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Abstract: The robust stability analysis of four uncertain linear models is
considered. It is shown, that the application of a newly derived approach, taking
into account the inequalities between the entries of the uncertain parameter vector,
leads to a considerable decrease in the computational complexity, in comparison
with some known results. The efficiency of the respective conditions, aimed at
solving the same task is discussed.
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1. Introduction

Robustness of linear systems subjected to structured real parametric uncertainty
belonging to a compact vector set (e.g., the unit simplex) has been recognised as a
key issue in the analysis of control systems, but robust stability cannot be assessed
using convex optimisation. When applying the powerful Lyapunov’s second
method for parameter dependent Lyapunov functions, it comes out that the
efficiency of the respective stability condition depends extremely on the condition
for positive definiteness of a special Homogeneous Matrix Polynomial (HMP) of a
possibly high degree. This task usually reduces to the formulation of a system of
Linear Matrix Inequalities (LMIs). It is important to get a system of highly non-
conservative LMIs, which will inevitably result in an efficient analysis procedure,
requiring minimal computational resources. In some recent works [10-12], it has
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been shown, that the most widely applied approach to solve the problem is a very
conservative one, although it provides an asymptotically exact condition for
stability of uncertain linear systems. By means of taking into account the presence
of inequalities between the entries of the uncertain vector, the authors succeeded to
prove, that conservativeness in the necessary and sufficient condition can be
considerably reduced, which finally results in a less complicated computational
procedure.

This research work is organized as follows. Problem formulation, including
brief analysis of previous results, is done in Section 2. Section 3 contains in a
condensed form the theoretical background of the new approach and recalls two
well known results, which are used to perform the comparative analysis. The
experimental robust stability study of an overhead crane system, electromechanical
system, an induction motor and a power system is done in Section 4, where the
properties of the separate conditions are discussed. The efficiency of the respective
stability conditions is compared and analyzed.

2. Preliminaries, previous results, open problems

The notation A>0, (A>0) indicates that A is a positive (semi-positive) definite
matriX, A=[a;]eR, and a=(a,)eR" denote real nxn matrix and Nx1 vector with
entries a; and a;, respectively. The sum of N nonnegative scalars ¢, is|a|. Define
also the vector sets x, ={xeR": x'x=1} and ®y ={a=(;)eR" |o|=1. N,
denotes a set of x positive integers and A,(A) denotes the minimum eigenvalue of

an x nsymmetric matrix A.
Consider a HMP ina e, of an arbitrary integer degree k > 1

with y(k) = % 0!'=1, symmetric matrix coefficients, given by
(1) M(a,k)=> ala . .a P« €ER ..

[k|=k
Since |0:|d =1Vvd =0,1,..., then the HMP (1) can be equivalently represented

as a HMP of an arbitrary degree d + k  with y(k+d) symmetric matrix
coefficients

(e, k) =(et, k +d) =] T(a, k) =
(2) x(k+d)

Kk kn D _ ~
= zal azz...aNN Pk1k2....kN = Z(Z|H| ERn,
|k|=k-+d =1
where a, and TII,, I=1..,y(k+d), denote the lexically ordered monomial

ayay ..y’ and the corresponding to it matrix coefficient B, , ., [k|=k+d,

respectively. Letk +d = 27, which makes possible to rewrite (2) as follows:

42



(3) (a, k)=Tl(a, 2r)= > @z,
i jeN, (o) <]
where @, =a*ag..of) ,|f|=7,i=12,.., x(r), denotes the i-th monomial of degree

rand a, = &a;, I1; = II; for some subscripts |, i and j.

Define the real uncertain Homogeneous Scalar Polynomial (HSP)
4) f(a, 27, X) =xTI(a, K)x=xTI(a, 27)x= Y @&a,C,(x), XeX,
BN, (r)i<]

where C;(x) = x'IT;x and the vector
a,=(@) eR*Y, @ =aaf..af, =7, i1=12,..,x(z),

contains all monomials of degree 7 . Then, (4) can be rewritten in a quadratic, with
respect to ¢, , compact matrix form as

(5) f(a, 27, %)=&, C(X)a,, C(x)=[c;(N]eR .
¢ (X) = 7 Cy (X), 7 = {1’ =
! e Y1050 # .

The symmetric matrix C(X) is said to be a Coefficient Matrix (CM) for the
associated with (3) HSP f (&, 27, X) in (5). It is desired to derive conditions under
which the HMP in (3) is positive definite on the compact vector set ®, , i.e.,

IT(a, k) contains only positive definite matrices, or equivalently, the strict scalar
inequality
(6) f(a,27,X) >0 Vo eo,, VXeX,

holds. An well known asymptotically exact validity condition is given now.

Theorem 1 [14]. Let a given HMP in (1) be positive definite. There exists
some sufficiently large integerd”, such that for d>d”, all y(k+d) matrix
coefficients of the HMP in (2) are positive definite.

