
 49

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 10, No 1

Sofia • 2010

Open Access to Call and Session Control in Mobile Networks

Evelina Pencheva, Ivaylo Atanasov
Technical University of Sofia, 1794 Sofia
E-mails: enp@tu-sofia.bg iia@tu-sofia.bg

Abstract: The paper presents a study on implementation aspects of a server,
providing application programming interfaces to functions for call control and data
session control in mobile networks. The value-added service logic in mobile
networks is provided on Customized Application for Mobile services Enhanced
Logic (CAMEL) platform. We suggest an approach to modeling the server behavior
that supports Open Service Access (OSA) interfaces of and “talks” CAMEL
Application Part (CAP) protocol toward the network. The approach is presented in
a formal way as labeled transition system which corresponds to the model
representing the application view on the behavior of call and data session objects.
It is proved by bisimulation relation between the labeled transition systems that the
suggested call state model and data session state model for the control protocol
expose equivalent behavior compared with those of the standardized call and data
session state models as seen by OSA applications.

Keywords: Open service access, call control, data session control, labeled
transition systems, behavioral equivalence.

I. Introduction

Open Service Access (OSA) is an open interface that allows third party applications
to invoke communication functions in a public network. Network functions
accessed by applications are called Service Capability Features (SCF) [1].
Application programming interfaces are defined for each OSA SCF exposed toward
the applications. The OSA Generic Call Control SCF provides functions for simple
call control which allows to setup traditional two-party calls [2]. The OSA Data

 50

Session Control SCF allows setting up, releasing, and managing packet data
sessions [3].

The SCF interface toward the network is independent of the application logic,
i.e., the sequence of method invocation and responses is network independent. This
interface independence is one of the problems in deploying OSA in convergent
networks. There are no standards for the SCF interfaces toward the network, which
can be based on Session Initiation Protocol (SIP), Customized Application for
Mobile services Enhanced Logic Application Part (CAP), Intelligent Network
Application Part (INAP), Megaco, etc. The network element that provides OSA
interfaces toward applications and control protocols toward the network is called
Service Capability Server (SCS). It is considered as a special type of application
server. The OSA SCS deployed in mobile networks must support CAP protocol and
has to realize session state models that correspond both to the application view and
control protocol. Fig.1 shows the deployment of OSA SCS in CAMEL network.

For each call a Basic Call State Model (BCSM) at the Mobile services
Switching Center (MSC) is triggered [4]. The OSA SCS needs to maintain a call
state model that corresponds to the OSA application view of the call object. While
the BCSM and model, representing the application view on call states, are
standardized, there are no recommendations for the call state model in the OSA
SCS which is regarded to be an implementation issue.

The packet session state is monitored at the Serving GPRS Support Node
(SGSN). The OSA SCS has to maintain a session state model that corresponds to
both the packet session state at the SGSN and application view on data session
object. Instead of standardizing the behavior of OSA SCS, the Third Generation
Partnership Project (3GPP) provides only mapping of OSA Data Session Control
interfaces onto CAP protocol [5]. A mapping of OSA Generic Call Control
interfaces onto CAP protocol is also available [6].

Some publications [7, 8], concerning OSA SCS implementation, focus on
aspects related to the application programming interfaces, while other authors [9,
10] discuss evaluation of conformance of the basic call and session control
mechanisms in the network out of the application context.

Our research aims to suggest an approach to modeling call and data session
states in an OSA SCS. The call and data session state models have to expose
equivalent behavior to that of the corresponding OSA interface objects as seen from
application point of view. To prove the behavior equivalence we present the
suggested state models in a formal way as Labeled Transition Systems (LTS) and
use the concepts of bisimulation and homomorphism [11].

The rest of the paper is organized as follow. Section II briefly introduces the
necessary notational background for labeled transition systems and behavioral
equivalences. Section III presents an approach to modeling the originating and
terminating call states that conforms to the OSA application view of a two party
call. A model that represents the call states in case of application initiated call is
described. Section IV presents an approach to modeling the packet session states
that is synchronized with the application view on the data session object. Having in
mind the implicit behavioral recommendations which are based on the available

 51

mapping of OSA interface class methods onto CAP messages, we provide adequate
conditions on transformations in order to preserve the logic equivalence. The paper
is concluded by sketching out an approach to modeling the session states in IP-
based multimedia networks.

