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Abstract: In a radar the performance of signal detectors is seriously degraded by 
arrival of impulse noise that extremely worsens their detectability characteristics. 
There are many papers, in which different Constant False Alarm Rate (CFAR) 
detectors have been analyzed in the presence of randomly arriving impulse 
interference, described as Poisson pulse sequences. In this paper the randomly 
arriving impulse interference is mathematically described as Binominal pulse 
sequences. This model of impulse noise is used for numerical analysis of two types 
of CFAR pulse detectors (CACFAR and EXC CFAR). The detectability of these 
pulse detectors is numerically analyzed in the presence of Poisson and Binomial 
impulse noise. Therefore, the proposed detectors can be used in different radar 
systems and secondary applications of communication technologies. 
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1. Introduction 

Conventional Cell-Averaging Constant False Alarm Rate (CA CFAR) detectors are 
very efficient in the case of stationary and homogeneous interference. In such noisy 
environment the problem of target detection is formulated as detection of a single 
pulse on the background of Gaussian noise. In a CA CFAR detector, proposed by 
Finn and Johnson, pulse detection is declared if the signal value exceeds the 
threshold, which is formed by averaging the samples of the reference window 
surrounding the test cell [1]. The efficiency of CA CFAR pulse detectors is very 
sensitive to non-stationary and non-homogeneous background and it extremely 
degrades in the presence of strong randomly arriving impulse interference (impulse 
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noise) in both the test resolution cell and the reference window [2]. In recent years 
different approaches have been proposed to improve the detectability of CFAR 
detectors operating in random impulse noise [3-14]. One of them is the use of 
ordered statistics for estimating the noise level in the reference window, proposed 
by R o h l i n g [3]. In Ordered Statistic CFAR (OS CFAR) pulse detectors, the k-th 
ordered sample in the reference window is an estimate of the background level in 
the test resolution cell. The performance of such an OS CFAR detector in the 
presence of multipath interference in existing communication networks is evaluated 
and studied in [4]. Another approach to improve the performance of CFAR 
detectors in the presence of impulse interference is to excise high-power samples 
from the reference window before processing by a conventional CA CFAR pulse 
detector. Goldman used this approach for design of an excision CFAR detector 
(EXC CFAR) described in [5].  

In this paper it is assumed that the samples of the total interference (thermal 
noise plus impulse noise) are distributed according to the compound exponential 
law where the weighting coefficients are the probabilities of corrupting and not 
corrupting the samples by impulse interference. It is also assumed that the samples 
in the test window are distributed according to the compound exponential law and 
the target returns fluctuated according to the Swerling II case.  

As noted above in [6, 7], the quality of CA CFAR pulse train detectors is 
analyzed in the presence of impulse interference that arrives randomly in time from 
a single impulse-noise source. Such impulse interference can be mathematically 
described as a stochastic Poisson-model process, in which the occurrence of a 
random impulse in each range resolution cell is modeled as a Poisson event and the 
power of each random impulse is distributed according to the exponential law with 
a constant parameter. The other model of impulse noise is used for analysis of 
CFAR detectors in [8-14] where it is assumed that the impulse interference arrives 
from two independent impulse-noise sources operating in parallel. Each one of 
them generates a random impulse sequence with the same power intensity and the 
same average repetition frequency. In that case the impulse interference can be 
mathematically described as a stochastic Binomial-model process, in which the 
occurrence of a random impulse in each range resolution cell is modeled as a 
binomial event. The power of a random impulse generated by each impulse-noise 
source is distributed according to the exponential law with the same constant 
parameter.   

The detectability of CFAR detectors can be evaluated in two possible ways. 
The first one is to estimate the detectability losses in Signal-to-Noise Ratio (SNR) 
with respect to the situation of no impulse noise. These detectability losses are 
defined for given values of the probability of detection and false alarm. This 
conventional approach is used in [6, 7] for evaluating the performance of CFAR 
pulse train detectors in the presence of Poisson impulse noise.  