Theorem 1 generalizes the famous Polya’s theorem [4] for the case of matrix
valued functions and it provides a systematic way to decide whether a given HMP
is positive definite. Unfortunately, this result is very conservative with respect to
sufficiency, due to the following obvious reasons. According to Theorem 1, the
above stated problem has a solution if and only if for some appropriate d, all

coefficients C;(x) = xTPijx of the HSP f(«, r, x) are positive for all X € X,,. This

means that some unduly large value for d may be required, in order to conclude
positive definiteness of the HMP (1). As a result, serious computational problems
may arise.
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3. Relaxed analysis for HMPs

It is clear, that the scalar inequality in (6) may hold even if some coefficients are not
positive. Therefore, the analysis procedure needs to be relaxed and made more
effective.

The applied here relaxed analysis approach is described in details in [10]. It
can be briefly summarized as follows.

Let a(S) denotes a vector with s > 2 arbitrarily selected entries from « . If
v(s) is the set of s x 1 vectors with entries representing an arbitrary non-

descending sequence, then all possible systems of s10.5s(s—1) pairwise inequalities
a <a;, a,a;eal(s),i= ], are described by the set of ordered vectors
a,(s)ev(s),p=1,..,s!

For any «a,(s)ev(s), a,(s)ev(s), 2<s<N, there exists a set of
u(s,7,N) inequalities between the monomials of degree 27, i.e.,
aa; <aya,,i<j,u<v,ij#uv. The total number of such inequalities,
correspondlng to all possible and compatible inequalities between the entries of
vector «(S) is u(s,z,N)=s!u(s,z,N).

For anya,(s)ev(s), p = 1,..., s!, these inequalities lead naturally to the
matrix inequalities

(i —a,,) Xijup OVXj, 5, 20, i< j U<y, ij£uv.

Define, also, the associated with a given vector «,(s)ev(s) two sets of
HMPs:

(7) ﬁp(a’ 27) = za_[laj Z >(ijuv,p z leuv p

i,jeN 20y, IS] & <aya, usv oG > 0,0ty USV

_~ N i~
®)  My(a,20)=Tl(a,27)+11,(a, 2r) = Y aa;(I1; +11; ) =
i,j=Li<j
N [ —
aall; ,, p=1,..,s.

Having in mind the presentations (4) and (5), consider the p-th HSP
fo(a, 27, X) + f(a, 27, X) = f, (@, 27, X) =

= x"[I1, (e, 27) + T1(e, 20)]x = X1, (@, 27)x.
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Denote 1, , =TI +I1;, p=1 2,.., p, and rewrite the above set of HSPs

ij,p ij.p
as:

_ — _ ——~ =T —
(9) fp ((Z, 21, X) - XT_ j Nz _a}ajHu}pX - ; qu;ajcij‘p(x) =a, Cp (X)av )
i, jeNy, (7). i,jeN, ()<

p=1 2,...,p.

Matrix C,(x) =[c(x); ,]=C,(X) +C(X) :[Eij'p(x) +¢; ()], p=1 2,..,p, is
the dependent on vector CM X, associated with the HMP 11 (e, 27), p=12,..,p
in (8).

Consider the HSPs

f,(a, 27) = aCy , Cj, <C(X), VXEX,, p=1 2,.., .

It follows that

(10) f (e 20)=2a,'C,a, < f (e, 22,X) Vaewy, VxeXx,,p=12,.., 7
where C, =[c; ]

Theorem 2 [10]. The following statements are equivalent:
(i) agiven HMP (1) is positive definite on the uncertainty set @,

(ii) there exist appropriate numbers d, s = 0, 1,..., and p HMPs defined in
(7), such that all associated with them CMs C =[c; ,] in (10) are positive definite.

Theorem 2 states a new and more general condition in comparison with
Theorem 1. It will be shown how this result can be used to improve the analysis
procedure.

4. Robust stability analysis

Consider the uncertain linear system
(112) X = A(@)X, A(a)zZN:aiA eR,, aeom,,

where all matrices A are fixed and Hurwitz (negative stable). The stability analysis

problem for this class of uncertain systems is: determine necessary and sufficient
conditions, under which the polytope A ={A(«): a € @ } contains only Hurwitz

matrices.
An widely used approach to solve this problem consists in the determination of

a positive definite on @, HMP I1(e, t), such that the following exact condition be
satisfied

12)  TI(e k) = AT (@) (a, t) + T, ) A(@)}> 0, k =t +1.
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If the degree of polynomial dependence t is a positive integer, then matrix
II(e, t) is a parameter dependent one and the stability research approach is known

as the Lyapunov’s second (direct) method for robust stability analysis. It is
important to underline, that the solution of this significant from both theoretical and
practical point of view problem, consists actually in deriving conditions for positive
definiteness of the HMP in (12). What’s more — the efficiency of the derived in the
literature approaches providing asymptotically exact conditions, depends crucially
on them.

