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Abstract. The set of controllers which make closed-loop quadratically stable can
be implicitly parametrized by the solutions Q, Y of a system of Linear Matrix
Inequalities (LMls). The paper is concerned with obtaining linear perturbation
bounds for the continuous and discrete-time LMI based quadratic stability problem,
which are linear functions of the data perturbations. The sensitivity analysis of the
perturbed matrix inequalities is considered in a similar manner as for perturbed
matrix equations, after introducing a suitable right hand part, which is slightly
perturbed. The proposed approach leads to tight linear perturbation bounds for the
LMIs’ solutions to the quadratic stability problem. Numerical examples are also
presented.
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1. Introduction

In many control problems, the design constraints have a simple reformulation in
terms of Linear Matrix Inequalities (LMIs). This is hardly surprising, given that
LMIs are direct byproducts of Lyapunov based criteria, and that Lyapunov
techniques play a central role in the analysis and control of linear systems, see
[1,2]. The analysis of the quadratic stability of a linear system is a good illustration
of this point.



The effectiveness of LMI approach remains valuable for several reasons. To
begin with it is applicable to all plants without restrictions on infinite or pure
imaginary invariant zeros. In addition LMI based design is practical and interesting
thanks to the availability of efficient convex optimization algorithms [3] and
software [4] plus the MATLAB package Yalmip and SeDuMi solver [5].

In this paper we propose an approach to perform perturbation analysis of the
LMI based quadratic stability problem via introducing a suitable right hand part in
the considered matrix inequalities. The results obtained after realizing the
perturbation analysis can be used in two directions. First it is possible to estimate
the errors in the computed solution of the quadratic stability problem, which are due
to rounding errors and parametric disturbances in the data. Second it is possible to
investigate the robust stability and robust performance of the closed loop system
with uncertainty in the plant and in the controller. The uncertainty in the controller
appears due to sensitivity of the quadratic stability problem.

We use the following notations: R™" — the space of real mxn matrices;
R" = R™:; I, — the identity nxn matrix; e, — the unit nx1 vector; M" — the transpose
of M; M — the pseudo inverse of M; ||M|;=cm«(M) — the spectral norm of M,
where omax(M) is the maximum singular value of AM; vec(M) € R™™" — the column-
wise vector representation of M € R"™; [1,,, € ™" — the vec-permutation matrix,
such that vec(M") = [1,,, vec(M); M®P — the Kroneker product of the matrices M
and P. The notation “:=" stands for “equal by definition”.

The remainder of the paper is organized as follows. In Section 2 we shortly
present the problem set up and objective. Section 3 describes the performed linear
sensitivity analysis of the LMI-based continuous and discrete-time quadratic
stability problem. Section 4 presents some numerical examples before we conclude
in Section 5 with some final remarks.

2. Problem setup and objective

Consider the linear continuous-time system
(1) x () = Ax(f) + Bu(),

where x(f) € R", u(f) € R", and y(f) € R’, are the system state, input and output
vectors respectively, and 4, B are constant matrices of compatible size. It is
necessary to find a state-feedback matrix K such that system (1) should be stable.
The control input is chosen as u=Kx then the closed loop system is obtained

() = (4 + BK)x(0).

To make the Linear Time-Invariant (LTI) system stable it is necessary to use a
quadratic Lyapunov function

V(x) =x"Px, P>0, P= P",
such that



%V(x) =x"Px+x"Px=x"[(A+ BK)"P+ P(A+ BK)]x <0.
In order to ensure quadratic stability of the system (1) the following system of
inequalities has to be solved
(4+BK)'"P+ P(4+BK)<0,P>0.