Fig.1. Deployment of OSA in circuit- and packet-switched mobile networks

II. Labeled transition systems and behavioral equivalence

Definition 1. A Label Transition System (LTS) is a quadruple (S, Аct, →, s0),
where:

S is countable set of states,
Act is a countable set of elementary actions,
→ ⊆S ×Act × S is a set of transitions, and
s0 ∈ S is the set of initial states.
A labeled transition system (S, Аct, →, s0) is called finitely branching, if for

any state s∈S, set {(а, s′), a ∈ Act | (s, a, s′) ∈ →} is finite. The labeled transition
systems we consider in the paper are only labeled transition systems that are finitely
branching.

We will use the following notations:

s
а
→ s′ stands for the transition (s, a, s′);

s
а
→ means that ∃ s′: s

а
→ s′;

Application

OSА SCS

MSC

SGSN

CAP CAP

Basic Call
state model

Packet session
state model

OSA application
programming interfaces

Call state
model

Session state
model

 52

s

μ
⇒ sn , where μ = а1, а2, ..., аn : ∃ s1, s2, …, sn, such that s ⎯→⎯ 1a

s1...

⎯→⎯ na
sn;

s
μ
⇒ means that ∃ s′, such as s

μ

⇒ s′;

⇒
μ̂

means ⇒ if μ ≡ τ or
μ

⇒ otherwise.

Definition 2. Let Т = (S, Аct, →, s0) and Т ′ = (S′, Аct, →, s0′) are two labeled
transition systems. Then

h: S → S′ is a root preserving map if h (s0) = s0′;
A root preserving map is surjective if h(S) = S′.

Definition 3. Let Т = (S, Аct, →, s0) and Т ′ = (S′, Аct, →′, s0′) are two labeled
transition systems.

h: S → S′ is a transition system homomorphism if h(s0) = h(s0′) and h(→)⊆→′,

where h(→) = {h(s)
а
→′ h(s′) | s

а
→ s′};

a homomorphism is surjective if h(S) = S′.

Definition 4. A strong bisimulation between two transition systems
Т = (S, Аct, →, s0) and Т ′ = (S′, Аct, →, s0′) is a binary relation U⊆S×S′, such that:

s0 U s0′;
∀ s ∈ S ∃ s′∈ S′: s U s′ and ∀ s′ ∈ S′ ∃ s∈ S: s U s′;
if s U t, then ∀ а ∈ Act:

• s
а
→ s′ implies ∃ t′: t

а
→′ t′ and s′ U t′;

• t
а
→′ t′ implies ∃ s′: s

а
→ s′ and s′ U t′.

The labeled transition systems T and T’ are bisimilar if there is a bisimulation
between them.

Definition 5. Let Т = (S, Аct, →, s0) and Т ′ = (S′, Аct, →, s0′) are two labeled
transition systems. The relation h: S → S′ is called abstraction homomorphism if h
is a surjective transition system homomorphism satisfying the following:

∀ s1 ∈ S, а∈Act and s2′ ∈ S′, h(s1)
а
→′ s2′ implies ∃ s2∈ S: s1

а
→ s2 and

h(s2)=s2′.
The following statement is true for two labeled transition systems:

Theorem 1. Two labeled transition systems are bisimilar iff they have a
common image under abstraction homomorphism.

 53

The strong bisimulation possesses strong conditions for equivalence which are
not always required. For example, there may be internal activities that are not
observable. The strong bisimulation ignores the internal transitions.

Definition 6. Two labeled transition systems T = (S, A, →, s0) and T ′ = (S′, A,
→′, s0′) are weekly bisimilar if there is a binary relation U ⊆ S×S′ such as if s1 U t1:
s1 ⊆ S and t1 ⊆ S′ then ∀a ∈ Act:

s1 ⇒
a

 s2 implies ∃ t2 : t1 ⇒′
â

 t2 and s2 U t2;

t1⇒′
a

 t2 implies ∃ s2: s1 ⇒
â

 s2 and s2 U t2.

III. Call state models

The Application Server (AS) that hosts OSA applications can play different roles.
For example, acting as a proxy server provisioning call baring services, the AS
receives incoming request and proxies it back to the MSC which then forwards it
toward the destination. Another case is in the context of an alarm call when the AS
generates a request and sends it to the MSC which then forwards it toward
destination.

First, we will consider the case when the application provides control on
network initiated call.

A. Application control on terminating and originating parties

If the application logic is applied for the originating party, the OSA SCS needs to
maintain a call state model that corresponds to the CAMEL Originating-Basic Call
State Model (O-BCSM). If the application logic is applied for the terminating party,
the OSA SCS needs to maintain a call state model that corresponds to the CAMEL
Terminating-Basic Call State Model (T-BCSM).

