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Abstract: The images taken with video cameras usually have uneven illumination 
and contain large amounts of noise. So their pre-processing is necessary  to provide 
better visibility and better recognition when they are used in a Face Recognition 
System.  

This paper aims to present and to combine two methods for enhancing the 
images − the image epitomes and variants of Retinex algorithms. The image 
epitome is a relatively new method for image processing and the paper tests the 
ability of this method for noise reduction. The Retinex algorithms are used to 
balance the illumination and to eliminate the shadow. 

The results demonstrate the image enhancement. 
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1. Introduction 

The change in light conditions of the site leads to major changes in a two-
dimensional image, which significantly degrade the operation of the algorithms for 
face recognition. Many studies have shown that changes in images of the same 
person due to uneven lighting are often greater than the difference in the images of 
different persons. To address this major problem in face recognition, the work was 
aimed at searching and finding effective methods for normalization of images under 
different lighting conditions. The paper investigates the Retinex methods.  

For a noise reduction this paper presents a relatively new method − epitome 
images. The epitome of an image is a compact patch-based probabilistic model that 
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contains both shape and texture information. This representation condenses an 
image into a smaller collection of patches that can be used to reconstruct the 
original image.  

2. Image epitomes  

The concept of image epitomes was proposed in 2003 by J o j i c  and  F r e y [1]. 
The epitome of an image is its miniature, condensed version containing the essence 
of the textural and shape properties of the image. The size of the epitome is 
considerably smaller than the size of the image or the object it represents, but the 
epitome still contains most of the constitutive elements needed to reconstruct the 
image. One epitome may be shared from a collection of images, e.g. when images 
are few consecutive frames from a video sequence, or when they are photographs of 
similar objects. The real image in a collection is determined by its epitome and a 
mapping from the epitome to the image pixels. In this way the original image can 
be reconstructed from the epitome, although not perfectly. The epitome model is 
useful for multiple vision applications, such as image classification, segmentation 
and denoising. 

Each pixel in the epitome is modeled as a mixture of Gaussians. For each 
patch in the original image, the posterior probability of the mapping from each 
patch in the epitome to the image patch is calculated. 

The epitome patch with the highest posterior probability of mapping is then 
used to generate that image patch in the reconstruction.  It is desirable to use 
patches large enough to capture spatial properties of the image, but small enough to 
generalize across the image and across a collection of images.  

To learn the epitome, the mapping probabilities and the epitome pixel means 
and variances are initialized, and the Expectation-Maximization algorithm (EM) is 
applied to update these values for either a set number of iterations or until 
convergence.  

More formally, an epitome is a model of a given image that can be learned, 
starting from a set of sampled patches by specifying a generative model.  

2.1. The epitome as a generative model of image patches  

Assume that an image X consists of a set of patches P
kkZ 1}{ = . The patch shape can be 

arbitrary, but for simplicity, we assume that the patch shape is a square. The patches 
may be of various sizes and may overlap. One patch is a set of pixels, indexed by 
their position in the input image X, }{ kik ZZ = , where iik XZ = . For each patch kZ , 
the generative model uses hidden mappings Tk that the map coordinates kEj∈  in 
the epitome to the coordinates kSi∈    in the patch. An epitomic pixel contains two 
parameters, the mean jμ  and variance jφ  of the epitomic pixel. These variables are 
shown in Fig. 1. 
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Fig. 1. A generative model of the epitome 

Given the epitome ( )φμ,=e  and the mapping Tk, the patch Zk is generated by 
copying the appropriate pixels from the epitome mean and adding Gaussian noise of 
a level given in the variance map. This can be formulated as Gaussian  conditional 
probability.  

For the patch Zk, the conditional probability is defined as a product of the 
conditional probabilities of the pixels in this patch: 
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For a collection of patches, the conditional probability is 
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The graph representation of the epitome definition as a generative model of 
image patches is shown in Fig. 2. 

 
Fig. 2. Epitome as generative model of image patches 

The patches are assumed to be generated independently, so the joint 
distribution is 
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The equations are drawn using Bayes rule on conditional probabilities and 
assuming that the prior on all epitomes is flat and therefore does not appear in the 
parameter estimation. 

The prior on the mappings )( kTp  is used to take advantage of some mappings 
over others such as the choice of larger complete patches rather than several smaller 
components of the patch.  

