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Abstract: The paper deals with the matrix equation XA— AX = X? arising in the
analysis of affine structures on solvable Lie algebras. The sensitivity of the equation
relative to perturbations in the coefficient matrix A is studied. Both local and non-
local perturbation bounds are obtained. Illustrative numerical examples
demonstrate the effectiveness of the bounds proposed.
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1. Introduction and notation

The matrix equation XA — AX = X? in X, where p is a positive integer and 4, X are
nxn matrices over an algebraically closed field & of characteristic zero, is connected
with problems in Lie theory [1, 2]. The case when p = 2 arises in studying affine
structures on solvable Lie algebras and is a special case of the algebraic Riccati
equation. Further on we assume that K = R or K= C.

For any given matrix 4 the equation X4— A4X = X? always has a solution,
namely the trivial solution X = 0. If 4 has multiple eigenvalues then this equation
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has non-trivial solutions. A special set of solutions is obtained for
XA-AX =0, X*=0.

According to [1], for p > 2 every solution X of the equation X4 - AX = X7 is
a nilpotent matrix and if 4 has no multiple eigenvalues then X = 0 is the only matrix
solution to X4— AX = X?. Conversely, if 4 has multiple eigenvalues then there
exist nontrivial solutions. We also note that adding a scalar matrix to 4 does not
change the form of the equation.

In this paper local and non-local perturbation bounds for the solution to the

equation
(1) XA-AX=X* A, X e K™,
are derived, where K™ is the space of nxn matrices over K.

Throughout the paper the following notations are used: R and C — the sets of

real and complex numbers, respectively; 7, — the identity nxn matrix; vec(A) € K"
— the column-wise vector representation of the matrix 4 e K™, where K" = K™,
Mat(£) € K"* — the matrix representation of the linear matrix operator
L: K™ — K™ ; N, — the mxm nilpotent matrix with elements N,(k, [) = 1 for
I=k+t1,k=1,2,...,m—1, and N,(k, [) =0 otherwise; A® B = [A(k, [)B] — the
Kronecker product of the matrices 4 = [A(k, [)] and B;

|| — a vector or a matrix

norm; || » — the Euclidean vector or the spectral matrix norm; || r — the Frobenius

norm.
The notation ‘=’ stands for ‘equal by definition’.

2. Statement of the problem

Equation (1) may be written in the equivalent form
() F(X,A)=XA-AX-X?*=0,4, X e K™".
Denote by S, < K™" the set of all solutions to equation (2). As mentioned above,
the set S, is invariant relative to scalar shifts in 4, i.e. Sy = Sy+u, forall u € K

We shall suppose that the following assumption holds true.

Assumption Al. The matrix 4 has multiple eigenvalues and equation (1) has
non-trivial solutions, i.e. Sy # {0}.

Since every solution X is a nilpotent matrix [1] we have X’ = 0. So the
interesting case is p > 2 since for p = 2 the equation reduces to the system
XA-AX =0, X2 =0, considered below.

Example 1. Let n = 2 and K = C. Since 4 has a double eigenvalue and the

matrices A and 4 + ul,, u €C, produce the same solution set Sy, we actually have

the following two cases.
1. The first case is 4 = 0 and the system is reduced to equation X* = 0. Here
the solution set Sy is the union of an one-parametric variety {xN,: x €C }, and a



two-parametric family of solutions X with X(1,1) =x ec, X2, 1)=y €c, y #0,
and X(1,2) ="y, X(2,2) =-x.

2. The second case is 4 = NV,. Here the solution set SN2 is {xN,:x eC}. |
Let the matrix A be subject to a perturbation FE, so that the coefficient matrix
becomes 4 + E. We shall consider only perturbations £ from an admissible set
Ec K™ which satisfies the following assumptions.

Assumption A2. The matrix 4 is non-zero and the norm of the matrices from
£ is small compared to the norm of 4.

Assumption A3. The perturbed equation
3) F(Y,A+E)=0
if Y has non-trivial solutions for all £ € &, i.e. Sy-p # {0} for £ € &.

