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Abstract: The robust stability analysis of four uncertain linear models is 
considered. It is shown, that the application of a newly derived approach, taking 
into account the inequalities between the entries of the uncertain parameter vector, 
leads to a considerable decrease in the computational complexity, in comparison 
with some known results. The efficiency of the respective conditions, aimed at 
solving the same task is discussed. 
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1. Introduction 

Robustness of linear systems subjected to structured real parametric uncertainty  
belonging to a compact vector set (e.g., the unit simplex) has been recognised as a 
key issue in the analysis of control systems, but robust stability cannot be assessed 
using convex optimisation. When applying the powerful Lyapunov’s second 
method for parameter dependent Lyapunov functions, it comes out that the 
efficiency of the respective stability condition depends extremely on the condition 
for positive definiteness of a special Homogeneous Matrix Polynomial (HMP) of a 
possibly high degree. This task usually reduces to the formulation of a system of 
Linear Matrix Inequalities (LMIs). It is important to get a system of highly non-
conservative LMIs, which will inevitably result in an efficient analysis procedure, 
requiring minimal computational resources. In some recent works [10-12], it has 
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been shown, that the most widely applied approach to solve the problem is a very 
conservative one, although it provides an asymptotically exact condition for 
stability of uncertain linear systems.  By means of taking into account the presence 
of inequalities between the entries of the uncertain vector, the authors succeeded to 
prove, that conservativeness in the necessary and sufficient condition can be 
considerably reduced, which finally results in a less complicated  computational 
procedure.  

This research work is organized as follows.  Problem formulation, including 
brief analysis of previous results, is done in Section 2. Section 3 contains in a 
condensed form the theoretical  background of the new approach and recalls two 
well known results, which are used to perform the comparative analysis. The 
experimental robust stability study of an overhead crane system, electromechanical 
system, an induction motor and a power system is done in Section 4, where the 
properties of the separate conditions are discussed. The efficiency of the respective 
stability conditions is compared and analyzed.   

2. Preliminaries, previous results, open problems  

The notation )0(,0 ≥> AA  indicates that A is a positive (semi-positive) definite 
matrix, nijaA R∈= ][  and N

iaa R∈= )(  denote real n×n matrix and N×1 vector with 

entries ija  and ia , respectively. The sum of N nonnegative scalars αα  is i . Define 

also the vector sets nx ≡ }1:{ T =∈ xxx nR  and Nω ≡ }1:)({ =∈= ααα N
i R . xN  

denotes a set of  x positive integers and )(Anλ  denotes the minimum eigenvalue of 
a n × n symmetric matrix A. 

Consider a HMP in Nω∈α  of an arbitrary integer degree k > 1 

with
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Since ,...1,01 =∀= ddα , then the HMP (1) can be equivalently represented 
as a HMP of an arbitrary degree d + k   with  )( dk +χ  symmetric matrix 
coefficients 
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where lα
~  and lΠ , )(,...,1 dkl += χ , denote the lexically ordered monomial 

Nk
N

kk ααα ...21
21   and the corresponding to it matrix coefficient 

NkkkP ...21
, dkk += , 

respectively. Let k + d  = τ2 , which makes possible to rewrite (2) as follows: 
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(3) ij
jiji
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where )(,...,2,1,,...21
21 τχτταααα τττ === iN

Ni , denotes the i-th monomial of degree 
τ  and  lα

~  =  jiαα , lΠ  =  ijΠ  for some subscripts l, i and j.  

Define the real uncertain Homogeneous Scalar Polynomial (HSP) 

(4) ),(~)2,(),(),2,(
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xcxxxkxxf ij
jiji

ji∑
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where xxxc ijij Π= T)(~  and the vector 

)(R τχαα ∈= T)( iv , )(,...,2,1,,...21
21 τχτταααα τττ === iN

Ni , 

contains all monomials of degree τ . Then, (4) can be rewritten in a quadratic, with 
respect to vα , compact matrix form as 

(5) ),2,( xf τα = vv xC αα )(T , )()]([)( τχR∈= xcxC ij ,  

⎩
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≠
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==
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),(~)(
ji
ji

xcxc ijijijij ππ  

The symmetric matrix )(xC is said to be a Coefficient Matrix (CM) for the 
associated with (3) HSP ),2,( xf τα in (5). It is desired to derive conditions under 
which the HMP in (3) is positive definite on the compact vector set Nω , i.e., 

),( kαΠ  contains only positive definite matrices, or equivalently, the strict scalar 
inequality 
(6) ),2,( xf τα  > 0 nN x x∈∀∈∀ ,ωα  

holds. An well known asymptotically exact validity condition is given now. 