A model representing the OSA application view on a call object is defined
in [2]. According to this model, the call can be in one of the following states: Null
(no call), NoParty (call object exists with no party connected), 1PartyInCall (one
party in call), 2PartiesInCall (established call with two parties), NetworkReleased
(call is terminated in the network and the application can only gather call
information), Finished (call is terminated in the network and no call information can
be gathered), ApplicationReleased (the call is terminated by the application). From
call control point of view, there is no difference between the Null and NoParty
states, as they reflect specifics of object-oriented technology. In the
NetworkReleased, Finished and ApplicationReleased states, there are no parties
connected to the call, hence from the call control point of view, these states can be
labeled with the same label NullGCC.

Let us denote by ТGCC = (SGCC, АctGCC, →GCC, s0) a labeled transition system
representing the OSA application view on call object states where:

 54

SGCC = {NullGCC, 1PartyInCall, 2PartiesInCall };
ActGCC= {callEventNotify, connectionToCalledPartyUnsuccessful, answer,

release, callEnded};
→GCC = { NullGCC callEventNotify 1PartyInCall,

1PartyInCall connectionToCalledPartyUnsuccessful NullGCC,
1PartyInCall answer 2PartiesInCall,
2PartiesInCall release NullGCC,
2PartiesInCall callEnded NullGCC,
1PartyInCall callEnded NullGCC};

s0 = {NullGCC}.
The T-BCSM consists of four states in which service logic can interfere the

processing of the terminating party. In T-Null state, the terminating party is idle, and
the authority to route the call to the terminating party is verified, (e.g. business
group restrictions, restricted incoming calls, or bearer capability compatibility). In
TermCallHandling state, terminating resource is informed of incoming call, an
indication is sent to the O-BCSM that the terminating party is alerted, and the call is
waited to be answered. In T-Active state, the connection is established between
originating and terminating party. Default handling of the exception condition is
being provided in T-Exception state.

Let us denote by ТTBCSM = (STBCSM, АctTBCSM, →TBCSM, s0′) a labeled transition
system, representing the CAMEL T-BCSM where:

STBCSM = {T-Null, TerminatingCallHandling, T-Active, T-Exception};
ActTBCSM= {TerminatingAttemptAuthorized, Tanswer, Tdisconnect, Tabandon,

Tbusy, TnoAnswer, releaseResources};
→TBCSM = { T-Null TerminatingAttemptAuthorized TerminatingCallHandling,

TerminatingCallHandling Tanswer T-Active,
TerminatingCallHandling Tabandon T-Null,
T-Active Tdisconnect T-Null,
TerminatingCallHandling Tbusy T-Exception,
TerminatingCallHandling TnoAnswer T-Exception,
T-Exception releaseResources T-Null};

s0′ = {T-Null}.
The O-BCSM consists of four states in which service logic can interfere the

processing of the originating party. In O-Null state, the originating party is idle, the
authority/ability to place the call with given properties (e.g. bearer capability,
subscription restrictions) is verified, and initial information package/dialing string
(e.g. service codes, prefixes, dialed address digits) is collected from originating
party. In О-Alerting state, information is analyzed and/or translated according to the
dialing plan to determine routing address and call type, routing address and call
type are interpreted, the next route is selected, and the originating party waits for
the terminating party to answer. In O-Active state, the connection is established
between originating and terminating parties. Default handling of the exception
condition is being provided in the O-Exception state.

Let us denote by ТOBCSM = (SOBCSM, АctOBCSM, →OBCSM, s0′′) a labeled transition
system, representing the CAMEL О-BCSM where:

 55

SОBCSM = {О-Null, AnalysisRoutingAlerting, О-Active, О-Exception;
ActОBCSM= {CollectedInfo, Oanswer, Odisconnect, Oabandon, Obusy, OnoAnswer,

releaseResources};
→ОBCSM = { O-Null CollectedInfo AnalysisRoutingAlerting,

AnalysisRoutingAlerting Oanswer O-Active,
AnalysisRoutingAlerting Oabandon O-Null,
O-Active O_disconnect O-Null,
AnalysisRoutingAlerting Obusy O-Exception,
AnalysisRoutingAlerting OnoAnswer O-Exception,
O-Exception releaseResources O-Null};

s0′′ = {О-Null}.
Proposition 1. The labeled transition systems ТGCC, ТТBCSM and ТТBCSM are

bisimular.
P r o o f. To prove that the systems expose equivalent observable behavior, it

has to be found a common image under abstraction homomorphism. The
homomorphism between the states of ТGCC, ТТBCSM and ТТBCSM is shown in Table 1,
and the transition homomorphism is shown in Table 2. The state homomorphism is
based on the common abstraction they represent, while the transition
homomorphism is based on the mapping of OSA Generic Call Control interface
methods onto CAP messages.
Table 1 State homomorphism for ТGCC, ТТBCSM and ТТBCSM

