m

mK
π2

!2
= ,

Step 2. ,
|1

∏
−

=
mp

pd

Step 3. () ,)1(1
⎥⎥
⎤

⎢⎢
⎡= −mKdN

Step 4. () ,1 1∏
≤

−−=
Np

pz

Step 5. () ⎡ ⎤ ,121 dKzma +−=

Step 6. .
d
aBm =

The product in Step 2 is for all prime numbers p, for which p – 1 is divisible
by m. In Step 4, respectively, the product is for the prime numbers less than or equal
to N. The value of K should be computed precisely enough at the first step so that
the calculation in Step 5 rendered the result wanted. For a value of N any integer
greater than or equal to the one defined at Step 3 may be taken.

Let’s comment in brief why this works. This algorithm uses the following
results.

Firstly,
(1) () 1

)1(
−−∏ −=

p

spsζ .

 41

Secondly, for each integer 1≥m

(2) () () ()
() m

mm

B
m

m 2

21

!2
2122 πζ

+−
= ,

hence we receive for each even integer 4≥m ,

()
()mmB mm ζ

π2
!2

= .

Besides these two results proven by Euler the von Staudt and Clausen theorem
is known (rediscovered by Ramanujan, see respective topics in [20] and [22], the
prime source [12] from 1840 is hard to access), which describes the mB devisor,
presented as division of mutually simple integers through the devisors of m. This is
the product at Step 2 of the algorithm. In Step 1 of the algorithm K is defined so that

()mKBm ζ= . Using (1) we can approximate ()mζ from below to arbitrary

precision. If a number z is calculated for which () () 10 −<−≤ Kdzmζ , then
10 −<−≤ dzKBm and therefore .10 <−≤ zKda a denotes the numerator of

mB . It follows from this that ⎡ ⎤zKda = and hence () ⎡ ⎤zKda m 121 +−= . The real
calculation of z remains, which is reduced to: with given 1>s and 0>ε find a
real integer N for which at Step 4 of the algorithm it is guaranteed that

() εζ <−≤ zs0 . We already have () zs −≤ ζ0 , as z is approximation from
below. In could be besides checked (prime numbers are in the product) that

()∏∑
≤

−−

≤

− −≤
Np

s

Nn

s pn
1

1 , consequently

() 1
1)1(

1
−

∞
−

∞

+=

−

−
=≤≤− ∫∑ s

N

s

Nn

s

Ns
dxxnzsζ .

If we choose)1(1 −−> sN ε , then () ε<≤
− −− 11

1
1
1

ss NNs
, which results in

() εζ <− zs . For our purposes we have s = m and () 1−= Kdε . It is therefore
enough to select ())1(1 −> mKdN .

2.10. Integral sine and cosine

Standard series and asymptotic decompositions are used.

() () .cos,sin

0

dt
t

txCdt
t

txS
x

i

x

i ∫∫
∞

−==

Presentation by series

() ()
() ()∑

∞

=

+

++
−

=
0

12

12!12
1

n

nn

i nn
xxS , () () ()

() ()∑
∞

=

−
++=

1

2

2!2
1ln

n

nn

i nn
xxxC γ .

The asymptotic presentation for big values of x is

 42

() () () () () () xxgxxfxCxxgxxfxS ii cossin,sincos
2

−=−−=
π ,

where

() ⎟
⎠
⎞

⎜
⎝
⎛ +−+− L642

!6!4!211~
xxxx

xf , () ⎟
⎠
⎞

⎜
⎝
⎛ +−+− L6422

!7!5!311~
xxxx

xg .

3. Testing and calculator

The testing process, as it is well known, is the most time and labor-consuming
operation for a computer program. This of course is valid to even greater degree
when calculating special functions. It includes several stages and is not still
completed. The main checks are for previously known values of a given function
with exactly defined argument/s. An even better test is the possibility of comparing
a given result when it could be expressed by different functions, thus using different
methods. For checking with big arguments values where asymptotic presentations
are used, this is crucial. Adding more functions assists this type of tests. There are
in the net a lot of on line calculators for different types of special functions which
are convenient for initial adjustment. But most of them are of limited precision. A
natural opportunity is the parallel using of another program, using e.g. mpmath in
Python. It is anyway convenient to have an interactive program for testing. For this
purpose a prototype of a calculator is realized. It allows dynamic change of the
precision used. The display field adds automatically a vertical slider for scrolling, if
needed, when required by the current computing precision. The format of the
numbers displayed is automatically changed depending whether the result needs
exponential format. Appropriate rounding is carried out. Indication is available for a
pending argument for functions with more than one argument. Digits, decimal point
and arithmetic operations may be also entered from the keyboard. There is not yet
overflow check. The problem is specific for the MPIR library also where the
floating point numbers exponent is fixed. For 32-bit systems from 68 719 476 768
to 68 719 476 736, depending on the machine word but not equal to it. For a 64-bit
system, for which the present special functions library is being developed this range
is larger and this brought to underestimation of the problem initially. This overflow
check will be probably executed at the level of functions. Some change will be
probably necessary at that level of the special functions reaction with regard to non
valid argument. In this realization when the argument is non valid they issue a
message and return the input and do not cause an exception just for convenience at
testing in interactive environment. The adequate approach for the function behavior
in an independent environment is to be considered. There the responsibility of
entering an admissible argument does not lie on the calling program. The alteration
of the current model will require additional efforts for the program-user and namely
processing of specific exceptions. The calculator for the moment is in a form that
allows easy adding of new functions. The project presumes the 'calculator' to be
transformed in a source of references for the used special functions and graphical
representations.

