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Abstract. The set of  controllers which make closed-loop quadratically stable can 
be implicitly parametrized by the solutions Q, Y of a system of Linear Matrix 
Inequalities (LMIs). The paper is concerned with obtaining linear perturbation 
bounds for the continuous and discrete-time LMI based quadratic stability problem, 
which are linear functions of the data perturbations. The sensitivity analysis of the 
perturbed matrix inequalities is considered in a similar manner as for perturbed 
matrix equations, after introducing a suitable right hand part, which is slightly 
perturbed. The proposed approach leads to tight linear perturbation bounds for the 
LMIs’ solutions to the quadratic stability problem. Numerical examples are also 
presented. 

Keywords: Perturbation analysis, quadratic stability problem, LMI based synthesis, 
Linear systems. 

1. Introduction 

In many control problems, the design constraints have a simple reformulation in 
terms of Linear Matrix Inequalities (LMIs). This is hardly surprising, given that 
LMIs are direct byproducts of Lyapunov based criteria, and that Lyapunov 
techniques play a central role in the analysis and control of linear systems, see 
[1, 2]. The analysis of the quadratic stability of a linear system is a good illustration 
of this point.  
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The effectiveness of LMI approach remains valuable for several reasons. To 
begin with it is applicable to all plants without restrictions on infinite or pure 
imaginary invariant zeros. In addition LMI based design is practical and interesting 
thanks to the availability of efficient convex optimization algorithms [3] and 
software [4] plus the MATLAB package Yalmip and SeDuMi solver [5]. 

In this paper we propose an approach to perform perturbation analysis of the 
LMI based quadratic stability problem via introducing a suitable right hand part in 
the considered matrix inequalities. The results obtained after realizing the 
perturbation analysis can be used in two directions. First it is possible to estimate 
the errors in the computed solution of the quadratic stability problem, which are due 
to rounding errors and parametric disturbances in the data. Second it is possible to 
investigate the robust stability and robust performance of the closed loop system 
with uncertainty in the plant and in the controller. The uncertainty in the controller 
appears due to sensitivity of the quadratic stability problem.  

We use the following notations: Rm×n – the space of real m×n matrices;  
Rn = Rn×1; In – the identity n×n matrix; en – the unit n×1 vector; MT – the transpose 
of M;  M+ – the pseudo inverse of M; ||M||2=σmax(M) – the spectral norm of M, 
where σmax(M) is the maximum singular value of M; vec(M) ∈ Rm×n – the column-
wise vector representation of M ∈ Rm×n; ∏m,n ∈ Rmn×mn – the vec-permutation matrix, 
such that vec(MT) = ∏m,n vec(M); M⊗P – the Kroneker product of the matrices M 
and P. The notation “:=” stands for “equal by definition”. 

The remainder of the paper is organized as follows. In Section 2 we shortly 
present the problem set up and objective. Section 3 describes the performed linear 
sensitivity analysis of the LMI-based continuous and discrete-time quadratic 
stability problem. Section 4 presents some numerical examples before we conclude 
in Section 5 with some final remarks. 

2. Problem setup and objective 

Consider the linear continuous-time system 

(1) x& (t) = Ax(t) + Bu(t),  

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rr, are the system state, input and output 
vectors respectively, and A, B are constant matrices of compatible size. It is 
necessary to find a state-feedback matrix K such that system (1) should be stable. 
The control input is chosen as u=Kx then the closed loop system is obtained 

x& (t) = (A + BK)x(t). 

To make the Linear Time-Invariant (LTI) system stable it is necessary to use a 
quadratic Lyapunov function 

V(x) = xTPx, P > 0, P= PT, 

such that 
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In order to ensure quadratic stability of the system (1) the following system of 
inequalities has to be solved 

(A + BK)TP + P(A + BK) < 0, P > 0.  