SGCC SТBCSM SОBCSM Common abstraction

NullGCC, T-Null О-Null Represents a condition
where call processing is
not active

1PartyInCall TerminatingCallHandling AnalysisRoutingAlerting Represents a two party
call in the setup phase

1PartyInCall T-Exception О-Exception Represents an exception
situation in the call setup
phase

2PartiesInCall T-Active О-Active Represents a stable two
party call

Having the presented homomorphism, it can be formally deduced that ТGCC,
ТТBCSM and ТТBCSM are bisimilar, i.e., they expose equivalent behavior.

It has to be noted, that in the formal definitions of ТGCC, ТТBCSM and ТТBCSM
systems, the transitions related to route failure and connection failure are not
included for simplicity. The refinement of the model with those transitions does not
change the proof of behavioral equivalence because a common abstraction for those
transitions also can be identified following the mapping in [5].

B. Application-initiated call

In case of application initiated call, the application connects both parties to the call.
In this case, when the application creates the call object, it can request routing of the
call to the remote party indicated by the target address. The call object moves to the

 56

RoutingToDestination state where the application waits for answer from the remote
party.
Table 2. Transition homomorphism for ТGCC, ТТBCSM and ТТBCSM

→GCC →ТBCSM →OBCSM Common
abstraction

NullGCC
callEventNotify
1PartyInCall

T-Null
TerminatingAttempt-
Authorized
TerminatingCallHandling

O-Null CollectedInfo
AnalysisRoutingAlerting

Terminating call
indication

1PartyInCall answer
2PartiesInCall

TerminatingCallHandling
Tanswer T-Active

AnalysisRoutingAlerting
Oanswer O-Active

The called party
answers.

1PartyInCall
callEnded NullGCC

TerminatingCallHandling
Tabandon T-Null

AnalysisRoutingAlerting
Oabandon O-Null

Indication that the
calling party
abandons the call.

2PartiesInCall
callEnded NullGCC,

T-Active Tdisconnect
T-Null

O-Active Odisconnect
O-Null

Indication for
disconnect in the
network.

2PartiesInCall
release NullGCC

T-Active Tdisconnect
T-Null

O-Active Odisconnect
O-Null

Indication for
application-initiated
disconnect.

1PartyInCall
connectionTo-
CalledParty-
Unsuccessful
NullGCC

TerminatingCallHandling
Tbusy T-Exception

AnalysisRoutingAlerting
Obusy
O-Exception

Indication that the
called party is busy.

1PartyInCall
connectionToCalled-
PartyUnsuccessful
NullGCC

TerminatingCallHandling
TnoAnswer T-Exception

AnalysisRoutingAlerting
OnoAnswer
O-Exception

Indication that the
called party does
not answer.

1PartyInCall
callEnded NullGCC

T-Exception
releaseResources T-Null

O-Exception
releaseResources O-Null

Indication for the
end of the call.

Let us denote with ТGCC′ = (SGCC′, АctGCC′, →GCC′, s0′) a labeled transition
system representing the OSA application view on a call with two parties initiated by
the application where:

SGCC′ = {NullGCC, RoutingToDestination, 1PartyInCall, 2PartiesInCall};
АctGCC′ = { routeReq, answer, connectionToCalledPartyUnsuccessful, release,

callEnded};
→GCC′ = {NullGCC routeReq RoutingToDestination,

RoutingToDestination answer 1PartyInCall,
1PartyInCall routeReq 1PartyInCall,
1PartyInCall answer 2PartiesInCall,
2PartiesInCall callEnded NullGCC,,
2PartiesInCall release NullGCC,
RoutingToDestination connectionToCalledPartyUnsuccessful NullGCC,
1PartyInCall connectionToCalledPartyUnsuccessful NullGCC,

 57

1PartyInCall callEnded NullGCC};
s0′ = {NullGCC}.

In case of application-initiated call, the network considers both call parties as
terminating. The call model in OSA SCS suggested by us is based on triggering of
two T-BCSMs for each of the call parties.