Consider the following three robust stability conditions for the uncertain
system (11).

Theorem 3 [2, 3]. Let d =s = 0. Then the uncertain system is robustly stable
if there exists a HMP T1(«, 1) of degree one, such that the single CM C, defined in

(10) is positive definite.

Theorem 4 [7]. The uncertain system is stable if and only if there exist
integers d and s, and a HMP TIl(«, t), such that all y(k +d) matrix coefficients of

the HMP TI(e, k +d) :|0:|d I1(e, k) are positive definite.

Theorem 5 [11, 12]. The uncertain system is stable if and only if there exist
integers d, t and s, a HMP Il(«,t) and s! HMPs Hp(a, 27) in (7), such that the

defined in (10) CMs are all positive definite.

It is clear that Theorem 3 is a particular case of Theorem 5. All results due to
Peres and Oliveira [6-9] are based on Theorem 1, which inevitably defines their
main shortcoming — conservative sufficiency part of the robust stability condition
and hence redundant and complicated computational procedures. It is also obvious,
that Theorem 5 (based entirely on Theorem 2) generalizes Theorem 4, since if it’s
statement holds, than there always can be determined some appropriate parameters,
such that the systems’ stability can be easily concluded via Theorem 5, as well, but
not vice versa. These facts will be illustrated by the considered here examples.

4. Experimental comparative analysis of uncertain models

The robust stability analysis of four real data uncertain dynamic models is
considered in this section. A comparison regarding to some qualitative and
quantitative indicators of the solutions, due to Theorems 3-5 is made. The matrix
coefficients of the HMP TI(«,t)in (12) are given in the Appendix. They are
obtained as a result of the solution of appropriately defined systems of LMIs by
means of the LMI TOOLBOX [15].

Overhead crane control. The model of the plant to be controlled is taken
from [13]. In this case, the crab mass is 1 t, the rope length is 10 m, and the load
mass ¢ varies in certain bounds, with a nominal value g, = 3 t. The model of the

uncertain control system is
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1 0 0 0
0 9.81q 0 10°
1
0

o O O

X+ u=A(q)Xx+Bu; x=(x, X, X, X,)",
0 0 0 (a) (

0 0 -0.981(q+1) ~10*

g €[1, 10], where the first two entries of the state vector denote the velocity and
position of the scrab, and the next couple denotes the angle and the angular velocity
of the rope. The constraints regarding this system are given by the following
inequalities

4 7 T N\T
<10*N, [xo|< 5—)".
[ <10°N, [x|<@2m 1m/s 2 05 )
180 180's

The control task is to drive the position of the load y=(1 0 10 0)x from
the initial state |x,|=(12m 0 0 0)" to the tolerance band «paiiro |y|<2cm in

minimum settling time. It is shown in [13], that the state control law
u=-Kx, K=[187.35 2869.3 -26048 2455.3], meets the above

requirements for all ge[1, 10]. The task is to analyze the robust stability of the close
loop system X =[A(q) + BK]x = A; (q)x, and possibly extend the tolerance interval.

For the nominal load g = 3 t, the state matrix of the close loop system can be
represented as Ac(q) = Ac +0A; deld.,au], 9. <-2, g, >7.

The two matrices in (11) are A=A +q,A;, A=A -0qA.
Let g =-2, qy =7.5. For the robust stability analysis a parameter dependent
CLF  x'II(a,3)x of degree three with four matrix coefficients
IT,,, Iy, IT,,, IT,,, is used. The minimal eigenvalues of the five coefficients of
the HMP (12) are denoted accordingly ixy,

Ayo =0.014, Ay, =0.05, A, =—3.32x107*, 4, =0.003, 4,5 = 0.0046 .

According to Theorem 4, the considered CLF is not a Valid Lyapunov
Function (VLF) for the system for d = 0.
The two possible cases are considered next:

1 o >a, = (0 a,’ —aa,), <0, since IT,, >0, which leads to the
matrix inequality IT,,, =T1,, + 113 >0, A4,,, =0.04. Then, the CM C, can be

chosen as a positive definite diagonal matrix, i.e., the system is robustly stable
according to Theorem 5.

2. oy <a, = (), —ayad)I,; <0.Then,
[Ty, , =, +11;3 >0, Ay, , =0.046
and again the CM C, can be chosen as a positive definite diagonal matrix. The

close loop uncertain system remains robustly stable for the extended admissible
parameter set [1,10.5].