The system of inequalities is nonlinear with respect to the unknowns P and K
that is why we perform linearizing change of variables

Q0=P'=P=Q Y=KP'=KQ=K=Y0",
to obtain
A"P+K'B'P+ P4+ PBK<0,
ATQ—l + Q—1YTBTQ—1 + 0+ Q—lBYQ—l <0

Finally we multiply on left and right the last inequality with Q to obtain a
system of LMIs with respectto Q and Y

(2) AQ+ QA"+ Y'B"+BY <0, 0>0.
Then we consider the linear discrete-time system
3) X1 = Axy + Buy,

Where x; € R", u, € R", and y; € R" are the system state, input and output vectors
respectively, and 4, B are constant matrices of compatible size. It is necessary to
find a state-feedback matrix K such that system (3) should be stable. The control
input is chosen as u;,=Kx; then the closed loop system is obtained

X+l = (A+ BK)xk.

To make the LTI system stable it is necessary to use a quadratic Lyapunov
function

V(xe1) = x¢ Px;, P>0, P =P,
such that
V(xis1) = V(x0) = Xs1 Pxi + x5 Pxy = xi' [(A+ BK)"P(A+ BK) — Plx; < 0.

In order to ensure quadratic stability of the system (3) the following system of
inequalities has to be solved

(4 + BK)"P(4+ BK) -P<0,P>0.

The system of inequalities is nonlinear with respect to the unknowns P and K
that is why we perform linearizing change of variables

Q=P'=P=Q' Y=KP'=KQ=K=Y0",
to obtain

(4 + BK)'Q'(4+ BK) - 0 < 0.



Then we multiply on left and right with O to obtain a system of inequalities,
which are not LMIs:

(40 + BY)'0(40+ BY) -0 <0, 0 >0.

Finally we use Schur complement argument [6] to obtain a system of LMIs
with respect to the variables Q and Y

{ -0 (A0 + BY)"

) AQ+BY )

} <0, ¢>0.

The main objective of the paper is to perform a linear sensitivity analysis of
the LMI systems (2) and (13), needed to solve the continuous and discrete-time
quadratic stability problems.

Suppose that the matrices 4, B are subject to perturbations A4, AB and assume
that they do not change the sign of the LMI systems (2) and (4). The sensitivity
analysis of the continuous and discrete-time LMI based quadratic stability problem
is aimed at determining perturbation bounds of the LMIs (2) and (4) as functions of
the perturbations in the data 4, B.

3. Linear sensitivity analysis

First we perform sensitivity analysis of the LMI (2) for the continuous-time
system (1):
() (4 +A4)(Q + AQ) + (O + AQ)(A + A4)T +

+ (B + AB)(Y + AY) + (Y + AY)'(B + AB)" <0,

and to study the effect of the perturbations A4,AB and AY on the perturbed LMI

solution O"+AQ, where O and AQ are the nominal solution of LMI (2) and the
perturbation. The essence of our approach is to perform sensitivity analysis of the
LMI (2) in a similar manner as for a proper matrix equation after introducing a
suitable right hand part, which is slightly perturbed. Thus for the expression (5) we

have

(6) (A+A4)(Q +A0)+(O" +A0)(A4+A4)" +
+(B+AB)(Y +AY)+ (Y +AY) (B+AB) =M "+ AM, <0,

where M’ is obtained using the nominal LMI

(7) AQ +Q A" +BY +Y 'B"<0=M" <0.

The matrix AM; is due to the data and closed-loop performance perturbations, the
rounding errors and the sensitivity of the interior point method that is used to solve
the LMls.

Using the relation (7) the perturbed equation (6) may be written as

(8) AQ+ QQ: AMl,



where
Ap=AAQ+AQA" and Qp=AAQ + Q' AA"+ BAY+AY'B" + ABY +Y ' AB".

Here the terms of second and higher order are neglected. The relation (8) may
be written in a vector form as
vec(Ap) + vec(Qp) = vec(AM,),
where
vec(Ap) = [/ ® 4 + 4 ® 1] vec(Ap): = TAq,

here the Lyapunov operator T is invertible for stable matrix 4,
vec(Q,) =[(Q'® N+ @O ,, {®B)+(B®NII,,,
vec(AA)
Y ®N+(I®YT) ] vec(AY) [=[T,, T,
vec(AB)

27 ZS]AAYB = ]—:AAYB'

Further we obtain the expression
TAq + Ty vec(AA) + T vec(AY) + Tigvec(AB) = vec(AM,).