Let us denote with Т = (SAPPCALL, АctAPPCALL, →APPCALL, s0′) a labeled transition
system representing the network model of an application-initiated call where:

SAPPCALL = {Null, TerminatingCallHandling′, 1Active, TerminatingCallHandling′′,
2Active, Exception};

ActAPPCALL= {TerminatingAttemptAuthorized1, answer1, disconnect, abandon, busy1,
noAnswer1, TerminatingAttemptAuthorized1, answer2, busy2,
noAnswer2, releaseResources};

→APPCALL = {Null TerminatingAttemptAuthorized1 TerminatingCallHandling′,
TerminatingCallHandling′ busy1 Exception,
TerminatingCallHandling′ noAnswer1 Exception,
TerminatingCallHandling′ answer1 1Active,
1Active TerminatingAttemptAuthorized2 TerminatingCallHandling′′,
TerminatingCallHandling′′ answer2 2Active,
2active Disconnect Null,
2active release Null,
TerminatingCallHandling′′ abandon Null,
TerminatingCallHandling′′ busy2 Exception,
TerminatingCallHandling′′ noAnswer2 Exception,
Exception releaseResources Null}

s0′ = {Null}.

Proposition 2. The labeled transition systems ТGCC′ and ТAPPCALL are bisimilar.

P r o o f. The common homomorphism abstraction for ТGCC′ and ТAPPCALL is
shown in Table 3 and Table 4 where the state and transition homomorphisms are
presented correspondingly. The identified abstractions allow to deduce that ТGCC′
and ТAPPCALL are bisimilar.

Table 3 State homomorphism for ТGCC′ and ТAPPCALL

SGCC SAPPCALL Common abstraction

NullGCC Null No parties are connected to the call

RoutingToDestination TerminatingCallHandling′ Connection establishment to first party in a
call

1PartyInCall 1Active A call with one party connected

1PartyInCall TerminatingCallHandling′′ A call with connected one party in a process
of connection establishment to the second
party

2PartiesInCall 2Active A call with two parties connected

1PartyInCall Exception An exception situation in connection
establishment to one party in a call

 58

IV. Data session state model

While the OSA Generic Call Control SCF provides open access to call control
functions in circuit switched networks, the Data Session Control SCF provides
access to functions for data session control in packet switched networks. In [3], a
model representing the application view on data session states is defined. According
to that model, the data session object can be in one of the following states. In Idle
state, the data session object is not created. The Setup state is entered when the
reportNotification method indicates that a data session, which the application is
interested in, is setup. In Setup state, the application can request session
establishment to the remote party by invoking connectReq method. In Established
state, the application is notified that the session is established. In NetworkReleased
state, the session is terminated and the application can gather session information.
In ApplicationReleased state, the data session is terminated by the application.
From data session control point of view, the Idle, Network released and Application
released states are equivalent, as far as the data session is neither in establishing nor
active phase.

Before data can be sent or received, a packet data protocol context (PDP
context) for the user has to be established. The PDP context assigns an IP address
for the communication and associates it with the user identities. The CAMEL PDP
context state model represents the process of establishing PDP contexts for data
communications. It is comparable to the O-BCSM and T-BCSM in CAMEL. Such
model is triggered for each user which wants to participate in packet data session.
The model consists of three states. In Idle state, there is no PDP context active
(neither sending nor receiving data). A request to send or receive data causes a
transition to PDP_context_setup state. When the SGSN is notified that the PDP
context is set up, a transition to the PDP context_established state takes place. It is
possible that while the user is sending or receiving data, he or she moves from one
routing area to another. A direct transition form Idle state to
PDP_context_stablished state is possible during routing area update with SGSN
change. A PDP can be deactivated either by request of the user or by the network,
causing transition to Idle state. An exception situation during PDP context setup or
in PDP context established state also results in transition to Idle state.

We suggest a session model that reflects both the application view on data
session object and the CAMEL PDP context setup model.

Let us denote with ТDSC = (SDSC, АctDSC, →DSC, s0) a labeled transition system,
representing the OSA application view on data session state where:

SDSC = {IdleDSC, SetupDSC, EstablishedDSC};
ActDSC = {dataSessionSetup, dataSessionEstablished, connectReq, release,

dataSessionDisconnected, dataSessionSupervisionEvent};
→DSC = {IdleDSC dataSessionSetup SetupDSC,

SetupDSC connectReq SetupDSC
SetupDSC dataSessionEstablished EstablishedDSC,
IdleDSC dataSessionEstablished EstablishedDSC,
SetupDSC dataSessionDisconnected IdleDSC,
SetupDSC release IdleDSC,

 59

EstablishedDSC dataSessionDisconnected IdleDSC,
EstablishedDSC release IdleDSC

EstablishedDSC dataSessionSupervisionEvent EstablishedDSC};
s0 = {IdleDSC }.