Denote any solution Y of (3) as ¥ = X + Z, where Z is a perturbation (not
necessarily small) of a fixed solution X, €S, of equation (1).

We recall that both equations (1) and (3) have multi-parametric families of

solutions S, and Sy g, respectively. This means that for X, € S, fixed we shall have
a family
Z=2ZA,X) ={Y-Xo: Y e Sy+p} K™
of perturbations Z in Xj.
We stress that the sets Sy, Syz and Z may not be bounded. So we may not
estimate the norm of any element of Z (by a function of the norm of E). Rather, we
shall estimate the norm of certain elements Z € Z. In any case our bounds will

estimate the quantity inf{ ||Z || A Z} from above.

Our next assumption concerning the set £ of admissible perturbations £ in 4 is
as follows.

Assumption A4. For any # > 0 there is 6 = d(n) > 0 such that there exists
Z € Z with ||Z||<77 provided £ € € and ||| < O

It is worth mentioning that Assumptions A2, A3 and A4 will be fulfilled for a
set of small perturbations preserving the Jordan form of A4.

Example 2. Let n =2, K= C, A = N, and £ CC*? be the set of matrices

E = x N, with |x| < 1. Then the perturbations 4 — A4 + E preserve the Jordan form
of A and

Sy =8Sp+e=2=1{xN,::x € C}. |

An important problem in studying perturbed equations of type (3) is to find

local and non-local bounds for ||Z || » as functions of the norm ||E || . of the

perturbation E in the data matrix 4, where Y = X; + Z and X, € S4. The local bound
should be valid for ||E || » asymptotically small, while the non-local bound will hold

true for perturbations in the data belonging to a certain finite set containing the
origin.

However, this general program may not be fulfilled completely since the
standard technique of perturbation analysis [3] is not applicable to the problem
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considered. Rather, we shall obtain local bounds on the norm of certain projections
of the perturbation Z on subspaces of K" of positive codimension.

3. Local perturbation analysis

Consider for simplicity the case K = R. The case K = C is treated similarly.

Let Xy € S4. Denote by Fi(.) = Fi(Xo, A)(.) the partial Fréchet derivative of
the function F(.,.) in the argument U € {X, A} computed at the point (Xy, 4) and
define the operators

L(.) = Fx(Xo, A)(.), M(.) := F4(Xo, A)(.).

These are linear operators K" — K™ such that

“4) F(Xo+Z, 4+ E)=F(Xo, A) + L(Z) + ME) + G(Z, E),
and their action is given by
(5) L(H) = H(A4 - Xo) — (4 + Xo)H,

M(H) :X() H—HX(), H e R™",
The term G(Z, E) contains the second order terms in Z, E,
G(Z Ey=ZE—-EZ-7=0"), u— 0,
where
u=¢ + ||Z| &= ||E||F

In what follows it is supposed that the asymptotic estimates of the form O(u")
k=1, 2, are valid for u — 0.

The matrix representations L, M € R"*" of the operators £, M are
6) L=(A-X,)"®I,-1,®(4+X,),

M=1,08X,-X; ®I,.

If the operator £ is invertible, i.e. if its matrix representation L is non-singular,
then the perturbed equation (3) may be rewritten as an equivalent matrix equation
[2, 3, 4], namely Z = II(Z, E).

The operator £ is a special case of a Sylvester operator. It is singular if and
only if the matrices 4 — Xj and 4 + X, have a common eigenvalue [5].

The eigenvalues of £ are the eigenvalues of its matrix L and they are equal to
A(A=Xo)—A;(A+Xy), i, j=1,2,....,n, where A(H), A(H), ..., 4,(H) are the

eigenvalues of the matrix H e R™ counted according to their algebraic
multiplicities.