The system of inequalities is nonlinear with respect to the unknowns P and K 
that is why we perform linearizing change of variables 

Q = P–1 ⇒ P = Q–1, Y = KP–1 = KQ ⇒ K = YQ–1,  

to obtain 

ATP + KTBTP + PA + PBK < 0, 

ATQ–1 + Q–1YTBTQ–1 + Q–1A + Q–1BYQ–1 < 0. 

Finally we multiply on left and right the last inequality with Q to obtain a 
system of LMIs with respect to Q and Y  

(2) AQ + QAT + YTBT + BY < 0, Q > 0.  

Then we consider the linear discrete-time system 
(3) xk+1 = Axk + Buk,  
Where xk ∈ Rn, uk ∈ Rm, and yk ∈ Rr are the system state, input and output vectors 
respectively, and A, B are constant matrices of compatible size. It is necessary to 
find a state-feedback matrix K such that system (3) should be stable. The control 
input is chosen as uk=Kxk then the closed loop system is obtained 

xk+1 = (A+ BK)xk. 

To make the LTI system stable it is necessary to use a quadratic Lyapunov 
function 

V(xk+1) = xk
TPxk, P > 0, P = PT, 

such that 

V(xk+1) – V(xk) = xk+1
TPxk + xk

TPxk = xk
T[(A+ BK)TP(A+ BK) – P]xk < 0. 

In order to ensure quadratic stability of the system (3) the following system of 
inequalities has to be solved 

(A + BK)TP(A+ BK) – P < 0, P > 0. 

The system of inequalities is nonlinear with respect to the unknowns P and K 
that is why we perform linearizing change of variables 

Q = P–1 ⇒ P = Q–1, Y = KP–1 = KQ ⇒ K = YQ–1,  

to obtain 

(A + BK)TQ–1(A+ BK) – Q–1 < 0.  
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Then we multiply on left and right with Q to obtain a system of inequalities, 
which are not LMIs:  

(AQ + BY)TQ–1(AQ+ BY) – Q < 0, Q > 0.  

Finally we use Schur complement argument [6] to obtain a system of LMIs 
with respect to the variables Q and Y 

(4) .0,0
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The main objective of the paper is to perform a linear sensitivity analysis of 
the LMI systems (2) and (13), needed to solve the continuous and discrete-time 
quadratic stability problems. 

Suppose that the matrices A, B are subject to perturbations ΔA, ΔB and assume 
that they do not change the sign of the LMI systems (2) and (4). The sensitivity 
analysis of the continuous and discrete-time LMI based quadratic stability problem 
is aimed at determining perturbation bounds of the LMIs (2) and (4) as functions of 
the perturbations in the data A, B. 

3. Linear sensitivity analysis 

First we perform sensitivity analysis of the LMI (2) for the continuous-time  
system (1):  
(5) (A + ΔA)(Q + ΔQ) + (Q + ΔQ)(A + ΔA)T +  

+ (B + ΔB)(Y + ΔY) + (Y + ΔY)T(B + ΔB)T <0, 

and to study the effect of the perturbations ,A BΔ Δ  and YΔ on the perturbed LMI 
solution Q*+ΔQ, where Q* and ΔQ are the nominal solution of LMI (2) and the 
perturbation. The essence of our approach is to perform sensitivity analysis of the 
LMI (2) in a similar manner as for a proper matrix equation after introducing a 
suitable right hand part, which is slightly perturbed. Thus for the expression (5) we 
have 

(6) 
,0)()())((

))(())((
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*TT**
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<Δ+=Δ+Δ++Δ+Δ++
+Δ+Δ++Δ+Δ+
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where M* is obtained using the nominal LMI  

(7) .00 *TT**T** <=<+++ MBYBYAQAQ   

The matrix ΔM1 is due to the data and closed-loop performance perturbations, the 
rounding errors and the sensitivity of the interior point method that is used to solve 
the LMIs. 