Table 4. Transition homomorphism for ТGCC′ and ТAPPCALL

→GCC′ →APPCALL Common abstraction

NullGCC route Req
RoutingToDestination

Null
TerminatingAttemptAuthorized1
TerminatingCallHandling′

Indication of
terminating call to the
first party.

RoutingToDestination answer
1PartyInCall

TerminatingCallHandling′
answer1 1Active

The first party in call
answers.

1PartyInCall routeReq 1PartyInCall 1Active
TerminatingAttemptAuthorized1
TerminatingCallHandling′′

Indication of
terminating call to the
second party.

1PartyInCall answer 2PartiesInCall TerminatingCallHandling′′
answer2 2Active

The second party in call
answers.

2PartiesInCall callEnded NullGCC 2active Disconnect Null Network-released call.

2PartiesInCall release NullGCC 2active release Null Application releases the
call.

1PartyInCall callEnded NullGCC TerminatingCallHandling′′
abandon Null

First party abandons the
call

RoutingToDestination
connectionToCalledPartyUnsuccessful
NullGCC

TerminatingCallHandling′ busy1
Exception

Indication that the first
party is busy

RoutingToDestination
connectionToCalledPartyUnsuccessful
NullGCC

TerminatingCallHandling′
noAnswer1 Exception

Indication that the first
party does not answer

1PartyInCall connectionTo-
CalledPartyUnsuccessful NullGCC

TerminatingCallHandling′′
busy2 Exception

Indication that the
second party is busy

1PartyInCall connectionTo-
CalledPartyUnsuccessful NullGCC

TerminatingCallHandling′′
noAnswer2 Exception

Indication that the
second party does not
answer

1PartyInCall callEnded NullGCC Exception releaseResources
Null

Indication of the call
end

The proposed session model includes two PDP context setup models for each
party in the session. To distinguish between the two types of routing area change we
use indexing. With ChangeOfPositionO1 we denote the transition when the
originating party changes the routing area and SGSN. With ChangeOfPositionO2 we
denote the transition when the originating party performs routing area update
without SGSN change. The indexes for the mobility of the terminating party are
similar.

Let us denote by ТPDP = (SPDP, АctPDP, →PDP, s0′) a labeled transition
representing the session state for both parties involved where:

 60

SPDP = {IdlePDP, PDPcontextSetupO, PDPcontextEstablishedO,
PDPcontextSetupT, PDPcontextEstablishedT };

ActPDP = {PDPctxtEstablishmentО, PDPctxtAckО, disconnectO, exceptionO,
ChangeOfPositionCtxtO1,ChangeOfPositionCtxtO2,
PDPctxtEstablishmentТ, PDPctxtAckТ, disconnectT, exceptionT,
ChangeOfPositionCtxtT1, ChangeOfPositionCtxtT2};

→PDP = {IdlePDP PDPctxtEstablishmenO PDPcontextSetupO,
PDPcontextSetupO PDPctxtAckО PDPcontextEstablishedO,
PDPcontextSetupO exceptionО IdlePDP,
IdlePDP ChangeOfPositionCtxtO1 PDPcontextEstablishedO,
PDPcontextEstablishedO ChangeOfPositionCtxtO2

PDPcontextEstablishedO,
PDPcontextEstablishedO exceptionО IdlePDP,
PDPcontextEstablishedO disconnect IdlePDP,
PDPcontextEstablishedO PDPctxtEstablishmentТ PDPcontextSetupT,
PDPcontextSetupT exceptionТ IdlePDP,
PDPcontextSetupT ChangeOfPositionCtxtO1 PDPcontextSetupT,
PDPcontextSetupT ChangeOfPositionCtxtO2 PDPcontextSetupT,
PDPcontextSetupT PDPctxtAckТ PDPcontextEstablishedT,
PDPcontextEstablishedT ChangeOfPositionCtxtT1

PDPcontextEstablishedT
PDPcontextEstablishedT ChangeOfPositionCtxtT2

PDPcontextEstablishedT

PDPcontextEstablishedT ChangeOfPositionCtxtО1

PDPcontextEstablishedT
PDPcontextEstablishedT ChangeOfPositionCtxtО2

PDPcontextEstablishedT
PDPcontextEstablishedT exceptionТ IdlePDP,
PDPcontextEstablishedT exceptionО IdlePDP,
PDPcontextEstablishedT disconnect IdlePDP}

s0′ = {IdlePDP}.

Proposition 3. The labeled transition systems ТDSC, and ТPDP are weakly
bisimilar.