X+Yy=4, and are computed as:
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Electromechanical system. Such systems are constructed with components
that manifest a combination of inertial, compliant, and dissipative effects. In
practice, engineers typically model the dynamic response of these with finite
element codes or lumped physical models. Each of these ultimately leads to a set of
constant coefficient, ordinary differential equations. A drive model containing
three flywheels, two dashpots and two springs is considered in [5] and given by the

system equation JO+B.@+K.0=T, 6=(8)ecR? T=(t)eR? where 0 is a
vector of the angular displacements, J =[j;]€R; is a diagonal damping matrix.
The coefficient matrices By, K and the input vector u are:

bb -b 0 ke -k 0 Tin
By=|-b, b+b, —b,| , Ks=|-k k+k, —k,|, u=|0
0 -b, b 0 -k kK 0

Real world electromechanical systems have parametric uncertainty (in some
elements of inertia, damping and stiffness matrices), that must be considered during

the design. When constructing the model, matrix By is taken as an uncertain one.
Denoting the state vector x=(6, 6, 6; o, w, w,)" ,Where @, w,, @, are the

angular velocities of the respective wheels, one gets the usual state space model
X = AX + Bu, where the state and control matrices are:

0 | 00010 o
A= L | B= .
3K - J7B 000010

The uncertain parameters in this description are the elements of matrix K,
which are considered as constant, but not fixed real numbers. It is assumed also,
that k; =kj, +k;, ok e[-L,L], i=12.

The following values for the fixed system’s parameters are borrowed from [5]:

h=1J,=03=1 k=10, ky,=20, b =01 b,=0.2,
which makes possible to get the state matrix as
A=Ay +KAq + KA,
[0 0 0 1 0 0 |
0 0 0 0 1 0
0 0 0 0 0 1
-10 10 0 -01 01 0
10 -30 20 01 -03 0.2
0 20 -20 O 02 -0.2]

The output consists of the angular displacements of the first and second

flywheel, i. e.,
1 00 0O0O0
y= X.
000010

, 0ea(A).
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Since the open loop system (dk; =k, =0) is not asymptotically stable, a
stabilizing output feedback u = Ky is firstly applied, where K is a 2x2 negative

diagonal matrix with entries 40 and —9. The close loop system is described by the
uncertain linear model

X=Ac(K)X, Ac(K)="Aco+ KA, + KA, Ago=HA +BKC.
One can easily verify that the nominal close loop state matrix A, is a Hurwitz

stable one. The respective four matrices in the uncertain model (11) are computed
as follows:

A =Aco + LA+ Ac) s Ap = Aco + L(Aq = Ao),
Ag=Aco + L(-Aq + Ac) s A= Aco —L(AG +Ap).

LetL = 1.66, i.e., &k €[-1.66,1.66], i=1 2. The robust stability analysis is
performed via a linear parameter dependent candidate for a Lyapunov function
(CLF) x'II(e, 1)x.

Only four, from all the six matrix coefficients of the HMP (12) of degree two
are positive definite. According to Theorem 4, the considered CLF is not a valid
Lyapunov function (VLF) for the system for d = 0. The single CM C is not positive
definite and from Theorem 3 it follows, that the system’s stability can not be

verified for this CLF.
The following results are obtained when Theorem 5 is applied.

Letar(2) = (, ,)"be the chosen vector. The following two possible compatible
cases are considered:

L ay 2 oy = (0,0, — 23) X 4201 <0,

Xogzpg =y = 4,(I1,,)1 20=C, > 0;
2. @y <0y = (@5 — ,04) X g0, <0,
Xo22a2 =Tog + Xoaaap = An (g + X444 2)1 20, and
a, <a, = (aa, - ai)X2444,2 <0, Xopyyp =Ty —4,([1,,)1 20=C, > 0.
The matrix coefficients of the HMPsHp(a, 2), p=12, are computed as

follows
1_[11,1 =11, H22,1 = /122| ) H33,1 =1, 1_[44,1 =114,

My =10y, gy =105, Iy =115, Ty g =TTo4 + Xopgpp 0, Ipg5 =11p5, gy =11,
The usage of one single parametric matrix is enough to get the CM C,
positive definite, when o, 2 a,. If a, < «,, then simple computations show, that:
1_111,2 = Hll! sz,z = sz + X2224,Zv H33,2 = H33’ 1_144,2 = 2*44' )
Iy, =1y, g, =15, Iy 5 =11y,
M1 =Ty + Xospoo = Xoppao = A (Mg + Xpgaa )1,
Mg, =Tlp3, 1154, =11,
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This choice for the parametric matrices clearly illustrates the advantages of the
approach, since the minimal eigenvalues of the modified matrix coefficients
My, =TIy + Xopppp 211y, and Ty = A, (Tys + Xppas o)1 2 4, (TT) 1, are
increased. The CM C, is proven to be positive definite, as well. Thus, the
considered function is a VLF (for d = 0) for the robustly stable uncertain system.

A value for L =0.3016, which guarantees stability, is obtained in [5]. From
Theorem 5, it follows, that the system retains it’s stability even for L = 1.66, which
is more than five times extension of the admissible set for the uncertain parameters
& e[-L, L], i=12.

Induction motor. The control object is described by the system of nonlinear
differential equations [1]:

x=f()+qu, x=(® Wr, Wgy dsa lsp)'s U=(Us, Ugp)T,
where @ denotes the induction machine speed, vy, YRy [ isﬁ and

Us,, Us, are the transformed rotor flux couple, stator current couple and stator

voltage input couple, respectively.