Theorem 1 [14]. Let a given HMP in (1) be positive definite. There exists 
some sufficiently large integer ,*d  such that for d ,*d≥  all )( dk +χ  matrix 
coefficients of the HMP in (2) are positive definite. 

Theorem 1 generalizes the famous Polya’s theorem [4] for the case of matrix 
valued functions and it provides a systematic way to decide whether a given HMP 
is positive definite. Unfortunately, this result is very conservative with respect to 
sufficiency, due to the following obvious reasons. According to Theorem 1, the 
above stated problem has a solution if and only if for some appropriate d, all 
coefficients xPxxc ijij

T)(~ =   of the HSP ),,( xf τα  are positive for all .nx x∈ This 

means that some unduly large value for *d may be required, in order to conclude 
positive definiteness of the HMP (1). As a result, serious computational problems 
may arise.  
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3. Relaxed analysis for HMPs  

It is clear, that the scalar inequality in (6) may hold even if some coefficients are not 
positive. Therefore, the analysis procedure needs to be relaxed and made more 
effective. 

The applied here relaxed analysis approach is described in details in [10]. It 
can be briefly summarized as follows. 

Let )(sα  denotes a vector with s 2≥  arbitrarily selected entries from α . If 
)(sv  is the set of s × 1 vectors with entries representing an arbitrary non-

descending sequence, then all possible systems of s!0.5s(s–1) pairwise inequalities 
jisjiji ≠∈≤ ),(,, ααααα , are described by the set of ordered vectors 

∈)(spα )(sv , p = 1, …, s!.  
For any )()( ssp ν∈α , )()( ssp ν∈α , Ns ≤≤2 , there exists a set of 

),,(~ Ns τμ  inequalities between the monomials of degree 2τ , i.e.,  
uvijvujivuji ≠≤≤≤ ,,,αααα . The total number of such inequalities, 

corresponding to all possible and compatible inequalities between the entries of 
vector )(sα  is ),,(~!),,( NssNs τμτμ = . 

For any )()( ssp ν∈α , p = 1,…, s!, these inequalities lead naturally to the  
matrix inequalities 

uvijvujiXX pijuvpijuvvuji ≠≤≤≥∀≤− ,,,00)( ,,αααα . 
Define, also, the associated with a given vector )()( ssp ν∈α  two sets of 

HMPs: 
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Having in mind the presentations (4) and (5), consider the p-th HSP 
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Denote ijpijpij Π+Π=Π ,,
~ , pp ...,,2,1= , and rewrite the above set of HSPs 

as: 
(9) ),2,( xf p τα  = xx pij

jiji
ji ,

,,
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= )(~
,

,, )(
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pp ,,...2,1= . 
Matrix )]()(~[)()(~])([)( ,, xcxcxCxCxcxC ijpijppijp +=+== , pp ...,,2,1= , is 

the dependent on vector CM x, associated with the HMP ppp ...,,2,1),2,( =Π τα  
in (8). 

Consider the HSPs  

pijpijpij
jiji

jip xcccf ,,,
,,

)(~~,~)2,(
)(
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≤∈ τχ

αατα
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nx x∈∀ , ....,,2,1 pp =  

It follows that  

(10) )2,( ταpf = vpv C αα T ),2,( xf p τα≤ nN x x∈∀∈∀ ,ωα , ,...,,2,1 pp =   

where ][ , pijp cC = . 

Theorem 2 [10]. The following statements are equivalent:  
(i) a given HMP (1) is positive definite on the uncertainty set ,Nω   
(ii) there exist appropriate numbers d, s = 0, 1,…, and p  HMPs defined in 

(7), such that all associated with them CMs ][ , pijp cC =  in (10) are positive definite. 
Theorem 2 states a new and more general condition in comparison with 

Theorem 1. It will be shown how this result can be used to improve the analysis 
procedure.  

4. Robust stability analysis  

Consider the uncertain linear system 

(11) x& Nni

N

i
i AAxA ω∈∈== ∑

=

αααα ,)(,)(
1

R , 

where all matrices iA  are fixed and Hurwitz (negative stable). The stability analysis 
problem for this class of uncertain systems is: determine necessary and sufficient 
conditions, under which the polytope A :)({ αA= Nω∈α } contains only Hurwitz 
matrices. 

An widely used approach to solve this problem consists in the determination of 
a positive definite on Nω  HMP ),,( tαΠ such that the following exact condition be 
satisfied 

(12) ,0)}(),(),()({),( T >Π+Π−=Π ααααα AttAk  k  = t + 1.  