An example follows with a calculator with 200 digits precision:
2

4
1

4
1

2
1

⎟
⎠
⎞

⎜
⎝
⎛Γ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
π

K .

 43

Consecutive entering: 4, 1/x, ()xΓ , 2x , MS, π , , 1/x, /, 4, =, *, MR, =,
yields the right hand side of the equation (Fig. 1).

Fig. 1

It may be stored by MS and after entering 2, , 1/x, K(x), the left one is
received. No illustration is given since the result is the same.

Additional facilities are added for easy testing when the equivalent expression
is more complicated: storing in a second register (M2S) and D↔M , and

D↔2M , which changes the places of the last received and last stored in the
respective auxiliary register results.

The project ambitions as a source of references are shown in Fig. 2.

Fig. 2

 44

After choosing the reference the results shown in Fig. 3 are obtained.

Fig. 3

4. Conclusion

The main problem in the realization of a similar project is in its range – a highly
labor-consuming job. As mentioned in the introduction the purposes are in essence
carried out to a great degree in other specialized products or packages in other
programming languages environment. Leaving away the issue that the greater part
of them are paid commercial products, and those which are not require more
programming by the user, e.g. for the graphical interface, we reckon that the
possibility of arbitrary precision computations combined with the other exclusively
rich features of .NET Framework is worth the efforts. The completed environment
for arbitrary precision computations, including also methods of the numerical
calculus, provides the base for an easy graphical interface which is the next logical
step of the project. Probably new types will appear in the future in .NET
Framework as continuation of BigInteger but this does not seem happen soon. A
calculator of arbitrary precision can by found in web with a limited set of functions,
which is based on BigInteger only. This approach is not a good perspective for the
present project. The type BigInteger is not designed for this purpose and real
numbers calculations based on it is not efficient enough. A more straightforward
approach is writing an own class representing floating point numbers with arbitrary
precision. But this moves the aims a step aback without mentioning the technical
difficulties - writing in C style with mandatory modifiers ‘unsafe’ that returns to the
beginning. So the main problem remains - time and labor consumption. So for the
full realization of the project besides adherence to the theme and some financial
support confidence in its utility and value is necessary.

 45

R e f e r e n c e s

1. T. E. Simos (Ed.). Recent Advances in Computational and Applied Mathematics. Chapter 4. Basic
Methods for Computing Special Functions by Amparo Gil, Javier Segura, and Nico M.
Temme). − European Academy of Sciences, Springer, 2011.

2. G i l, A., J. S e g u r a, N. M. T e m m e. Numerical Methods for Special Functions. SIAM, 2007.

3. O l v e r, F. W. J. Asymptotics and Special Functions. Academic Press, 1974.

4. W. Frank, J. Olver (Eds.). NIST Handbook of Mathematical Functions, National Institute of
Standards and Technology. Cambridge University Press, 2010.

5. M. Abramowitz, I. A. Stegun (Eds.). Handbook of Mathematical Functions with Formulas,
Graphs and Mathematical Tables. National Bureau of Standards and Applied Mathematics
Series. Vol. 55, 1964.

6. B a t e m a n, H., A. E r d é l y i. Higher Transcendental Functions. Vol. 1, 2, 3, 1953-1955.

7. B r e n t, R. P., . E . M. M c M i l l a n. Some New Algorithms for High-Precision Computation of
Euler’s Constant. – Mathematics of Computation, Vol. 34, January 1980, No 149, 305-312.

8. B r e n t, R. P. Fast Multi-Precision Evaluation of Elementary Functions. – Journal of the
Associations for Computing Machinery, Vol. 23, April 1976, No 2, 242-251.

9. S p o u g e, J. L. Computation of the Gamma, Digamma and Trigamma Functions. – SIAM Journal
on Numerical Analysis, 31 , 1994, No 3, 931-944.

10. B o r w e i n, P. An Efficient Algorithm for the Riemann Zeta Function. – In: Proc. of Canadian
Mathematical Society Conference, 1991.

11. M c G o w n, K. J. Computing Bernoulli Numbers Quickly, December 8, 2005.

12. S t a u d t, K. G. C. von. Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffend. − J. Reine
Angew. Math., 21, 1840, 372-374.

13. A r t i n, E. The Gamma Function, Holt, Rinehart and Winston, 1964.

14. W a t s o n, G. N. A Treatise on the Theory of Bessel Functions. Second Edition. Cambridge
University Press, 1945.

15. T i t c h m a r s h, E. C. The Theory of the Riemann Zeta-Function. Second Edition. Reprinted,
Oxford, Clarendon Press, 1988.

16. E d w a r d s, H. M. Riemann’s Zeta Function. Academic Press, 1974.

17. K a r a t s u b a, A. A., S. M. V o r o n i n. The Riemann Zeta-Function. Walter and Gruyter, 1992.

18. B y r d, P. F., M. D. F r i e d m a n. Handbook of Elliptic Integrals for Engineers and Scientists.
Second Edition. Revised, Springer-Verlag, 1971.

19. MPIR site.

http://www.mpir.org/

20. Wolfram Mathworld site.

http://mathworld.wolfram.com/

21. Wolfram Functions site.

http://functions.wolfram.com/

22. Wikipedia site,

http://en.wikipedia.org/