Using the relation (7) the perturbed equation (6) may be written as 

(8) ΔQ + ΩQ = ΔM1,  
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where  

ΔQ = A ΔQ + ΔQAT  and  ΩQ = ΔAQ* + Q*ΔAT + B ΔY + ΔYTBT  + ΔBY* + Y*T ΔBT.  

Here the terms of second and higher order are neglected. The relation (8) may 
be written in a vector form as 

vec(ΔQ) + vec(ΩQ) = vec(ΔM1),  
where 

vec(ΔQ) = [I ⊗ A + A ⊗ I] vec(ΔQ): = TΔq, 

here the Lyapunov operator T is invertible for stable matrix A, 
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Further we obtain the expression 

TΔq + Tt1 vec(ΔA) + Tt2 vec(ΔY) + Tt3 vec(ΔB) = vec(ΔM1). 

Finally the relative perturbation bound for the solution Q* of the LMI (2) has 
the form 
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may be considered as individual relative condition numbers of the LMI (2) with 
respect to the perturbations ΔA, ΔB and ΔY. 

In a similar way the relative perturbation bounds for the solution Y* of the LMI 
(2) may be obtained using the following expression 

(10) ΔY + ΩY = ΔM2,  

where  

ΔY = BΔY + ΔYTBT, and  

ΩY  = AΔQ + ΔQAT + ΔAQ* + Q*ΔAT + ΔBY* + Y*TΔBT. 

Here the terms of second and higher order are neglected. The relation (10) may 
be written in a vector form as 
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vec(ΔY) + vec(ΩY) = vec(ΔM2),  
where 

vec(ΔY) = [I ⊗ B + (B ⊗ I)Πn×m]vec(ΔY):= WΔy, 
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Further we obtain the expression 

WΔy + Wt1vec(ΔA) + Wt2vec(ΔQ) + Wt3vec(ΔB) = vec(ΔM2).  

Finally the relative perturbation bound for the solution Y* of the LMI (2) has 
the form 

(11) 
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may be considered as individual relative condition numbers of the LMI (2) with 
respect to the perturbations ΔA, ΔB and ΔQ. 

Then we perform sensitivity analysis of the LMI (4) for the discrete-time 
system (3): 

(12) ,
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ΔBBΔYYΔAAΔQQΔQQ
0
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and to study the effect of the perturbations ΔA, ΔB and ΔY on the perturbed LMI 
solution Q* + ΔQ, where Q* and ΔQ are the nominal solution of LMI (4) and the 
perturbation. The essence of our approach is to perform sensitivity analysis of the 
LMI (4) in a similar manner as for a proper matrix equation after introducing a 
suitable right hand part, which is slightly perturbed. Thus for the expression (12) we 
have 
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where N* is obtained using the nominal LMI  
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The matrix ΔN1 is due to the data and closed-loop performance perturbations, 
the rounding errors and the sensitivity of the interior point method that is used to 
solve the LMIs. 

Using the relation (14) the perturbed equation (13) may be written as 

(15) ΔQ + ΩQ = ΔN1,  
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Here the terms of second and higher order are neglected. The relation (15) may 
be written in a vector form as 

vec(ΔQ) + vec(ΩQ) = vec(ΔN1),  
where 
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Further we obtain the expression 

VΔq + Vt1vec(ΔA) + Vt2vec(ΔY) + Vt3vec(ΔB) = vec(ΔN1). 

Finally the relative perturbation bound for the solution Q* of the LMI (4) has 
the form 
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may be considered as individual relative condition numbers of the LMI (4) with 
respect to the perturbations ΔA, ΔB, and ΔY. 

In a similar way the relative perturbation bounds for the solution Y* of the LMI 
(4) may be obtained using the following expression 

(17) ΔY + ΩY = ΔN2,  
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Here the terms of second and higher order are neglected. The relation (17) may 
be written in a vector form as 
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Further we obtain the expression 

UΔy + Ut1vec(ΔA) + Ut2vec(ΔQ) + Ut3vec(ΔB) = vec(ΔN2). 