The other method for estimating the detectability of CFAR detectors is used in 
this paper. According to this method, the detectability of CFAR detectors is 
estimated in terms of the detectability losses in the ADT with respect to the 
situation of no impulse noise. The goal of this paper is to explore the detectability 
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of two types of CFAR detectors in the presence of impulse noise by 1, evaluating 
the average decision threshold (ADT) of detectors (the usefulness of estimating the 
ADT for analysis of detectors was firstly demonstrated by Rohling in [3]) and 2) 
assuming that the impulse noise corresponds to the Binomial model. 

Broadly speaking, this paper is an effort to summarize all our theoretical 
results in the analysis of CFAR pulse and pulse train detectors operating in the 
presence of Binomial impulse noise. A part of these theoretical results has been 
published earlier in [6-14].  

2. Signal model 

2.1. Binomial impulse noise 

The Binomial model describes a situation when the impulse noise is derived from 
two independent and identical impulse-noise sources, each of them generating a 
random impulse sequence with the same power intensity and the same average 
repetition frequency [8-14]. The probability of occurrence (e) of a random pulse 
generated by each impulse-noise source in each range resolution cell can be 
expressed as e=Fjtc, where Fj is the average pulse repetition frequency and tc is the 
transmitted pulse duration. This means that the elements of the reference window 
are drawn from three classes. The first class represents the receiver noise only with 
probability (1 − e)2. The second class represents a situation when the signal samples 
are corrupted by a random impulse generated by one of the impulse-noise sources. 
This situation occurs with a probability 2e(1 − e). The third class represents a 
situation when the signal samples are corrupted by a total random pulse that is a 
sum of pulses generated by the two impulse-noise sources. This situation occurs 
with a probability e2. According to the theorem of total probability, the elements of 
the reference window are independent random variables distributed with the 
following probability density function (PDF): 
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where λ0 is the average power of the receiver noise, rj is the average per pulse 
interference-to-noise ratio (INR) at the receiver input, and N is the number of 
samples in the reference window. 

In the presence of a wanted signal in the test resolution cell the signal samples 
are independent random variables distributed with the following PDF: 
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where s is the average per pulse signal-to-noise ratio (SNR). 
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2.2. Poisson impulse noise 

The Poisson model describes a real radar situation when the impulse noise arrives 
from a single impulse-noise source [6-7]. According to this model, in each range 
resolution cell the signal sample may be corrupted by impulse noise with a constant 
probability e0. Therefore, the elements of the reference window are drawn from two 
classes. One class represents the interference-plus-noise with probability e0. The 
other class represents the receiver noise only with probability 1 − e0. According to 
the theorem of total probability, the elements of the reference window are 
independent random variables distributed with the following PDF: 
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In the presence of a desired signal in the test resolution cell the signal samples 
are independent random variables distributed with the following PDF: 
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The probability of occurrence of a random pulse in each range resolution cell 
can be expressed as e0=Fj·tc, it must be noted that if the probability e0 is small  
(e0 <0.1). 

The corresponding probabilities of corrupting and not corrupting calculated as 
a function of the average repetition frequency Fj  are shown in Fig. 1. It can be easy 
seen that when the probability of co-occurrence of random pulses arriving from the 
two impulse-noise sources is small (e2 tends to 0), the Binomial model may be 
approximated with the Poisson models. In that case the probability 2e(1 − e) tends 
to e0 and the probability (1 − e)2 tends to 1 − e0.   

 
Fig. 1. Probabilities of occurrence of a random impulse and noise only for the 
Poisson model: e0 and 1–e0. Probabilities of occurrence of a single random 
impulse, summed impulse and noise only for the Binomial model: e2, 2e(1–e) and 
(1–e)2 
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3. Analysis of CFAR pulse detectors 

In a conventional CFAR pulse detector the estimate of the noise level V is 
calculated by using the samples of the reference window {xi}N surrounding the test 
cell. The threshold of pulse detection (HD) is a product of the estimate V and the 
predetermined detection scale factor T, i.e. HD=VT. The pulse detection is declared, 
if the sample x0 from the test resolution cell exceeds the threshold HD: 
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where H1 is the hypothesis that the test resolution cell contains  a desired signal and 
H0 is the hypothesis that the test resolution cell contains the receiver noise only.  