Finally the relative perturbation bound for the solution Q" of the LMI (2) has
the form

lagll 1 ( | vec(Aq) I, ||vec<AY)||zj+
@ Ivee@)ll livec @)l U el flvee( )l
N (nmnvec(AB)nz+M1||vec(M{1)||z}
vee(@)IL " lvec(®)l, ~ llvec(m ),
where
Tow  _NTCLNTLIVEC ], Toee T ILIT [l vee(r) I,
| vee(Q) I, | vee(Q) . I vee(Q") I, | vee(Q) I,
T T LIT LI VecB) ), M, [T L]l vee(d )]
Il vec(Q) | vee(Q) I, Ilvec(@)l. ~ llvec(Q)l,

may be considered as individual relative condition numbers of the LMI (2) with
respect to the perturbations A4, AB and AY.

In a similar way the relative perturbation bounds for the solution ¥ of the LMI
(2) may be obtained using the following expression

(10) Ay + Qy = AM,,
where
Ay=BAY + AY'B', and
Qy =AAQ + AQA" + AAQ"+ Q'AA" + ABY + Y TAB".

Here the terms of second and higher order are neglected. The relation (10) may
be written in a vector form as
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vec(Ay) + vec(Qy) = vec(AM,),
where
vec(Ay) = [ ® B + (B ® DI, ]vec(AY):= WAy,

vec(Q,) =[(Q" ® )+ ®QII ,,
vec(AA)

*T

([ ®A)+(A®1),(Y ®I)+..]| vec(AQ) | =W, W2 Ws]A yop = WA 405
vec(AB)
Further we obtain the expression
WAy + Wyvec(AA) + Wvec(AQ) + Wisvec(AB) = vec(AM,).

Finally the relative perturbation bound for the solution Y of the LMI (2) has
the form

vl 1 [WAQM”V“(M)”Z+WAQBZ”V9C(A?)”ZJ+
| vee(r") Il ~ Il vee(r")li; | vee(A)1 | vec(@") I,

(11)
1 || vec(AB) || || vec(AM,) ||
+—*(WAQB3 2+M2 27112
| vec(Y ) |I, || vec(B) I, || vec(M ) I,
where
Wis — _IW I, LN vec(4) Il, Wisse I 1L, LIl vec(@Q) I,
[l vec(Y") |, [l vec(Y") |, [l vec(Y") |, [ vec(Y") |,
Wiss — _ W LI, LIl vec(B) I, M, W LIl vec( )|,
[l vec(Y") ||, [l vec(Y") ||, | vec(Y") ||, || vec(Y") |,

may be considered as individual relative condition numbers of the LMI (2) with
respect to the perturbations A4, AB and AQ.

Then we perform sensitivity analysis of the LMI (4) for the discrete-time
system (3):

(12) —(0+40) (O+A40)(A+4A)" + (Y +A4Y) (B + 4B)' <0
(A+44)(Q+40) + (B+ AB)(Y + 4Y) —(Q+40) '

and to study the effect of the perturbations A4, AB and AY on the perturbed LMI
solution Q" + AQ, where Q" and AQ are the nominal solution of LMI (4) and the
perturbation. The essence of our approach is to perform sensitivity analysis of the
LMI (4) in a similar manner as for a proper matrix equation after introducing a
suitable right hand part, which is slightly perturbed. Thus for the expression (12) we
have

(0 +40 (Q*+AQ(A+AA)T+(Y+AY)T(B+AB)T}

(13) {(A+AA)(Q*+AQ)+(B+AB)(Y* +4Y) —(OQ +40)
=N +AN, <0,



where N is obtained using the nominal LMI

(14) { R R )
AQ +BY -0

The matrix AN; is due to the data and closed-loop performance perturbations,
the rounding errors and the sensitivity of the interior point method that is used to
solve the LMls.