Resistance (R) and mutual inductance (L) may vary due to rotor heating. By
means of an identification procedure of different physical parameters at different
setting points, it has been established, that the usual percentage variations in these
parameters is within the following intervals R €[-50, 50] udL € [-20, 20]. The

system is highly nonlinear, but application of a input-output linearization procedure
and some physical parameters’ modification, results in the standard state space
linear model

X=(A, +RA; +LA )x=A0)X, A@d)eR,,

0 1 0 a,
| PaPo, Pot Po, 0 0
A=l o 0 0 1 :
- 0 - 2 2 2 2
“n PPt~ Pl ™ Pl
0 0 0 0
0 —y,—«, 0 0
A= 0 0 0 1 ’
0 0 2Oln (_7n —a,+ anﬂn;uSRn) —7n— 3Oln
0 0 0 0
PoPo, ~Po = Pa, 0 0
A=l o 0 2a, 0 :
p— p— 2 p— J— —_—
0 0 ,0‘%‘2 ‘V/z‘z 2Oln (ﬁn/uSRn + 2) 2Otn ,0‘%‘2 10‘1//2‘2

Ay = Rpn I Lgys By = tspn | 0 LsnLpns 00 = (L= tispe) / Lsp Ly -
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The following fixed parameter values are used in [12]:
Ly, =471.8mH - stator inductance;

Hgrn =441.5mH — mutual inductance;
Lz, =471.8 mH — rotor inductance;
Ry, =9.65Q — stator resistance;
Rg, =4.305Q  —rotor resistance;

P =30, p,, =-300, ,0‘%‘2 = pw2 =-310.

The main purpose of the robust stability analysis is to find out, whether the
system is stable and if it is possible to extend the admissible variation set
[-50, 501N [-20, 20]. Let R e[-r,r], r = 70% and JL €[-I, 1], | = 30%. This
corresponds to a 40% and 50% increase in the interval bounds for R u L,
respectively.

The linear model can be put in the form (11), where the matrix polytope is
completely described by its four Hurwitz stable vertices

A=A +0.7A +03A ,A =A +0.7A —03A,A =
=A -0.7A +03A,A =A -0.7A,-0.3A.
The robust stability analysis is performed via affine parameter dependent CLF.
The minimal eigenvalues of the matrix coefficients of the II(«,2)in (12) are
computed as follows: Ay =2y =1, Agg = A4y =0.3, 4, =1.992,
A3 =1.986, 4, =0.4094, Ay =—0.1383, Ay =1.9775, Agq =—2.3572.
Therefore, matrices IT,;, IT,, are not positive definite and the considered function

is not a VLF for the system, in accordance with Theorem 4, for d = 0. The
respective CM C is not a positive definite one, which means that according to
Theorem 3 systems’ stability can not be verified via this CLF.

A based on Theorem 5 solution is suggested. Since some matrix coefficients
are positive definite, a simplified analysis procedure is applied, which investigates
the positive definiteness of the following HMP

My (a,2) = o Ty + 3Ty, + aTgg + @iy + ayasllys + 0,0,y + e, I, <
<Il(a,2)qy Vaerl.
If a=(e, 000)7,i.e., & =1, then the system is stable since I1,; >0.
Let 0 <, + a3 +a, <1. Then the following matrix inequality holds:
(@, 2)= a3y, + a5y + o Ty + 00T 5 + 0,0, Ty + 2ty <
<II(a,2) <I(e, 2) 4y
for Vael, 0<a, +a; +a, <1. If the HMP of degree four
(e, 4) = (a, +az + ;)T (@, 2), 0<a, +a; +a, <1,
is positive definite, then it follows that T1(«, 2)(12) >0 Va el or, equivalently, the
uncertain system is robustly stable via the considered CLF. The HMP T1(«,4) is
given by
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T(er, 4) = a3 40 + 3 Mgy + 0 Ty + 3030 g + 005 T + 03 5 +
+ o0, gy + 0504 50 + 0,05 g + 030 T gy + 004 T gy + 3003 g +
+ oy s,y + ayaia iy + a0y, .

All matrix coefficients, except for II,,, and I1,, are positive definite. Let
Aaper @+b+C =4, denotes the minimal eigenvalue of the matrix coefficient IT,,, .
Then, the corresponding to the HMP XMII I1(«, 4) CM is computed as
_2/1400 0 O ﬂ'SlO 2301 /1211 ]

0 22“040 0 2’130 2’121 }“031
0 0 2ﬂ'004 1112 /1’103 1013
j“310 ﬂ’lSO j’.l.lZ 2ﬁ“220 0 0

Azo1 A o3 0 2250 0
L A1 Aozt Ao13 0 0 202 i

2C =

Since the diagonal entry A,, is negative, the CM is not positive definite. The
problem’s solution by means of Theorem 5 is described next.