 46

If the degree of polynomial dependence t is a positive integer, then matrix 
),( tαΠ  is a parameter dependent one and the stability research approach is known 

as the Lyapunov’s second (direct) method for robust stability analysis. It is 
important to underline, that the solution of this significant from both theoretical and 
practical point of view problem, consists actually in deriving conditions for positive 
definiteness of the HMP in (12). What’s more – the efficiency of the derived in the 
literature approaches providing asymptotically exact conditions, depends crucially 
on them.  

Consider the following three robust stability conditions for the uncertain 
system (11). 

Theorem 3 [2, 3]. Let  d = s = 0. Then the uncertain system is robustly stable 
if there exists a HMP )1,(αΠ of degree one, such that the single CM C, defined in 
(10) is positive definite. 

Theorem 4 [7]. The uncertain system is stable if and only if there exist 
integers d and s, and a HMP ),( tαΠ , such that all )( dk +χ  matrix coefficients of 

the HMP ddk αα =+Π ),( ),( kαΠ are positive definite. 

Theorem 5 [11, 12]. The uncertain system is stable if and only if there exist 
integers d, t and s,  a HMP ),( tαΠ  and s! HMPs )2,(~ ταpΠ  in (7), such that the 
defined in (10) CMs are all positive definite. 

It is clear that Theorem 3 is a particular case of Theorem 5. All results due to 
Peres and Oliveira [6-9] are based on Theorem 1, which inevitably defines their 
main shortcoming – conservative sufficiency part of the robust stability condition 
and hence redundant and complicated computational procedures. It is also obvious, 
that Theorem 5 (based entirely on Theorem 2) generalizes Theorem 4, since if it’s 
statement holds, than there always can be determined some appropriate parameters, 
such that the systems’ stability can be easily concluded via Theorem 5, as well, but 
not vice versa. These facts will be illustrated by the considered here examples. 

4. Experimental comparative analysis of uncertain models 

The robust stability analysis of four real data uncertain dynamic models is 
considered in this section. A comparison regarding to some qualitative and 
quantitative indicators of the solutions, due to Theorems 3-5 is made. The matrix 
coefficients of the HMP ),( tαΠ in (12) are given in the Appendix. They are 
obtained as a result of the solution of appropriately defined systems of LMIs by 
means of the LMI TOOLBOX [15]. 

Overhead crane control. The model of the plant to be controlled is taken 
from [13]. In this case, the crab mass is 1 t, the rope length is 10 m, and the load 
mass q varies in certain bounds, with a nominal value 0q  = 3 t. The model of the 
uncertain control system is 
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q ∈[1, 10], where the first two entries of the state vector denote the velocity and 
position of the scrab, and the next couple denotes the angle and the angular velocity 
of the rope. The constraints regarding this system are given by the following 
inequalities 

,N104≤u  T
0 )

.s180
5.0

180
2m/s1m12( °°≤

ππx . 

The control task is to drive the position of the load xy )01001(=  from 
the initial state T

0 )000m12(=x  to the tolerance band крайно cm2≤y  in 
minimum settling time. It is shown in [13], that the state  control law 

]3.2455260483.286935.187[, −=−= KKxu , meets the above 
requirements for all q∈[1, 10]. The task is to analyze the robust stability of the close 
loop system ,)(])([ xqAxBKqAx C=+=&  and possibly extend the tolerance interval. 

For the nominal load q = 3 t, the state matrix of the close loop system can be 
represented as ],,[;)( ULqCC qqqqAAqA ∈+= 7,2 ≥−≤ UL qq . 

The two matrices in (11) are qLCqUC AqAAAqAA −=+= 21 , . 
Let .5.7,2 =−= UL qq  For the robust stability analysis a parameter dependent 
CLF xx )3,(T αΠ  of degree three with four matrix coefficients 

12210330 ,,, ΠΠΠΠ , is used. The minimal eigenvalues of the five coefficients of 
the HMP (12) are denoted accordingly ,4, =+ yxxyλ  and are computed as:  

0046.0,003.0,1032.3,05.0,014.0 1331
4

220440 ==×−=== − λλλλλ . 
According to Theorem 4, the considered CLF is not a Valid Lyapunov 

Function (VLF) for the system for  d  =  0.  
The two possible cases are considered next: 
1. 0)( 312

3
1

2
2

2
121 ≤Π−⇒≥ αααααα , since 031 >Π , which leads to the 

matrix inequality 04.0,0 1,2231221,22 =>Π+Π=Π λ . Then, the CM 1C  can be 
chosen as a positive definite diagonal matrix, i.e., the system is robustly stable 
according to Theorem 5. 