Using the relation (14) the perturbed equation (13) may be written as

(15) Ag +Qp = ANy,
where
A .{—AQ AQAT}
27 ANO -AQ |
o _z{ 0 Q*AAT+AYTBT+Y*TABT}
®" | AAQ" + BAY + ABY’ 0 '

Here the terms of second and higher order are neglected. The relation (15) may
be written in a vector form as

vec(Ap) + vec(Qp) = vec(AN,),

where
-1
vec(Ap) = A©1 vec(AQ) = VA
27 1®4 TR
-1
0 0
(I®O)HI, (BN (I®Y I vec(ad)
vec(Q,) = ; ” . " | vec(AY) | =
0®I I®B Y'®I
vec(AB)
0 0 0

= [I//l’ I//2’ I//3]AAYB : I//AAYI:"
Further we obtain the expression
VAq + Viavec(AA) + Vipvec(AY) + Vigvec(AB) = vec(AN).

Finally the relative perturbation bound for the solution Q" of the LMI (4) has
the form

| Aqll, 1 || vec(A4) |l || vec(AY) |l
< * Vaive +V 4vp2 - +
| vec(Q)Il, Ilvec(Q)ll, || vec(4) I, | vec(Y ) |l,

L1 (anvec(w)nz+ Nlnvec(AJg)MZJ
llvec(@)ll, | " llvec(®)ll, " llvec(¥)

(16)




where

Vaver — 17 1ol Vg Il vee(A) Il Vavsa o 1V 1111V, L1l vee(Y ) Il
Il vec(@) l» || vec(Q) Il || vec(Q) Il I vec(@) l»
Vass IV Ll Via IlIl vec(B) Il Ny 17 ol ves(N) [l
I vec(Q ) I, || vec(Q) Il || vec(Q) Il | vec(Q) Il

may be considered as individual relative condition numbers of the LMI (4) with
respect to the perturbations A4, AB, and AY.

In a similar way the relative perturbation bounds for the solution Y* of the LMI
(4) may be obtained using the following expression

(17) Ay+ Qyz ANz,
where
0 AY'BT
A, = ,
BAY 0
O - —-AQ AQA" +Q'AA™ + Y AB"
" | AAO+ AAO" + ABY" —AQ '

Here the terms of second and higher order are neglected. The relation (17) may
be written in a vector form as

vec(Ay) + vec(Qy) = vec(AN,),

where
0
(B® NII
vec(Ay) = " 1vec(AY) := UAy,
(Ay) 1B (AY) Y
0
0 —1
(IQO)I, A®I (IQY )II vec(Ad)
vec(Q,) = S . " || vec(AQ) |=
O®I I®A Y ®I
vec(AB)
0 —1
= [Ull’ Uzz’ U[3]AAQB = U[AAQB'

Further we obtain the expression
UAy + Ugvec(AA) + Upvec(AQ) + Ugvec(AB) = Vec(ANy).

Finally the relative perturbation bound for the solution Y of the LMI (4) has
the form
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lavll, 1 (UAQMHVEC(AA)”z+UAQ32”VGC<AQ>”2]+
I veer)ll, ~ Il vee(r")Ii; | vec(4)ll; | vee(@) .

(18)
|| vec(AB) || || vec(AN,) ||
+(UAYB3 2+ N, 2z
|| vec(B) ||, || vec(N ) ||,
where
U  _NIUILIU, 1L vec(4) I, Use  _IUILINU,, LI vec(@) I,
| vec(Y") Il [l vec(Y") Il [l vec(Y") Il | vec(Y") Il
Ue UL LI vec(B) I, N, U LI vec(N) I,
[l vec(Y") Il [l vec(Y") Il | vec(Y") Il | vec(Y") Il

may be considered as individual relative condition numbers of the LMI (4) with
respect to the perturbations A4, AB, and AQ.