Let the selected vector be «(2) = (a; a,)" .The two possible cases are:
p=1l a;<a,=(aial —aso)y; <0, since Ty, >0.

This produces the following changes in the matrix coefficients of the HMP
I, (e, 4):

Mgy =gy + g5 >0, Ay =0.2234, 11,3, =0. The construction of the
CM C,> 0 is done in accordance with the requirements of Theorem 5.

P=2: a;>a, = (@ial —aia,) [y, — Ay l) <0, because Iy, — Ayl >0.
The new matrix coefficients of the HMP TI1, («, 4) are:
Mz.0 = Thogy + Mgy = Agga I Tlogy p = Aoz |-
The CM C, is also a positive definite one. Therefore, according to Theorem 5

the system is robustly stable and what’s more — the admissible parameter set has
been significantly extended, in comparison with the one obtained in [1].

Electric power system. A linearised model of a power system, comprised of k
subsystems (generators) is considered

Ady =—R*Aw, +ZN:Yij5i, Yi =Y, 1=12,..k,
j=1
S =Aw;, 1=12,..,k,
where ¢;,i=1,2,...,k, denote the deviation in the angle of the i-th rotor from the
nominal value; Y; is the transfer conductance between subsystems iujand Y; is
the self conductance of the i-th subsystem. It is assumed that all coefficients in the
2k differential equations do not vary in time. Denoting the vector
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x=(x; X3.%.x)"eRY, N=2k, x=(Aw, 5)" eR?,
the system’s dynamics description can be put in a compact matrix form, where the

state matrix has the following block structure:
All A12 Alk
-RTY,

A A A 0 Y.
212 :22 :2k eRy; Aii:|: 1 cl)l ”}ERz-

3

A=
Alk A2k Y Akk
The power systems belong to the class of decentralized control systems. The

most important practical problem is to answer the question whether the system
retains its stability when some or all interconnections fail partially or completely. It

is justified to use the model [16]:
x=(A +>eA)x s=05k(k -1), & [01], A =bldiag(A ), i=1,...k

[0 .. A .. 0

A

>
Il

o ... ... ... 0
1. For the typical values of the parameters

(i) Let k =2, n =4 s
R; =0.01i=12Y,,=-22,Y,, =-2.6,Y,, =1, the three matrices are computed as
A, = -100 -22 A = -100 -2.6 A, - 01
1 o] " |1 o] ® |oof
It is desired to find out if the system is robustly stable for all possible values of
the uncertain parameter &,. The corresponding equivalent representation (11) is

easily obtained, where A=A, A, =A +A. For analysis purposes a parameter

dependent affine CLF is used, where
0.0145 0.4545 —0.0005 —0.0021 25008 55 -0.025 -25
04545 449865 00018 -02178| | 55 201 -25 -145
0.0138 03846 | 2 |-0025 -25 25009 65 |
-25 -145 65 259

Pl:
—0.0005 0.0018
—0.0021 -0.2178 0.3846 37.6975
of the HMP TII(a,2) in (12)

Matix IT;, is not positive definite
(A,(IT1,,) =-0.1218)); therefore, according to Theorem 4, the CLF is not a VLF for

0.54,(IT;,) | | 1.036
1 -0.0609 0.000952

14 (HZZ)

the system for d = 0. The single CM is computed as follows:
—0.0609
, 4,(C,)=-0.0026,

C, :{ A4 (Iyy)
0.52,(I1y,)
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i.e., it is not positive definite and robust stability can not be verified by means of
Theorem 3, as well. Consider the cases:

a) a>a,=(yma,—al)X, <0, X, =T, - 4,([1;)1 >0, which makes
possible the determination of the coefficients of the HMP in (8) forp =1as
Mg =AMy ) 1 Ty =TT, + Xy > 0,115, =115, 44(T1y,,) =0.809,
or the considered CFL is a VLF for the system forVe, > «, .
b) &, <, = (e, —al)X, <0, X, =T1,, — 4,(I1,,)| >0, which for p =2
leads to
My, =My, My, =T, + X, > 0,15, , = 4,(I1,), 4, (I, ,) = 0.507,
or the considered CLF is a VLF for Ve, < a,, as well. This guarantees the robust
properties of the system for d = 0, in accordance with Theorem 5.
(ii) Let k = 3, n = 6, s =3. In this case, the state matrix has the structure

0 A, 0
A =bldiag(A),i=12,3A=|A, 0 0|,
0 0 0
0 0 A, 0 0 0
A=/0 0 0| A=0 0 A,
A, 0 0O 0 A O

and the following typical values have been assumed:
R; =0.01,i=123,Y,, =-22,Y,, =-2.2,Y;3, =-23Y;, =1Y,; =13Y,; =1.2.
The vertex matrices in (11) are computed from the equalities
A=Py =P+ A+ A+ AL A=A+ Ay A= A A A,
A=A +AA=A+A+AAN=A+A A=A+A
Robust stability of the system is studied via an affine CLF.
The HMP TI(«,2) in (12) has 36 matrix coefficients, two of which