2. .0)( 13
3
21

2
2

2
121 ≤Π−⇒< αααααα Then,  

046.0,0 2,2213222,22 =>Π+Π=Π λ  
and again the CM 2C  can be chosen as a positive definite diagonal matrix. The 
close loop uncertain system remains robustly stable for the extended admissible 
parameter set ]5.10,1[ .  
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Electromechanical system. Such systems are constructed with components 
that manifest a combination of inertial, compliant, and dissipative effects. In 
practice, engineers typically model the dynamic response of these with finite 
element codes or lumped physical models. Each of these ultimately leads to a set of 
constant coefficient, ordinary differential equations. A drive  model containing 
three flywheels, two dashpots and two springs is considered in [5] and given by the 
system equation ,)(, 3R∈==++ iSS TKBJ θθθθθ &&& ,)( 3R∈= itT where θ  is a 
vector of the angular displacements, 3][ R∈= ijJ  is a diagonal damping matrix. 
The coefficient matrices SS KB ,  and the input vector u are: 
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Real world electromechanical systems have parametric uncertainty (in some 
elements of inertia, damping and stiffness matrices), that must be considered during 
the design. When constructing the model, matrix SB  is taken as an uncertain one. 

Denoting the state vector ,)( T
321321 ωωωθθθ=x where 321 ,, ωωω  are the 

angular velocities of the respective wheels, one gets the usual state space model 
,BuAxx +=& where the state and control matrices are: 
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The uncertain parameters in this description are the elements of matrix SK , 
which are considered as constant, but not fixed real numbers. It is assumed also, 
that 2,1],,[,0 =−∈+= iLLkkkk iiii δδ . 

The following values for the fixed system’s parameters are borrowed from [5]: 
2.0,1.0,20,10,1 212010321 ======= bbkkjjj , 

which makes possible to get the state matrix as  

).(0,

2.02.0020200
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The output consists of the angular displacements of the first and second 
flywheel, i. e.,  

xy ⎥
⎦

⎤
⎢
⎣

⎡
=

010000
000001

. 
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Since the open loop system ( 021 == kk δδ ) is not asymptotically stable, a 
stabilizing output feedback Kyu = is firstly applied, where К is a 2×2 negative 
diagonal matrix with entries 40 and  –9. The close loop system is described by the 
uncertain linear model 

BKCAAAkAkAkAxkAx CkkCCC +=++== 0022210 ,)(,)( δδδδ& . 
One can easily verify that the nominal close loop state matrix 0CA  is a Hurwitz 

stable one. The respective four matrices in the uncertain model (11) are computed 
as follows:  

)( 2101 kkC AALAA ++= , ),( 2102 kkC AALAA −+=  
)( 2103 kkC AALAA +−+= , )( 2104 kkC AALAA +−= . 

Let L = 1.66, i.e., 2,1],66.1,66.1[ =−∈ ikiδ . The robust stability analysis is 
performed via a linear parameter dependent candidate for a Lyapunov function 
(CLF) xx )1,(T αΠ .  

Only four, from all the six matrix coefficients of the HMP (12) of degree two 
are positive definite. According to Theorem 4, the considered CLF is not a valid 
Lyapunov function (VLF) for the system for d = 0. The single CM С is not positive 
definite and from Theorem 3 it follows, that the system’s stability can not be 
verified for this CLF.  

The following results are obtained when Theorem 5 is applied. 
Let T

42 )()2( ααα = be the chosen vector. The following two possible compatible 
cases are considered: 

1. ,0)( 1,2422
2
24242 ≤−⇒≥ Xααααα  

;00)( 122221,2422 >⇒≥Π−Π= CIX nλ  

2. ,0)( 2,222442
2
242 ≤−⇒< Xααααα  

,0)( 2,2444242,2444242,2224 ≥+Π−+Π= IXXX nλ  and 

.00)(,0)( 244442,24442,2444
2
44242 >⇒≥Π−Π=≤−⇒< CIXX nλααααα  

The matrix coefficients of the HMPs 2,1),2,( =Π pp α , are computed as 
follows 

,,,, 441,44331,33221,22111,11 Π=ΠΠ=Π=ΠΠ=Π Iλ  

341,34231,231,2422241,24141,14131,13121,12 ,,,,, Π=ΠΠ=Π+Π=ΠΠ=ΠΠ=ΠΠ=Π X . 
The usage of one single parametric matrix is enough to get the CM 1C  

positive definite, when 42 αα ≥ . If 42 αα < , then simple computations show, that: 
IX 442,44332,332,2224222,22112,11 ,,, λ=ΠΠ=Π+Π=ΠΠ=Π , 

,)(
,,,

2,24442442,22242,2422241,24

142,14132,13122,12

IXXX +Π=−+Π=Π

Π=ΠΠ=ΠΠ=Π

λ
 

342,34232,23 , Π=ΠΠ=Π . 
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This choice for the parametric matrices clearly illustrates the advantages of the 
approach, since the minimal eigenvalues of the modified matrix coefficients 

222,2224222,22 Π≥+Π=Π X  and IIX )()( 2442,24442441,24 Π≥+Π=Π λλ , are 
increased. The CM 2C  is proven to be positive definite, as well. Thus, the 
considered function is a VLF (for d = 0) for the robustly stable uncertain system.  