4. Numerical examples

Consider the continuous-time system (1), where

e 0 1 ] B 0 0 0 0
__—k/m —c/m_’ l=pm —pclm —pklm 1m|
[—klm —clm] —pm —pclm —pklm 1lm
0 c 0 0 0 0
C: , D:
k 0 0 0 0 0
1 0 | 0 0 0 0

andm=3, c=1, k=2, pm=0.4, pc=0.2, pk=0.3.

The perturbations in the system matrices of the continuous-time system are
chosen as

AA=A%x10",AB=Bx 10", AC=Cx 10", AD=D x 107,
AMy =M x 107, AM, =M x 107, AQ" = Q" x 107, AY =Y x 10™.

The perturbed solutions Q" + AQ and ¥ + AY are computed based on the
method derived in [7] and using the software [4]. The relative perturbation bounds
for the solutions Q" and ¥ of the LMIs (2) are obtained by the linear bounds (9) and
(11), respectively.

The results obtained for different values of i are shown in the Table 1.
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Table 1

llAgll, | Ayl
j P — Bound (9 N Bound (11
! Ivec(@") I, und (9) vee™™) I, und (11)
8 7.9616x10° 3.0119x10”7 2.9520x1078 5.2288x10°
7 7.9616x107 3.0119x10°® 2.9520x107 5.2288x107
6 7.9616x10® 3.0119x10° 2.9520x10°® 5.2288x10°®
5 7.9616x10° 3.0119x10™ 2.9520x10° 5.2288x10°
4 7.9616x10* 3.0119x10° 2.9520x10™ 5.2288x10*

The obtained perturbation bounds (9) and (11), based on the presented solution

approach, are close to the real relative perturbation bounds M
Il vec(Q) Il
M , thus they are good in sense that they are tight.
[l vee(Y) Il
Consider the discrete-time system (3), where
e 1 0.01 B 0 0 0
- | —0.0067 0.9966 | |-0.004 -0.0007 -0.001 0.0033'
[-0.6667 —0.333 -0.4 -0.0667 -0.1 0.333
0 1 0 0 0
C= , D=
2 0 0 0 0
1 0 0 0 0

The perturbations in the system matrices of the discrete-time system are chosen as
A4=A4x10",AB=Bx 10", AC=Cx 10", AD =D x 107,
AQ =0 x107, AY=Y x 10

The perturbed solutions QO + AQ and Y" + AY are computed based on the
method derived in [7] and using the software [4]. The relative perturbation bounds
for the solutions Q" and Y" of the LMIs (4) are obtained by the linear bounds (16)
and (18), respectively.

The results obtained for different values of ; are shown in the Table 2.

Table 2
A
i 7” V!;A(qgllz) b Bound (16) —” v!c(i/lli b Bound (18)
8 1.6960x10® 3.5967x10°® 1.0338x10® 5.0296x10°®
7 1.6960x10°" 3.5967x107 1.0338x10°” 5.0296x107
6 1.6960x10°® 3.5967x10° 1.0338x10°® 5.0296x10°
5 1.6960x10° 3.5967x10° 1.0338x10° 5.0296x10°
4 1.6960x10™ 3.5967x10™ 1.0338x10™ 5.0296x10™
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The obtained perturbation bounds (16) and (18), based on the presented

solution approach, are close to the real relative perturbation boundsw
[ vec(Q) Il
d M , thus they are good in sense that they are tight.
[ vee(Y") I,
5. Conclusion

The linear sensitivity analysis of the continuous and discrete-time LMI based
quadratic stability problem has been studied. Tight perturbation bounds, which are
linear functions of the data perturbations, have been obtained for the matrix
inequalities determining the problem solution. Based on these results we have
presented numerical examples to explicitly reveal the performance and applicability
of the proposed approach to analyze the sensitivity of the LMI based quadratic
stability problem.
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