(IT,,andII,,) are not positive definite. According to Theorem 4, the system is not
stable for d = 0. The single CM is
c 0 22,(I1,)  A(11,)  A(I1,)
2C, :[0 D} eR,; C,=| A,(I1,) 24,/(1,) 0 ,
A, (IT,) 0 24,(I1,,)
D =bl.diag(4, (I1,)), i=4,...,8,
where D > 0 and the respective minimal eigenvalues are computed as follows:
Ag (I14;) = 0.308, A5 (IT,,) = 0.0043, 4, (I1,,) = 0.00066,
A6 (I1,,) =—0.0284, 44 (I1,5) = —0.00002114.
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According to Theorem 3, the system is not robustly stable, since
43(Cy;) =—-0.001152,, i.e., the CM C, is not positive definite.

Let «(2) = (e, a,)"be the chosen vector and consider the two possible cases:
Q) o, >a,=(a-a/)X, <0,X, =I0,-A4(1,)l >0, which naturally

leads to
My, = Ag ()1, My =TI, + Xy > 0,115, =11y,

/16 (HlZ,l) = 0.0001, 1_122,1 =11y, 1_[13,1 =13, 1_[33,1 =Ig.
b) oy <, = (g, —af)X, <0, X, =T, — A5 (I1,,)1 >0, which naturally

leads to
My, =Ty, My, =TT, + X, > 0,11, , =4, ()l

As (le,z) =0.00021, I, , = 44 (I )1, M3, =TIy, gz, =g
The two CMs in (10) can be chosen in accordance with Theorem 5as C, =C,

and then
0.616 0 —0.000021

C., O
C.o=| o' o} Cu=| O 0.0047 o |
~0.000021 0  0.00132
2,(C,,,)=0.00264, p=1,2,

i.e., the considered CLF is a VLF for the robustly stable system.

5. Comparative analysis of the experimental data

Table 1 contains information, concerning the efficiency of the robust stability
conditions, provided by Theorems 3, 4 and 5.

Table 1. Stability conditions validity

EXAMPLE n|N Degrfs of Theorem 3 | Theorem 4 | Theorem 5
Overhead crane 412 |3 not valid VLF (d=5) | VLF (d=0)
Electromechanical system | 6 | 4 | 1 not VLF VLF (d=6) | VLF (d=0)
Induction motor 41411 not VLF VLF (d=9) | VLF (d=2)
Power system 412 |1 not VLF VLF (d=7) | VLF (d=0)
Power system 6181 not VLF VLF (d=5) | VLF (d=0)

In all considered cases Theorem 3 is either inapplicable, or system’s stability can
not be verified via it. As far as Theorem 4 is regarded, one gathers the impression,
that an obligatory increase in parameter d is required to solve the problem. It’s just
this fact which defines the computational complexity of the conditions given by
Theorems 4 and 5, e.g., for the analysis of the induction motor, Theorem 4 needs a
value d = 6, in order to conclude it’s robust stability. This parameter value requires
the solution of 4004 linear LMIs, and what’s more — the respective asymptotically
exact condition requires all matrix coefficients to be positive definite. The
requirements towards the computational procedure imposed by Theorem 4 are very
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hard for the analysis of the electromechanical system (1980 LMIs) and the power
system (1716 LMIs for case N = 8), as well. The number L of the LMIs needed to
be solved, together with the number p of the involved matrix parameters are taken
as quantitative measures of the computational procedure.

Table 2. Computational complexity parameters

Example Theorem 4 Theorem 5
Overhead crane L =292, p=2 | L=7, p=4
Electromechanical system | L=1980, p=2 |L=17, p=7
Induction motor L=4004, p=4 |L=41 p=6
Power system L =10, p=2]|L=3 p=4
Power system L=1716, p=8|L=36 p =10

It can be easily seen, that with an insignificant increase in the number of
parameters p , a considerable reduction in the number L of LMIs is obtained. The

L e
numbers AL =L—4 >J1and Ap _Ps 5 1 are generalised indicative parameters for
5 4
the computational complexity required by the respective asymptotically exact
conditions of Theorems 4 and 5. These numbers illustrate in a most convincing
way the advantages of the new approach.