2.2. Learning the epitome model, using the EM algorithm 

Learning the model requires to find the parameters ( )φμ,=e , that  maximize the 
incomplete data likelihood )|( eZp . This problem may be solved by using the 

complete data likelihood )|,( eTZp  and the estimation of the parameters P
kkT 1}{ =  

and e using the Expectation-Maximization (EM) algorithm. 
The EM algorithm is an approximate way of estimating these parameters by 

iterating between an “expectation” E-step, finding the log-likelihood of the data 
from the complete log-likelihood, and a Maximization M-step, estimating the 
parameters from the log-likelihood. 

The procedure of the EM algorithm is as follows. 

1. The algorithm starts with an initial nontrivial guess at the configuration of 
the parameters.  

2. The E-step involves taking the expectation of the complete log-likelihood 

{ }( )eZTp ||log  over the hidden variables  { }P
kkT 1=  given the observed data { }P

kkZ 1=  
and parameters e.  

The result from the E-step are the estimated mappings  { }P

kkT 1
ˆ

=  . 

3. The M-step maximizes the resulting likelihood function of the data  

{ }( ) { } { }( )eTpTeL P
kk

P
kk

P
kkk ,|log,| 111 === = ZZ . 

The result from the E-step is the estimated epitome ê .  

4. The parameters ( )φμ ˆ,ˆˆ =e  found on the M-step at this iteration are used to 
begin the next E-step iteration and the process is repeated iteratively for a given 
number of iterations, or until convergence. 
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Following [5], the target function is given by 

(4) ∑==
T
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Performing the EM iteratively, the posterior probabilities, based on the current 
parameters are computed at E-step: 
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At M-step the estimated epitome means and variances are computed as follows: 
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At each iteration the likelihood with the newer set of parameters was proven to 
be greater than the likelihood of any previous iteration [6].  

That is to say, 

( )( ) ( )( ) ( )( ) ( )( )zLzLzLzL tt ||...|| 110 θθθθ =>>> −  

where e=θ ,  { }P
kkk Tz 1, == Z  in the case of epitome estimation and the superscript is 

the iteration number.  
The advanced idea for image epitome is developed for video epitomes [2]. 

3. Retinex algorithm 

Retinex is an image enhancement algorithm that is used to improve the contrast, 
brightness and sharpness of an image primarily through dynamic range 
compression. The algorithm also simultaneously provides color constant output and 
thus it removes the effects caused by different illuminants on a scene. It synthesizes 
contrast enhancement and color constancy by performing a non-linear 
spatial/spectral transform. The original algorithm is based on a model of human 
vision’s lightness and color constancy developed by Edward Land. Jobson et al. 
extended the last version of Land’s model [7-10] and have since added several 
improvements to the original version of Retinex, including the use of multiple 
scales, color restoration, and some other variants.  
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Retinex belongs to the class of center surround functions, where each output 
value of the function is determined by the corresponding input value (center) and its 
neighborhood (surround). For Retinex the center is defined as each pixel value and 
the surround is a Gaussian function. There are some variants of this algorithm. 

3.1. Single scale retinex algorithm 

The Single Scale Retinex (SSR) [7] is defined for a point (x, y) in an image as: 

(7) [ ]),(*),(log),(log),( yxIyxFyxIyxR iii −= ,        i = 1, …, S, 

where the sub-index  i  represents the  i-th spectral band,  S is the number of spectral 
bands (S =1 for grayscale images, and  S =3 for typical color images);   

),( yxRi  is the Retinex output and  ),( yxIi  is the input image distribution in 
the  i-th spectral band. The symbol “*” denotes the convolution operation; 

F(x, y)  is the normalized surround function; various surround functions could 
be used, and the Gaussian surround function is one of them,  

(8) 
2/)22(),( cyxeKyxF +−=  

where c is the Gaussian surround constant, that is referred to as the scale of the 
SSR, and  K  is selected such that   

∫∫ =1),( dxdyyxF . 

A small value of  c  provides a good dynamic range compression, and a large 
scale provides better colour rendition.  

The image distribution is the product of scenes reflectance and illumination: 

(9) ),(),(),( yxryxSyxI iii =  

where ),( yxSi  is the spatial distribution of illumination, and  ),( yxri  is the 
distribution of scene reflectances.  

)]),(),(/(),(),([log),( yxryxSyxryxSyxR iiiii = . 