A value for 3016.0=L , which guarantees stability, is obtained in [5]. From 
Theorem 5, it follows, that the system retains it’s stability even for L = 1.66, which 
is more than five times extension of the admissible set for the uncertain parameters 

2,1],,[ =−∈ iLLkiδ . 

Induction motor. The control object is described by the system of nonlinear 
differential equations [1]: 

TT )(,)(,)( βαβαβα ψψω SSSSRR uuuiixguxfx ==+=& , 
where ω denotes the induction machine speed, βα ψψ RR ,  , βα SS ii ,  and  

βα SS uu ,  are the transformed rotor flux couple, stator current couple  and  stator 
voltage input couple, respectively. 

Resistance (R) and mutual inductance (L) may vary due to rotor heating. By 
means of an identification procedure of different physical parameters at different 
setting points, it has been established, that the usual percentage variations in these 
parameters is within the following intervals  ]50,50[−∈Rδ  и ]20,20[−∈Lδ . The 
system is highly nonlinear, but application of a input-output linearization procedure 
and some physical parameters’ modification, results in the standard state space  
linear model  
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The following fixed parameter values are used in [12]: 
mH8.471=SnL    − stator inductance; 
mH5.441=SRnμ  − mutual inductance; 

mH8.471=RnL    − rotor inductance;  
Ω= 65.9SnR         – stator resistance; 
Ω= 305.4RnR       – rotor resistance; 

.310,300,30 2
2

2
121

−==−=−=
ψψωω ρρρρ  

The main purpose of the robust stability analysis is to find out, whether the 
system is stable  and if it is possible to extend the admissible variation set 

I]50,50[− ]20,20[− . Let ],[ rrR −∈δ , r = 70% and ],[ llL −∈δ , l = 30%. This 
corresponds to a 40% and 50% increase in the interval bounds for R  и  L, 
respectively. 

The linear model can be put in the form (11), where the matrix polytope is 
completely described by its four Hurwitz stable vertices 

.3.07.0,3.07.0
,3.07.0,3.07.0

4

321

lRnLRn

lRnLRn

AAAAAAA
AAAAAAAAA

−−=+−=
=−+=++=  

The robust stability analysis is performed via affine parameter dependent CLF. 
The minimal eigenvalues of the matrix coefficients of the )2,(αΠ in (12) are 
computed as follows: ,12211 == λλ  ,3.04433 == λλ ,992.112 =λ  

,986.113 =λ ,4094.014 =λ  ,1383.023 −=λ  ,9775.124 =λ  .3572.234 −=λ  
Therefore, matrices 3423 , ΠΠ  are not positive definite and the considered function 
is not a VLF for the system, in accordance with Theorem 4, for d = 0. The 
respective CM С is not a positive definite one, which means that according to 
Theorem 3 systems’ stability can not be verified via this CLF. 

A based on Theorem 5 solution is suggested. Since some matrix coefficients 
are positive definite, a simplified analysis procedure is applied, which investigates 
the positive definiteness of the following HMP  

Γ.∈∀Π≤
≤Π+Π+Π+Π+Π+Π+Π=Π

αα
ααααααααααα

)12(

34432442233244
2
433

2
322

2
211

2
1

)2,(
)2,(L  

If T
1 )000(αα ≡ , i.e., 11 =α , then the system is stable since .011 >Π  

Let 10 432 ≤++< ααα . Then the following matrix inequality holds: 

)12(

34432442233244
2
433

2
322

2
21

)2,()2,(
)2,(

αα
αααααααααα

Π≤Π≤
≤Π+Π+Π+Π+Π+Π=Π

L

L  

for Γ∈∀α , 10 432 ≤++< ααα . If the HMP of degree four 
)2,()()4,( 1

2
432 ααααα LΠ++=Π , 10 432 ≤++< ααα , 

is positive definite, then it follows that 0)2,( )12( >Π α Γ∈∀α , or, equivalently, the 
uncertain system is robustly stable via the considered CLF. The HMP )4,(αΠ is 
given by 
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+Π+Π+Π+Π+Π+Π+

+Π+Π+Π+Π+Π+Π=Π
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112
2
4321214

2
3221143

2
2 Π+Π+Π+ ααααααααα . 

All matrix coefficients, except for 022Π  and 031Π  are positive definite. Let 
4, =++ cbaabcλ , denotes the minimal eigenvalue of the matrix coefficient abcΠ . 