Finally the relative perturbation bound for the solution Y* of the LMI (4) has 
the form 
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may be considered as individual relative condition numbers of the LMI (4) with 
respect to the perturbations ΔA, ΔB, and ΔQ. 

4. Numerical examples 

Consider the continuous-time system (1), where  
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and m = 3,  c = 1,  k = 2,  pm = 0.4,  pc = 0.2,  pk = 0.3.  

The perturbations in the system matrices of the continuous-time system are 
chosen as 

ΔA = A × 10–i, ΔB = B × 10–i, ΔC = C × 10–i, ΔD = D × 10–i, 

ΔM1 = M* × 10–i, ΔM2 = M* × 10–i, ΔQ* = Q* × 10–i, ΔY = Y* × 10–i. 

The perturbed solutions Q* + ΔQ and Y* + ΔY are computed based on the 
method derived in [7] and using the software [4]. The relative perturbation bounds 
for the solutions Q* and Y* of the LMIs (2) are obtained by the linear bounds (9) and 
(11), respectively.  

The results obtained for different values of i are shown in the Table 1. 
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Table 1 

i 
2

*
2

||)(vec||

||||

Q

qΔ  Bound (9) 
2

*
2

||)(vec||
||||

Y
yΔ  Bound (11) 

8 7.9616×10-8 3.0119×10-7 2.9520×10-8 5.2288×10-8 

7 7.9616×10-7 3.0119×10-6 2.9520×10-7 5.2288×10-7 

6 7.9616×10-6 3.0119×10-5 2.9520×10-6 5.2288×10-6 

5 7.9616×10-5 3.0119×10-4 2.9520×10-5 5.2288×10-5 

4 7.9616×10-4 3.0119×10-3 2.9520×10-4 5.2288×10-4 

The obtained perturbation bounds (9) and (11), based on the presented solution 
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01.01

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −−−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −−

=

−−−
=⎥

⎦

⎤
⎢
⎣

⎡
−

=

DC

BA

 

The perturbations in the system matrices of the discrete-time system are chosen as 
ΔA = A × 10–i, ΔB = B × 10–i, ΔC = C × 10–i, ΔD = D × 10–I, 

ΔQ* = Q* × 10–i, ΔY = Y* × 10–i. 
The perturbed solutions Q* + ΔQ and Y* + ΔY are computed based on the 

method derived in [7] and using the software [4]. The relative perturbation bounds 
for the solutions Q* and Y* of the LMIs (4) are obtained by the linear bounds (16) 
and (18), respectively.  

The results obtained for different values of i  are shown in the Table 2. 
Table 2 

i 
2

*
2

||)(vec||
||||

Q
qΔ  Bound (16) 

2
*

2

||)(vec||
||||

Y
yΔ  Bound (18) 

8 1.6960×10-8 3.5967×10-8 1.0338×10-8 5.0296×10-8 

7 1.6960×10-7 3.5967×10-7 1.0338×10-7 5.0296×10-7 

6 1.6960×10-6 3.5967×10-6 1.0338×10-6 5.0296×10-6 

5 1.6960×10-5 3.5967×10-5 1.0338×10-5 5.0296×10-5 

4 1.6960×10-4 3.5967×10-4 1.0338×10-4 5.0296×10-4 
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The obtained perturbation bounds (16) and (18), based on the presented 

solution approach, are close to the real relative perturbation bounds
2

*
2

||)(vec||
||||

Q
qΔ  

and 
2

*
2

||)(vec||
||||

Y
yΔ , thus they are good in sense that they are tight. 

5. Conclusion 

The linear sensitivity analysis of the continuous and discrete-time LMI based 
quadratic stability problem has been studied. Tight perturbation bounds, which are 
linear functions of the data perturbations, have been obtained for the matrix 
inequalities determining the problem solution. Based on these results we have 
presented numerical examples to explicitly reveal the performance and applicability 
of the proposed approach to analyze the sensitivity of the LMI based quadratic 
stability problem. 
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