As the illumination generally has slow spatial variation  ),(),( yxSyxS ii ≈  , 
then: 

(10) ]),(/),([log),( yxryxryxR iii = . 

Equation (10) means that color constancy (independence from source 
illumination spectral and spatial variation) is achieved. 
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3.2. Multi-scale retinex algorithm  

The Multi-Scale Retinex algorithm MSR is an extended SSR with the multiple 
kernel windows of the different sizes. The output of MSR is a weighted sum of 
several different SSR outputs [8].  

The Multi-scale retinex algorithm is given by 

(11) ,),(
1
∑
=

=
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n
nini RwyxR         i = 1, …, S, 
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[ ]),(*),(log),(log),( yxIyxFyxIyxR inini −= , 
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N and S  are  the number of scales, and the number of spectral bands, respectively.  
Here ),( yxRni  denotes a retinex output associated with the n-th scale for an 

image, ),( yxIi   and ),( yxFn  denote a surround function.  

Note that a gain nw  is set to satisfy the condition 1
1
∑
=

=
N

n
nw .  The surround 

function is given by:  
2)22( /),( n

nn
cyxeKyxF +−= ,  where nc  are the scales that 

control the extent of the surround (smaller values of  nc  lead to narrower 
surrounds), and )),((/1 ∑ ∑=

x yn yxFK  is the normalization factor. 

The obvious question about MSR is the number of scales needed, the scale 
values, and the weight values. The experiments have shown that three scales are 
enough for most of the images, and the weights can be equal. Generally fixed scales 
of 15, 80 and 250 can be used. But these are more experimental than theoretical, 
because we do not know the scale of an image to the real scenes. The weights can 
be adjusted to weight more on dynamic range compression or colour rendition.  

4. Results 

The paper examines at first the epitome properties in denoising. Denoising is still 
one of the most fundamental tasks in image processing. Despite the fact that it is 
widely studied, there are many unsolved problems yet. The purpose of denoising is 
to estimate the original image (or a “better” representative of it) from the noisy data.  

To illustrate the potential power of the epitomes, the algorithm was tested by 
images with a high level of multiplicative noise and Gaussian noise. The epitome 
model of an image was used to improve the images. It is important to know that 
there are additional ways to tune the algorithm as properly choosing the size of 
patches, the number of iterations and the initial point for the EM algorithm. 

Figs. 3(a), 3(b), 3(c), 3(d) and Figs. 4(a), 4(b), 4(c) demonstrate the Epitome 
algorithm for image denoising.  
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                    Fig. 3(a). Noisy image (30×400)                           Fig. 3(b).  A set of patches 

 

                                   

           Fig. 3(c). Epitome (50×50)                                  Fig. 3(d). Denoised image (300×400) 
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             Fig. 4(a). Noisy image                   Fig. 4(b). Epitome               Fig. 4(c). Denoised image  
                    (120×160)                                      (50×50)                                    (120×160) 
 
 

The second step is to examine the Retinex algorithms.  
Figs. 5(a), 5(b), 5(c) and 6(a), 6(b), 6(c)  demonstrate the Single Scale Retinex 

algorithm and the Multi Scale Retinex algorithm for two images (the second image 
is from YaleB data-base).  It is seen (a) that the illumination is very uneven. The 
improved images (c) then are used as input images from a Face Recognition System 
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       Fig. 5(a).  Input image                  Fig. 5(b). Image after SSR            Fig. 5(c). Image after MSR  

       (c=10)                                         (10, 80, 250) 
 

 
             Fig. 6(a). Input image                 Fig. 6(b). Image after             Fig. 6(c). Image after MSR  

SSR (c=10)                                (10, 80, 250) 

5. Conclusion 

The study explores the combination of two methods for pre-processing of images. 
The paper describes the epitomes as recent models of appearance and shape, 

composed of image patches. The epitome of an image is found, using a variant of 
EM algorithm. This paper shows most of the steps in deriving the update equations 
for the epitome as a generative model of image patches. The paper investigates the 
usе of the epitomic representation and reconstruction for filtering very noisy 
images. 

The Retinex algorithms are tested on a real image, obtained from a camera in 
uneven lighting. The results show very good reducing of the impact of uneven 
illumination and the presence of shadows and reducing the noise.   

The results are intended and tested as input images in a real system for face 
recognition and the results are encouraging at this stage of system development, 
since better face recognition of pre-processed images is achieved. 
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