Then, the corresponding to the HMP ХМП )4,(αΠ  CM is computed as 
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C . 

Since the diagonal entry 022λ  is negative, the CM is not positive definite. The 
problem’s solution by means of Theorem 5 is described next.  

Let the selected vector be T
43 )()2( ααα = .The two possible cases are: 
,0)(:1 013

3
43

2
4

2
343 ≤Π−⇒≤= ααααααp  since 0013 >Π . 

This produces the following changes in the matrix coefficients of the HMP 
)4,(1 αΠ : 

0,2234.0,0 1,0131,0220130221,022 =Π=>Π+Π=Π λ . The construction of the 
CM 1C > 0 is done in accordance with the requirements of Theorem 5. 

,0))((:2 0310314
3
3

2
4

2
343 ≤−Π−⇒>= Ip λαααααα  because 0031031 ≥−Π Iλ . 

The new matrix coefficients of the HMP )4,(2 αΠ are: 
+Π=Π 0222,022 I031031 λ−Π ,  I0312,031 λ=Π . 

The CM 2C  is also a positive definite one. Therefore, according to Theorem 5 
the system is robustly stable and what’s more – the admissible parameter set has 
been significantly extended, in comparison with the one obtained in [1].  

Electric power system. A linearised model of a power system, comprised of k 
subsystems (generators) is considered  

∑
=

− ==+Δ−=Δ
N

j
jiijiijiii kiYYYR

1

1 ,...,,2,1,,δωω&  

kiii ...,,2,1, =Δ= ωδ& , 
where kii ...,,2,1, =δ , denote the deviation in the angle of the i-th rotor from the 
nominal value; ijY  is the transfer conductance  between subsystems i и j and  iiY  is 
the self conductance of the i-th subsystem. It is assumed that all coefficients in the 
2k differential equations do not vary in time. Denoting the vector  
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,)(,2,)......( 2TTTTT
2

T
1 RR ∈Δ==∈= iii

N
Ni xkNxxxxx δω  

the system’s dynamics description  can be put in a compact matrix form, where the 
state matrix has the following block  structure: 
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The power systems belong to the class of decentralized control systems. The 
most important practical problem is to answer the question whether the system 
retains its stability when some or all interconnections fail partially or completely. It 
is justified to use the model [16]: 

,...,,1),(diag.bl~],1,0[),1(5.0,)~~(
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(i) Let k = 2, n = 4, s = 1. For the typical values of the parameters 
,1,6.2,2.2,2,1,01.0 122211 =−=−=== YYYiRii  the three matrices are computed as 
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It is desired to find out if the system is robustly stable for all possible values of 
the uncertain parameter 1ε . The corresponding equivalent representation (11) is 
easily obtained, where 10201

~~,~ AAAAA +== . For analysis purposes a parameter 
dependent affine CLF is used, where 

.
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Matix 12Π  of the HMP )2,(αΠ  in (12) is not positive definite 
( 1218.0)( 12 −=Πnλ )); therefore, according to Theorem 4, the CLF is not a VLF for 
the system for d = 0. The single CM is computed as follows: 
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i.e., it is not positive definite and robust stability can not be verified by means of 
Theorem 3, as well. Consider the cases: 

a) 0)(,0)( 1141111
2
12121 ≥Π−Π=≤−⇒≥ IXX λααααα , which makes 

possible the determination of the coefficients of the HMP in (8)  for р = 1 as 
,809.0)(,,0,)( 1,124221,221121,121141,11 =ΠΠ=Π>+Π=ΠΠ=Π λλ XI  

or the considered CFL is a VLF for the system for 21 αα ≥∀ . 
b) 0)(,0)( 2242222

2
22121 ≥Π−Π=≤−⇒< IXX λααααα , which for  р = 2 

leads to 
,507.0)(),(,0, 2,1242242,222122,12112,11 =ΠΠ=Π>+Π=ΠΠ=Π λλX  

or the considered CLF is a VLF for 21 αα <∀ , as well. This guarantees the robust 
properties of the system for d = 0, in accordance with Theorem 5. 

(ii) Let k = 3, n = 6, s =3. In this case, the state matrix has the structure  
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and the following typical values have been assumed: 
.2.1,3.1,1,3.2,2.2,2.2;3,2,1,01.0 231312332211 ===−=−=−=== YYYYYYiRii  

The vertex matrices in (11) are computed from the equalities 
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Robust stability of the system is studied via an affine CLF.  
The HMP )2,(αΠ  in (12) has 36 matrix coefficients, two of which 

( 12Π and 13Π ) are not positive definite. According to Theorem 4, the system is not 
stable for d = 0. The single CM is 
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where D > 0 and the respective minimal eigenvalues are computed as follows:  
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According to Theorem 3, the system is not robustly stable, since 
001152.0)( 113 −=Cλ , i.e., the CM 0C  is not positive definite.  