Table 3. Computational complexity —
comparative analysis

Examples AL Ap
Overhead crane 13.143 | 2.0
Electromechanical system | 116.5 | 3.5
Induction motor 97585 | 15
Power system 3.333 | 2.0
Power system 47.666 | 1.25

These results clearly show that taking into account the inequalities between the
entries of the uncertain parameter vector leads to a less conservative stability
condition and hence, to a considerable decrease in the computational complexity,
required by Theorem 5.
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Appendix

Overhead crane

1130 =

1.0e+002 *

0.00047018763952 0.00054336634955 —0.00028904891464

0.00498306863875

0.00054336634955 0.02746078772649 —0.00604924571726

0.25418115719357

—0.00028904891464 —0.00604924571726 2.77594243980907
~0.00950269586388

0.00498306863875 0.25418115719357 -0.00950269586388
2.56128912943461

1103 =

0.07549530274587 0.06597226252721 -0.00724298891182
0.49873188838639

0.06597226252721 0.96838137786520 —0.63049175685797
7.32356279296653

—0.00724298891182 —-0.63049175685797 81.24555889879822
-1.01342205424938

0.49873188838639 7.32356279296653 —1.01342205424935
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75.05602712689547

21 =

1.0e+002 *

0.00169532830650 0.00174645532438 —0.00065052771839
0.01495345616137

0.00174645532438 0.06460538923164 -0.01840340900310
0.58159794231680

—0.00065052771839 —0.01840340900310 6.36434046860613
—-0.02913961227026

0.01495345616137 0.58159794231680 -0.02913961227025
5.87313853013817

2 =

1.0e+002 *

0.00198009369444 0.00186281160010 -0.00043390869287
0.01495770640648

0.00186281160010 0.04682841528380 -0.01865908085442
0.40065241305290

—0.00043390869287 —0.01865908085442 4.40085361778504
—0.02977113694887

0.01495770640648 0.40065241305290 -0.02977113694887
4.06240967197252

Electromechanical system
Pl1=
158.5124 -32.4501 -2.8721 -0.1971 -3.0868 2.4999
-32.4501 26.8689 -17.0481 3.1861 1.8617  0.4062
-2.8721 -17.0481 17.5968 -2.5311 -0.8240 -0.3375
-0.1971 3.1861 -2.5311 3.0743 0.0425 -0.0816
-3.0868 1.8617 -0.8240 0.0425 0.5134 -0.0192
2.4999 0.4062 -0.3375 -0.0816 -0.0192 0.7974
P2 =
157.2995 -35.2147 -0.3470 -0.1950 -3.0776 1.9766
-35.2147 25.4514 -15.0240 2.6351 1.8567  0.5768
-0.3470 -15.0240 15.1924 -1.9818 -0.8190 -0.3344
-0.1950 2.6351 -1.9818 3.0380 -0.0144 -0.0262
-3.0776 1.8567 -0.8190 -0.0144 0.5151 0.0004
1.9766 0.5768 -0.3344 -0.0262 0.0004  0.8336
P3=
211.5905 -32.1364 -3.8992 -0.0680 -3.2907 2.8563
-32.1364 24.3479 -16.8871 3.4275 1.6929  0.3585
-3.8992 -16.8871 17.4430 -2.8989 -0.8250 -0.3390
-0.0680 3.4275 -2.8989 4.3828 0.0592 -0.1104
-3.2907 1.6929 -0.8250 0.0592 0.5184 -0.0251
2.8563 0.3585 -0.3390 -0.1104 -0.0251 0.7844
P4 =
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208.8743 -35.3788 -0.6676 -0.0678 -3.2899 2.2286
-35.3788 22.9139 -14.9066 2.7662 1.6900  0.5054
-0.6676 -14.9066 15.0331 -2.2374 -0.8202 -0.3361
-0.0678 2.7662 -2.2374 4.3146 -0.0103 -0.0380
-3.2899 1.6900 -0.8202 -0.0103 0.5208 -0.0080
2.2286 0.5054 -0.3361 -0.0380 -0.0080 0.81

Induction motor
P1=

27.26959318049108 0.49966425825233 —0.05236314612042

0.00015810116375

0.49966425825233 0.02264577349778 —0.00168761549975

0.00000501623009

-0.05236314612042 —0.00168761549975 83.45853436050456

0.49997088632667

0.00015810116375 0.00000501623009  0.49997088632667

0.00809942686912
P2=
1.0e+002 *

0.27271005742634 0.00499664244014 —0.00062509281117

0.00000171049399

0.00499664244014 0.00020649854859 —0.00001826075651

0.00000005770387

—-0.00062509281117 —0.00001826075651 2.87834733289768

0.00499984402924

0.00000171049399 0.00000005770387 0.00499984402924

0.00005653806305
P3 =

27.27546569323679 0.49966440890563  0.08218678077178

0.00025553752961

0.49966440890563 0.02264259313052 —0.00272790341459

0.00001058620793

0.08218678077179 —0.00272790341459 83.47142342809100

0.49997089254736

0.00025553752961 0.00001058620793 0.49997089254736

0.00636228463531
P4 =
1.0e+002 *

0.27274046581253 0.00499664325110 0.00121164697933

0.00000316317406

0.00499664325110 0.00020647900007 —0.00003377301268

0.00000012566275

0.00121164697933 —0.00003377301268  2.87908039728336

0.00499984400694

0.00000316317406 0.00000012566275 0.00499984400694

0.00002428179723
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