P r o o f. Let us build the relation U = SDSC × SPDP as

U = {(IdleDSC, IdlePDP), (SetupDSC, PDPcontextSetupO), (EstablishedDSC,
PDPcontextEstablishedT)}

Given the mapping of Data Session Control interface methods onto CAP
messages in [5], we build the following homomorphism relation h between ActDSC
and ActPDP, presented in Table 5.

Based on the common abstraction the related transitions can be labeled by the
same labels. The proof that U is a weak bisimulation relation between the states of
TDSC and ТPDP follows from h(ActDSC) = ActPDP and the corresponding transition
relations shown in Table 6.

 61

Table 5. Homomorphism between ActDSC and ActPDP
ActDSC ActPDP Common abstraction
dataSessionSetup PDPctxtEstablishmentО

PDPctxtAckO
ChangeOfPositionCtxtО1

Indication of PDP context
establishment for the originating
party

connectReq PDPctxtEstablishmentТ Request for PDP context
establishment for the terminating
party

dataSessionEstablished PDPctxtAckТ Indication of established PDP
contexts for both parties

Release disconnect Application-initiated session
termination and PDP deactivation

dataSessionDisconnected disconnect Network-initiated session
termination and PDP deactivation

dataSessionSupervisionEvent ChangeOfPositionCtxtT1
ChangeOfPositionCtxtО2
ChangeOfPositionCtxtT2

Indication of session related
event

Table 6 Bisimulation relation between the states of TDSC and ТPDP

s1 ⇒
a

 s2 | s1, s2 ∈ SDSC t1 ⇒′
â

 t2 | t1, t2 ∈ SPDP Abstraction

IdleDSC dataSessionSetup
SetupDSC

IdlePDP
PDPctxtEstablishmenO
PDPcontextSetupO,

Indication of request for PDP
context establishment for the
originating party

SetupDSC
dataSessionEstablished
EstablishedDSC

PDPcontextSetupO
PDPctxtAckО
PDPcontextEstablishedO,
PDPcontextEstablishedO
ChangeOfPositionCtxtO2
PDPcontextEstablishedO
PDPcontextEstablishedO
PDPctxtEstablishmentТ
PDPcontextSetupT,
PDPcontextSetupT
ChangeOfPositionCtxtO1
PDPcontextSetupT
PDPcontextSetupT
ChangeOfPositionCtxtO2
PDPcontextSetupT
PDPcontextSetupT
PDPctxtAckТ
PDPcontextEstablishedT

PDP context establishment for
the originating and terminating
parties. During PDP context setup
for the terminating party, the
originating party can perform
both types of routing area update

SetupDSC
dataSessionDisconnected
IdleDSC

PDPcontextSetupO
exceptionО IdlePDP,

Exception situation at the
originating party during PDP
context establishing for the
originating party

SetupDSC
dataSessionDisconnected
IdleDSC

PDPcontextSetupT exceptionО
IdlePDP,

Exception situation at the
originating party during PDP
context establishing for the
terminating party

SetupDSC
dataSessionDisconnected
IdleDSC

PDPcontextSetupT disconnect
IdlePDP,

The originating party disconnects
during PDP context setup for the
terminating party

 62

Table 6 (c o n t i n u e d)
SetupDSC
dataSessionDisconnected
IdleDSC

PDPcontextSetupT exceptionТ
IdlePDP

Exception situation at the
terminating party during PDP
context establishing for the
terminating party

SetupDSC
dataSessionDisconnected
IdleDSC

PDPcontextEstablishedТ
exceptionО IdlePDP,

Exception situation at the
originating party during an
established session

SetupDSC
dataSessionDisconnected
IdleDSC

PDPcontextEstablishedТ
exceptionТ IdlePDP,

Exception situation at the
terminating party during an
established session

IdleDSC dataSessionEstablished
EstablishedDSC

IdlePDP ChangeOfPositionCtxtO1
PDPcontextEstablishedO,

PDPcontextEstablishedO
PDPctxtEstablishmentТ
PDPcontextSetupT,
PDPcontextSetupT PDPctxtAckТ
PDPcontextEstablishedT

During PDP context
establishment for the
terminating party, the
originating party performs
routing area update with SGSN
change

EstablishedDSC
dataSessionSupervisionEvent
EstablishedDSC

PDPcontextEstablishedТ
ChangeOfPositionCtxtO2
PDPcontextEstablishedТ

PDPcontextEstablishedТ
ChangeOfPositionCtxtO1
PDPcontextEstablishedТ

During established session, the
originating party performs both
type of routing area update