Let T
21 )()2( ααα = be the chosen vector and consider the two possible cases: 

a) 0)(,0)( 1161111
2

12121 ≥Π−Π=≤−⇒≥ IXX λααααα , which naturally 
leads to  
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b) 0)(,0)( 2262222
2
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The two CMs in (10) can be chosen in accordance with Theorem 5 as 21 CC =  
and then  

,2,1,00264.0)(

,
00132.00000021.0

00047.00
000021.00616.0

,
0

0

,113

,11
,11

==

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=⎥

⎦

⎤
⎢
⎣

⎡
=

pC

C
D

C
C

p

p
p

p

λ

 

i.e., the considered CLF is a VLF for the robustly stable system. 

5. Comparative analysis of the experimental data 

Table 1 contains information, concerning the efficiency of the robust stability 
conditions, provided by Theorems 3, 4 and 5.  

Table 1. Stability conditions validity  

EXAMPLE n N Degree of 
CLF Theorem 3 Theorem 4 Theorem 5 

Overhead crane 4 2 3 not valid VLF (d= 5) VLF (d=0) 
Electromechanical system  6 4 1 not VLF VLF (d=6) VLF (d=0) 
Induction motor  4 4 1 not  VLF VLF (d=9)  VLF (d=2) 
Power system  4 2 1 not  VLF VLF (d=7) VLF (d=0) 
Power system  6 8 1 not  VLF VLF (d=5) VLF (d=0) 

In all considered cases Theorem 3 is either inapplicable, or system’s stability can 
not be verified via it. As far as Theorem 4 is regarded, one gathers the impression, 
that an obligatory increase in parameter d is required to solve the problem. It’s just 
this fact which defines the computational complexity of the conditions given by 
Theorems 4 and 5, e.g., for the analysis of the induction motor, Theorem 4 needs a 
value d = 6, in order to conclude it’s robust stability. This parameter value requires 
the solution of 4004 linear LMIs, and what’s more – the respective asymptotically 
exact condition requires all matrix coefficients to be positive definite. The 
requirements towards the computational procedure imposed by Theorem 4 are very 
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hard for the analysis of the electromechanical system (1980 LMIs) and the power 
system (1716 LMIs for case N = 8), as well. The number L of the LMIs needed to 
be solved, together with the number p of the involved matrix parameters are taken   
as quantitative measures of the computational procedure.  

Table 2. Computational complexity parameters 
Example Theorem 4 Theorem 5 
Overhead crane L = 92, p = 2  L = 7, p =  4 
Electromechanical system  L = 1980, p = 2 L =  17, p =  7 
Induction motor L = 4004, p = 4 L =  41, p =  6 
Power system L = 10, p =  2 L =  3, p  =  4 
Power system L = 1716, p =  8 L =  36, p  =  10 

It can be easily seen, that with an insignificant increase in the number of 
parameters p , a considerable reduction in the number L of LMIs is obtained.  The 

numbers 
5

4

L
LL =Δ > 1 and  

4

5

p
pp =Δ  > 1 are generalised indicative parameters for 

the computational complexity required by the respective asymptotically exact 
conditions of Theorems 4 and 5.  These numbers illustrate in a most convincing 
way the advantages of the new approach.  

Table 3. Computational complexity –  
comparative analysis 

Examples ΔL Δp 
Overhead crane 13.143 2.0 
Electromechanical system 116.5 3.5 
Induction motor 97.585 1.5 
Power system 3.333 2.0 
Power system 47.666 1.25 

These results clearly show that taking into account the inequalities between the 
entries of the uncertain parameter vector leads to a less conservative stability 
condition and hence, to a considerable decrease in the computational complexity, 
required by Theorem 5.  
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Appendix 

Overhead crane 
П30 =  
1.0e+002 * 
   0.00047018763952   0.00054336634955 –0.00028904891464 
0.00498306863875 
   0.00054336634955   0.02746078772649 –0.00604924571726 
0.25418115719357 
  –0.00028904891464  –0.00604924571726 2.77594243980907 
–0.00950269586388 
   0.00498306863875   0.25418115719357 –0.00950269586388 
2.56128912943461 
П03 = 
   0.07549530274587   0.06597226252721 –0.00724298891182 
0.49873188838639 
   0.06597226252721   0.96838137786520 –0.63049175685797 
7.32356279296653 
  –0.00724298891182  –0.63049175685797 81.24555889879822 
–1.01342205424938 
   0.49873188838639   7.32356279296653 –1.01342205424935 
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75.05602712689547 
 