Hence the operator £ and its matrix L would be invertible if and only if
L(A-=Xy)#A;(A+ X,),1, j=1,2,...,n. However, for equation (3) with a matrix 4

having multiple eigenvalues and a solution X; being a nilpotent matrix, the operator
L, as defined by (5), is singular. Hence equation (4) may not be written immediately
as an equivalent operator equation. As a consequence, the standard technique for
perturbation analysis of matrix equations [3, 4] may not be implemented.
Rewrite the matrix equation (4) in a vector form applying the vec operation to
the first order terms O(u) and having in mind that F(X,, 4) = 0:
Lvec(Z) = —-Mvec(E) + O(u).
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Let the rank of the matrix L be » > 1 and consider the singular value
decomposition L = U X V' of L, where U and V are n” x n” orthogonal matrices,
X = diag(%,, 0), X, = diag(oy, 0y, ..., 6,), and 6, > 6, > ..., 6, > 0 are the positive
singular values of L.

Denote
R:=[I, 0} e R™ P, :=[0],:_ |e R"=,

11, = |:(I))l e R 1T, = |:0 i| e R"™

P,
and

z:=VTvec(Z) = [2 eR",z; =Pz,

e=-U"Mvec(E) = 2} eR", e, :=—PU™Mvec(E), k=1,2.

Then we obtain
Zizi =e +O0(u?),
0=e, +0®W?).

Hence
z=2r"e + O(u?)

and
|z]l, =|Zi'e|, + O@w?) =[£i' RUT Mvec(E)|, + Ou?) <
<|[Ei'RUTM |, |vec(E)| . +O(?).

Hence we have derived the following first order bound for the norm of the
projection I7,V"'vec(Z) of the vectorization vec(Z) of the perturbation Z in the
solution X
|7V Tvee(Z)|, =||RV Tvec(2)), ”s Ce,

M

C=C(4, X,)=|E'RU™M |, < i
O-r

(7)

where ¢ :||E||F :||V€C(E)||2.

The local bound (7) is valid only asymptotically, for £ — 0. This means that
the perturbation in the data must be small enough to ensure sufficient accuracy of
the local bound. Unfortunately, it is usually impossible to say, having a small but
finite perturbation &, whether the neglected terms are indeed negligible.

The disadvantages of the local bound may be overcome using the techniques
of non-local perturbation analysis.

4. Non-local perturbation analysis

Equation (3) may be written in the form
(8) LZ)y=-ME)+ EZ-ZE + 7.
The vector representation of this equation is
L vec(Z) = — Mvec(E) + vec(EZ — ZE + Z°).



Using the notations from the previous section we may rewrite the last equation
as
21=@(z, E)=2{'e, +Z'BU "vec(EZ - ZE + Z?),
O=e, + PUVec(EZ-ZE+Z%),

where

z=VTvec(Z)= [? }, zy =Bz, Z =vec ' (Vz).
2
Setting @,(z) =z, we see that z satisfies the operator equation

2=®(z,E) = [glz((zz,)E )}.

For fixed numbers p>0and v € (0, 1]let V,(p) = R™ be the set of vectors z

such that ||Z||2 < p and ||zl||2 = ||le||2 <vp. This set is closed and convex.
Next we shall find conditions on the norm ¢ = ||E || - which guarantee the

existence of a quantity p, >0 such that @V, (p,),E)cV,(p,). For zeV,(p)

we have

2 2
L +—p+ Ce.
o, O,

|1z E)], <h(p. €)=

Suppose that
)

o, v?

eLg, = .
GJC +JC+2v)?
Then we may define the quantity

(10) Po=fo (€)=

20,C¢
ov—-2&+ \/(O',V -2¢)* -40,Ce '

For zeV,(p,) we shall have A, (p,,€)=Vvp, and hence the operator @(. E)

transforms the set V, (p,) into itself. Then, according to the Schauder fixed point
principle, the operator @(.,E) has a fixed point z eV, (p,) for which the estimate
|z], <vfi(e).e€0,¢.],

holds. Moreover, in this case we have the following result.
Theorem 3. Let the quantity v e(0,¢,] be given and let £€[0,&,]. Then

there exists a perturbation Z in X, such that
(1) 121 =l < 7.¢),
where ¢, and f,,(¢) are determined by relations (9), (10) and (7).