According to the decision rule (5), the probability of pulse detection PD and 
false alarm PFA are defined as: 
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where  fV (V) is the PDF of the estimate V, f(x0/H1) is the conditional PDF of the test 
sample under  hypothesis H1 , and f(x0/H0) is the conditional PDF of the test sample 
under hypothesis 0H . The detection scale factor T is determined to maintain a 
required probability of false alarm PFA. 

According to [3], the average decision threshold (ADT) of a CFAR pulse 
detector is defined as a normalized value: 
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where E  is the mathematical expectation of V calculated as 
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Mostly, the efficiency of detection is evaluated in terms of the detectability 
losses in SNR with respect to the situation of no impulse noise. The detectability 
losses are defined for given values of the probabilities of detection and false alarm.  

In this paper the detectability of pulse detectors is estimated by the 
detectability losses in ADT according to [3]. In that case, the detectability losses (∆) 
are defined as the ratio of the two ADTs defined for given values of the probability 
of detection and false alarm. These losses are calculated as (in dB): 
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where PFA1 and PD1 are the probabilities of detection and false alarm calculated for 
the case when the impulse noise is present at the receiver input, and PFA2 and PD2 
are the probabilities of detection calculated for the case of  no impulse noise.  
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3.1. Analysis of a CA CFAR pulse detector 

In a conventional CA CFAR pulse detector proposed by Finn and Johnson, the 
noise level is estimated by averaging the outputs of the reference cells surrounding 
the test cell [1], 
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CA CFAR detector in Binomial impulse noise. For a conventional CA CFAR pulse 
detector, where the noise level is estimated by (10), the probability of pulse 
detection is readily computed using the expressions (4) and (6):  
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where MV(.) is the moment generating function (MGF) of the noise level estimate V.  
According to (10), the MGF of the noise level estimate V is calculated as a 

product of the MGF of all samples in the reference window, i.e. MV(U)=Mx
N(U), 

where Mx(U) is the MGF of the random variable xi and defined as 
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In the case of Binomial impulse noise, the PDF of each sample in the reference 
window f(x), is defined by (3), and therefore the corresponding MGF is:  
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Using (13), the MGF of the estimate V is calculated 
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Replacing MV(U) in (11) by (14), the analytical expression for calculating the 
probability of pulse detection takes the form [8, 14],  
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The probability of false alarm is evaluated by (15), where R1, R2 and R3 are 
calculated for s = 0. 

3.2. CA CFAR detector in Poisson impulse noise  

In case of Poisson impulse noise, the analytical expression for calculating the 
probability of pulse detection is obtained in [6, 14],  
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It can be easy seen that the same expression can be obtained from (15) under 
the assumption that e2→0, 2e(1 − e)→e0 and (1 − e)2→1 − e0. It is the case when the 
probability of co-occurrence of the two random pulses in each range resolution cell 
becomes negligible, i.e. e2 tends to 0, but the probability of occurrence of a random 
pulse derived from one of two impulse-noise sources is non-zero, i.e.  
2e(1 − e)>0. The probability of false alarm is calculated by (16), setting s = 0. 

3.3. Average decision threshold of CA CFAR detectors 

In the case of Binomial impulse noise, the average decision threshold (ADT) of a 
CA CFAR pulse detector is calculated using equations (8), (14). After substituting 
U=T/λ0 into (14), differentiating it with respect to T and substituting T = 0, the 
expression for calculating the ADT takes the form [8, 14] 
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where the detection scale factor T is found as a solution of the equation (15), for a 
required value of the probability of false alarm PFA and s=0. 

In case of Poisson impulse noise, the expression for calculating the ADT can 
be easy obtained from (17) assuming that e2→0, 2e(1 − e)→e0 and (1 − e)2→ 1−e0 
[11, 14]: 
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where the detection scale factor T is found as a solution of the equation (16), for a 
required  value of the probability of false alarm PFA and s=0. 

For comparison, in case of no impulse noise, the expression for calculating the 
ADT is obtained in [2]: 
(19)          ADT=TN , where T=(PFA)-1/N – 1. 