П21 = 
  1.0e+002 * 
   0.00169532830650   0.00174645532438 –0.00065052771839 
0.01495345616137 
   0.00174645532438   0.06460538923164 –0.01840340900310 
0.58159794231680 
  –0.00065052771839  –0.01840340900310 6.36434046860613 
–0.02913961227026 
   0.01495345616137   0.58159794231680 –0.02913961227025 
5.87313853013817 
П12 = 
  1.0e+002 * 
   0.00198009369444   0.00186281160010 –0.00043390869287 
0.01495770640648 
   0.00186281160010   0.04682841528380 –0.01865908085442 
0.40065241305290 
  –0.00043390869287  –0.01865908085442 4.40085361778504 
–0.02977113694887 
   0.01495770640648   0.40065241305290 –0.02977113694887 
4.06240967197252 

Electromechanical system 
P1 = 
  158.5124  –32.4501   –2.8721   –0.1971   –3.0868 2.4999 
  –32.4501   26.8689  –17.0481    3.1861    1.8617 0.4062 
    –2.8721  –17.0481   17.5968   –2.5311   –0.8240 –0.3375 
    –0.1971    3.1861     –2.5311    3.0743    0.0425 –0.0816 
    –3.0868    1.8617     –0.8240    0.0425    0.5134 –0.0192 
     2.4999    0.4062     –0.3375   –0.0816   –0.0192 0.7974 
P2 = 
  157.2995  –35.2147   –0.3470   –0.1950   –3.0776 1.9766 
  –35.2147   25.4514  –15.0240    2.6351    1.8567 0.5768 
   –0.3470  –15.0240   15.1924    –1.9818   –0.8190 –0.3344 
   –0.1950     2.6351    –1.9818     3.0380   –0.0144 –0.0262 
   –3.0776     1.8567    –0.8190    –0.0144    0.5151 0.0004 
    1.9766      0.5768   –0.3344    –0.0262    0.0004 0.8336 
P3 = 
  211.5905  –32.1364   –3.8992   –0.0680   –3.2907 2.8563 
  –32.1364   24.3479  –16.8871    3.4275    1.6929 0.3585 
   –3.8992  –16.8871    17.4430   –2.8989   –0.8250 –0.3390 
   –0.0680    3.4275     –2.8989    4.3828     0.0592 –0.1104 
   –3.2907    1.6929     –0.8250    0.0592     0.5184 –0.0251 
    2.8563    0.3585     –0.3390   –0.1104    –0.0251 0.7844 
Р4 = 
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  208.8743  –35.3788   –0.6676   –0.0678   –3.2899 2.2286 
  –35.3788   22.9139  –14.9066    2.7662    1.6900 0.5054 
   –0.6676   –14.9066   15.0331   –2.2374   –0.8202 –0.3361 
   –0.0678      2.7662   –2.2374     4.3146   –0.0103 –0.0380 
   –3.2899      1.6900   –0.8202    –0.0103    0.5208 –0.0080 
    2.2286      0.5054   –0.3361    –0.0380   –0.0080 0.81 

Induction motor 
P1 = 
  27.26959318049108   0.49966425825233 –0.05236314612042 
0.00015810116375 
   0.49966425825233    0.02264577349778 –0.00168761549975 
0.00000501623009 
  –0.05236314612042  –0.00168761549975 83.45853436050456 
0.49997088632667 
   0.00015810116375    0.00000501623009 0.49997088632667 
0.00809942686912 
P2 = 
  1.0e+002 * 
   0.27271005742634   0.00499664244014 –0.00062509281117 
0.00000171049399 
   0.00499664244014   0.00020649854859 –0.00001826075651 
0.00000005770387 
  –0.00062509281117  –0.00001826075651 2.87834733289768 
0.00499984402924 
   0.00000171049399   0.00000005770387 0.00499984402924 
0.00005653806305 
P3 = 
  27.27546569323679   0.49966440890563 0.08218678077178 
0.00025553752961 
   0.49966440890563   0.02264259313052 –0.00272790341459 
0.00001058620793 
   0.08218678077179  –0.00272790341459 83.47142342809100 
0.49997089254736 
   0.00025553752961   0.00001058620793 0.49997089254736 
0.00636228463531 
P4 = 
  1.0e+002 * 
   0.27274046581253   0.00499664325110 0.00121164697933 
0.00000316317406 
   0.00499664325110   0.00020647900007 –0.00003377301268 
0.00000012566275 
   0.00121164697933  –0.00003377301268 2.87908039728336 
0.00499984400694 
   0.00000316317406   0.00000012566275 0.00499984400694 
0.00002428179723 