EstablishedDSC
dataSessionSupervisionEvent
EstablishedDSC

PDPcontextEstablishedT
ChangeOfPositionCtxtT1
PDPcontextEstablishedT
PDPcontextEstablishedТ
ChangeOfPositionCtxtT2
PDPcontextEstablishedТ

During established session, the
terminating party performs
both type of routing area
update

EstablishedDSC
dataSessionDisconnected
IdleDSC

PDPcontextEstablishedТ
disconnect IdlePDP

The session terminates

EstablishedDSC release IdleDSC PDPcontextEstablishedТ
exceptionO IdlePDP

PDPcontextEstablishedТ
exceptionТ IdlePDP

The application requests
established session termination

SetupDSC release IdleDSC PDPcontextEstablishedТ
exceptionO IdlePDP

PDPcontextEstablishedТ
exceptionТ IdlePDP

The application requests
termination of establishing
session

V. Conclusion

The network interface of the OSA SCS is not standardized and it is regarded as
implementation detail. There is a constraint for any implementations for a single
point of contact. Instead of coordinating the connections in circuit-switched and
packed-switched networks, the OSA SCS controls the interface to the underlying

 63

network. In mobile networks, bearer connections rely on CAP signaling. Interfacing
between application programming interfaces requests and responses, and CAP
signaling, the OSA SCS needs to care for both side state machines – one for the
interface objects and another for the CAP session.

The suggested approach to modeling the call and session states in an OSA SCS
supports interfaces for generic call control and data session control. While the call
state model corresponds to the CAMEL BCSMs, the session state model has to
reflect the procedures concerning PDP context setup required for packet sessions.
More refined models can be built considering different application server roles.

Following the same approach, session state models in IP-based multimedia
networks might be designed. In such networks the establishment, modification and
termination of sessions with more than two parties relies on SIP. Following the
mapping of OSA Multiparty Call Control SCF onto SIP signaling, models for SIP
session state for originating and terminating call legs can be designed.

By presenting the models in a formal way as label transition systems, the
behavior equivalence is proved, using the concept of bisimulation.

Acknowledgement: The work is conducted under the grant of Project DO 02-135/2008 Research on
Cross Layer Optimization of Telecommunication Resource Allocation, funded by Bulgarian Ministry
of Education and Science.

R e f e r e n c e s

1. H a n r a h a n, H u. Network Convergence, Services, Applications, Transport and Operations
Support. Wiley, 2007.

2. 3GPP TS 29.198-4-2, v9.0.0, 2009, Open Service Access (OSA); Application Programming
Interface (API) Part 2: Call Control Sub-part 2: Generic Call Control Service Capability
Feature; (Release 9).

3. 3GPP TS 29.198-08, v9.0.0, 2009, Open Service Access (OSA); Application Programming
Interface (API) Part 8: Data Session Call Control Service Capability Feature; (Release 9).

4. N o l d u s, R. CAMEL Intelligent Networks for GSM, GPRS and UMTS Networks. Wiley, 2006.
5. 3GPP TR 29.998-09, v9.0.0, 2009, Open Service Access (OSA); Mapping for Open Service

Access; Part 8, Data Session Control Service Mapping to CAP, (Release 9).
6. 3GPP TR 29.998-04-1, v9.0.0, 2009, Open Service Access (OSA); Mapping for Open Service

Access; Part 4, Call Control Service Mapping; Subpart 2: API to CAP mapping, (Release 9)
7. I m r i c h, C h l a m t a c, H s i n-Y i L e e, Y i-B i n g L i n, M e n g-H s u n T s a i. An OSA

Service Capability Server for Mobile Services. – International Journal of Pervasive
Computing and Communications, Vol. 4, 2008, Issue 3, 268-278.

8. S t r e t c h, R. The OSA API and Other Related Issues. – BT Technology Journal, Vol. 19, 2001,
No 1, 80-87.

9. M a g e d a n z, T., D. W i t a s z e k, K. K n ü t t e l. Service Delivery Platform Options for Next
Generation Networks, Approved Within The National German 3G Beyond Testbed.
http://home.intekom.com/satnac/proceedings/2004/Plenary/Magedanz.pdf

10. S t u a r t, W a l k e r. Providing IMS Services to Legacy Network Endpoints, 2009.
http://www.iec.org/newsletter/august07_1/analyst_corner.pdf

11. P a n a n g a d e n, P. Notes on Labeled Transition Systems and Bisimulation, 2009.
http://www.cs.mcgill.ca/~prakash/Courses/comp330/Notes/lts09.pdf