5. Numerical examples

In this section we give three numerical examples to illustrate the results from
Sections 3 and 4.



Example 4. Consider the matrix equation X4 — AX = X* from Example 2.8
in [1] with a data matrix 4 and a solution X, given by

0 00 -1 0 1
A={0 0 1[,X,=-1 0 0]
0 00 -1 0 1
The perturbations E in the data and Z in the solution are taken as
0 0 0 0 00
E=l0 0 s|,Z=|-s 0 0| with s=10"2* fork=1,2,3,4,5.
0 0 0 0 0 0

We estimate the Euclidean norm of the projection 77,V'vec(Z) of the
perturbation Z in the solution X, by the local bound Ce from (7). Then we estimate
this quantity by the bound v f, (&) using (11). The results obtained for different
values of k and v are shown in Table 1.

Table 1. Perturbation bounds for z;= P, VT vec(Z) (Example 4)

vi(€), vi(€), Vi), vi(€),
A e O eI A v
1| 6.3246x107° | 3.6187x1072 * 5.0938x1072 | 4.1046x1072 | 3.8910x107
2| 6.3246x107° | 3.6187x107* | 3.6474x10* | 3.6267x10* | 3.6226x10* | 3.6211x107*
3| 6.3246x107 | 3.6187x10°° | 3.6190x10° | 3.6188x10° | 3.6187x10° | 3.6187x10°°
4 | 6.3246x107° | 3.6187x10°° | 3.6187x10° | 3.6187x10° | 3.6187x10° | 3.6187x10°®
5| 6.3246x107"" | 3.6187x1071° | 3.6187x107° | 3.6187x107° | 3.6187x107° | 3.6187x107"°

Next we estimate the Frobenius norm of Z by the non-local bound f, (&) from

(11). The results are given in Table 2.
The cases when the non-local bound is not valid, since the existence condition
(9) is violated, are denoted by asterisks.
Table 2. Perturbation bounds for Z (Example 4)

A 2o, s e e
v=0.25 v=0.5 v=0.75 v=1

1| 1.0000x1072 * 1.0188x107" | 5.4727x107 | 3.8910x107

2 | 1.0000x10* | 1.4590x107 | 7.2533x10* | 4.8301x10* | 3.6211x107*

3| 1.0000x10°° | 1.4476x107° | 7.2375x10°° | 4.8250x10°° | 3.6187x10°°

4 | 1.0000x10°° | 1.4475x107 | 7.2374x10°° | 4.8249x10° | 3.6187x10°®

5| 1.0000x1071° | 1.4475%107° | 7.2374x107° | 4.8249x107° | 3.6187x107'°

As it is seen the non-local bound v £, (&) is slightly more pessimistic than the

local bound Ce .
Example 5. Consider the matrix equation (1) with matrices

0 0 O -1 0 1 1
A=|0 0 a|, X,=|-1 0 1-a| with a=§—10”‘.
0 0 O -1 0 1

The perturbations £ and Z are taken as in the previous example.
The estimated Euclidean norm of the projection I7,V'vec(Z) of the
perturbation Z in the solution Xj, the local bound Ce, defined by (7), and the non-
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local bound vf,(g) from (11) for k=1, 2, 3, 4, 5 and v = 0.25, 0.5, 0.75, 1 are
shown in Table 3.

Table 3. Perturbation bounds for z;= P, V" vec(Z) (Example 5)

vi(€), vi(&), vi(&), vi(&),
k l1z1ll2 Ce v i(E).)zs vJ;(o?s v i[E).)75 { i %
1| 6.3246x10° | 1.7923x10™! * * * *
2 | 6.3246x107° | 1.2500x107 | 1.3678x107° | 1.2767x10° | 1.2621x107° | 1.2570x107
3| 6.3246x107 | 1.2123x107 | 1.2132x107 | 1.2125x107 | 1.2124x107 | 1.2124x107°
4| 6.3246x10° | 1.2086x1077 | 1.2087x1077 | 1.2086x107 | 1.2086x1077 | 1.2086x10°’
5| 6.3246x107'" | 1.2083%x107° | 1.2083x107° | 1.2083x107° | 1.2083x10° | 1.2083x10~