3.4 Analysis of an excision CFAR pulse detector 

In an excision CFAR pulse detector (EXC CFAR), the noise level estimate V is 
formed as an average mean of nonzero samples at the output of the limiter, which 
nulls all the input samples that exceed an excision threshold [5, 7, 14]:  
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where k is the number of nonzero samples at the limiter output, and BE is the 
excision threshold. 

Excision CFAR detector in Binomial impulse noise. In case of Binomial impulse 
noise, the PDF of nonzero samples yi at the limiter output may be expressed as 
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The probability that an input sample xi survives at the limiter output is  
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The probability that k out of N samples of the reference window survive at the 
limiter output is 
(23)    ( ) (1 ) .k k N k
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The MGF of the random non-zero variable yi at the limiter output is given by 
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Since the random variables yi, 1 ≤ i ≤ k, are independent, the MGF of the 
estimate V takes the form:  
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Using equations (23)-(26) we obtain the following expression for calculating 

the MGF of the noise level estimate V: 
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The conditioning on k is removed by averaging the last result with coefficients 
q(k) defined by (23): 
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The analytical expression for calculating the probability of pulse detection is 
obtained in [9, 14], 
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The probability of false alarm is calculated by (29) setting s = 0.   

Excision CFAR detector in Poisson impulse noise. In case of Poisson impulse noise, 
the analytical expression for calculating the probability of detection of an EXC 
CFAR pulse detector is obtained in [7, 14], 
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It can be easy seen that the same expression can be obtained from (29) 
assuming that e2→0, 2e(1 − e)→e0 and (1− e)2→1− e0. It is the case when the 
probability of co-occurrence of two random pulses in each range resolution cell 
becomes negligible, i.e. e2 tends to 0, but the probability of occurrence of a random 
pulse from one of two impulse-noise sources is non-zero , i.e. 2e(1− e)>0. The 
probability of false alarm is calculated by (30), setting s = 0. 

Average decision threshold of excision CFAR detectors. In case of Binomial 
impulse noise, the ADT of an excision CFAR pulse detector is calculated by the 
following expression: 
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where the detection scale factor T is found  as a solution of the equation (29) for a 
required value of the probability of false alarm PFA and s=0.  

In case of Poisson impulse noise, the expression for calculating the ADT can 
be easy obtained from (32) assuming that e2→0, 2e(1 − e)→e0 and (1− e)2→ (1− e0) 
[14]: 
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where the detection scale factor T is found  as a solution of the equation (30) for a 
required value of the probability of false alarm PFA and s = 0.  

4. Numerical results  

4.1. CFAR pulse processors in the presence of impulse interference with unknown 
parameters 

The presence of impulse interference with unknown parameters in both, the test 
resolution cells and the reference cells, is a situation when CFAR processors do not 
keep the constant probability of false alarm. In calculations of the false alarm 
probability for the case of strong impulse interference with varying parameters, we 
used the value of a scale factor obtained for the homogeneous background. The 
numerical results for the probability of false alarm are obtained for the following 
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parameters: the average receiver noise power ( λ0 ) equals 1, the average 
interference-to-noise ratio (rj) equals 5 dB and 30 dB, the impulse interference 
probability varies from 0 to 1, the number of reference cells (N) equals 16, the 
probability of false alarm is Pfa = 10−6 and, finally, the excision threshold is BE=2.  

The numerical results, depicted in Figs. 2 and 3, shows the influence of a scale 
factor over the probability of false alarm in CA CFAR and EXC CFAR processors, 
which operate with the fixed scale factor in the presence of strong impulse 
interference. It can be easy seen, that the performance of EXC CFAR processors is 
more stable under conditions of impulse noise than the performance of CA CFAR 
processors.  

It can be seen that the CFAR processors under study fail to maintain the 
constant level of false alarm, using the fixed scale factor for threshold formation. 
This problem can be overcome, if the scale factor is adapted to varying parameters 
of impulse interference. We propose to choose the value of a scale factor from a 
matrix, which contains the values of a scale factor, preliminary calculated for 
different impulse interference parameters. 