The results of the estimation of the Frobenius norm of Z by the non-local

bound f,(&) from (11) for different values of k£ and v are shown in Table 4.
Table 4. Perturbation bounds for Z (Example 5)

KLzl 2o, e 1o, ey
v=0.25 v=0.5 v=0.75 v=1

1| 1.0000x1072 * * * *

2 | 1.0000x107* | 5.4713x107 | 2.5534x107 | 1.6827x107 | 1.2570x10°°

3| 1.0000x107° | 4.8528x107 | 2.4251x107 | 1.6165x10° | 1.2124x10™

4 | 1.0000x10° | 4.8346x1077 | 2.4173x107 | 1.6115x10~" | 1.2086x10~"

5 | 1.0000x107'° | 4.8331x107 | 2.4166x10° | 1.6110x10”° | 1.2083x10°°

The cases when the non-local bound is not valid, since the existence condition
(9) does not hold, are denoted by asterisks.
Example 6. Consider the matrix equation (1) with matrices
1 0 0] 0 0 0

1
A=|0 1 al|,X,=|0 0 a witha:§—10”‘.
00 1] 000

Suppose that the perturbation E is
s 00

E=|10 s =
_OOS

The perturbation Z in the solution X is the same as in Examples 4 and 5.
The results obtained for k=1, 2, 3, 4, 5 and for v=0.25, 0.5, 0.75, 1 for the
estimated quantity ||z\|, =|| IT,V"'vec(Z) ||, and for the bounds Ce from (7), and

£, (&) from (11), are shown in Table 5.

Table 5. Perturbation bounds for z;= P, 7' vec(Z) (Example 6)

with s =107%F,

vi(€), vi(€), vi(€), Vi),
fllek | e N O I v
1 0 1.4142x107 * 2.2138x1072 | 1.7246x1072 | 1.6073x107>
21 0 1.4142x107% | 1.4227x107* | 1.4172x107* | 1.4159x107* | 1.4154x107*
31 0 1.4142x10°° | 1.4143x10°° | 1.4142x10°° | 1.4142x10° | 1.4142x10°°
41 0 1.4142x10°° | 1.4142x107° | 1.4142x10°° | 1.4142x10°° | 1.4142x10°®
50 0 1.4142x107"° | 1.4142x107'° | 1.4142x107"° | 1.4142x107'° | 1.4142x107"°
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The results for the non-local perturbation bound f,(&) (11) for the norm of Z are

given in Table 6.
Table 6. Perturbation bounds for Z (Example 6)

k 12| e, JAG) I8, S8,

i v=0.25 v=0.5 v=0.75 v=1
1| 1.0000x1072 * 4.4276x1072 | 2.2995x1072 | 1.6073x107
2 | 1.0000x10* | 5.6910x10* | 2.8344x10* | 1.8879x107* | 1.4154x107*
3| 1.0000x10° | 5.6572x107° | 2.8285x107° | 1.8856x10°° | 1.4142x10°°
4 | 1.0000x10° | 5.6569x10° | 2.8284x10° | 1.8856x10° | 1.4142x10°®
5 | 1.0000x107' | 5.6569x1071° | 2.8284x1071° | 1.8856x1071° | 1.4142x107"°

As it is seen, here the local bound Ce estimates a projection of the perturbation
Z in the solution X, which in this particular example is the zero vector.

6. Concluding remarks

In this paper a perturbation analysis of the matrix equation XA—AX =X? is
presented. Local and non-local perturbation bounds are derived under the
Assumptions A2-A4, fulfilled for a set of small perturbations preserving the Jordan
form of A. The local bound concerns only a projection of the perturbation in the
solution and gives satisfactory results for small perturbations in the data. The non-
local bound is slightly more pessimistic but holds when the perturbation in the data
belongs to a preliminary defined domain of applicability of the bound. Numerical
examples demonstrate the effectiveness of the bounds proposed.
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