 

Fig. 2. False alarm probability is not maintained 
to be constant (Pfa=10-6) – CA CFAR 

Fig. 3. False alarm probability is not maintained 
to be constant (Pfa=10-6) – EXC CFAR 

4.2. CFAR pulse processors in the presence of impulse interference with known 
parameters  

For both pulse detectors, CA CFAR and EXC CFAR, the ADT can be evaluated 
analytically using equations (18, 33). The same results can be also obtained using 
the SNR corresponding to the detection probability of 0.5 evaluated by equations 
(16, 30). The following input parameters are used in calculations of the ADT: λ0=1 
is the average power of the receiver noise; rj = 30 dB is the INR; the probability of 
occurrence of a random pulse varying in the range from 0 to 0.1; N = 16 is the size 
of a reference window; Pfa = 10−6 is the probability of false alarm, and BE = 2 is the 
excision threshold. 

The ADT values calculated for the two pulse detectors are plotted in Fig. 4 as 
a function of the probability of occurrence of a random pulse in each range 
resolution cell. 
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The losses of the CFAR processor decrease when the excision threshold for 
censoring of the impulse interferences is used. 

Fig. 4. Average decision threshold of CA and EXC 
CFAR processors in the presence of Poisson 
distribution of randomly arriving impulse 
interference. The ADT is obtained as the SNR 
required for the adjustment of PD=0.5, and the 
ADT equation 

Fig. 5. Average decision threshold of CA and 
EXC CFAR processors in the presence of 
Binominal distribution flow from impulse 
interference, received as the SNR required for 
the adjustment of PD=0.5, and the ADT 
equation 

The ADT of the CA CFAR and EXC CFAR detectors in the presence of 
Binominal distribution flow from impulse interference are evaluated analytically 
using equations (17), (32), and are plotted in Fig. 5. The same results can be also 
obtained using the SNR corresponding to the detection probability of 0.5 evaluated 
by equations (15), (29). The following input parameters are used in calculations of 
the ADT:  λ0 = 1 is the average power of the receiver noise; rj = 30 dB is the 
INR; [0.1, 0.9]e∈  is the probability of occurrence of a random pulse varying in the 
range from 0.1 to 0.9; N = 16 is the size of a reference window; Pfa = 10−6 is the 
probability of false alarm, and BE = 2 is the excision threshold. 

On the one hand, the noise level estimate in a CA CFAR pulse detector 
increases with the probability of appearance of impulse noise in the range cell. On 
the other hand, in order to maintain the constant false alarm rate, the scale factor T 
should be decreased when the pulse interference frequency increases. It can be seen 
from Fig. 5 that the ADT value of a CA CFAR pulse detector increases when the 
probability of occurrence of impulse noise is relatively low and is within the 
interval [0.1, 0.3], and decreases when the probability of occurrence of a random 
pulse exceeds the value of 0.3. 

In an excision CFAR pulse detector, the impulse noise is censored before noise 
level estimation, and because of this the noise level estimate in the reference 
window is maintained to be constant (Fig. 5). In order to maintain the constant false 
alarm rate, the scale factor T should be increased with the impulse interference 
frequency. It can be seen from Fig. 5 that the ADT value of an excision CFAR 
pulse detector increases very slowly when the probability of occurrence of a 
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random pulse is relatively low and is within the interval [0.1, 0.3], and increases 
very quickly when this probability exceeds the value of 0.3. 

The numerical results obtained show that excision CFAR pulse detectors are 
most suitable for practical application when the probability of occurrence of a 
random pulse is relatively small and does not exceed the value of 0.5. In cases when 
this probability is greater than 0.5, CA CFAR pulse detectors are more appropriate. 
As shown in Fig. 5, the numerical results, obtained analytically by equations (19), 
(32) and the ones calculated by equations (15), (29) using the approach of the SNR 
corresponding to the probability of detection of 0.5, are approximately identical. 
They differ from each other by about 1 dB. All numerical results are obtained in 
MATLAB computational environment. 

5. Conclusions 

In this paper the detectability of CFAR pulse detectors is numerically analyzed in 
the presence of Poisson and Binomial impulse noise. The numerical results 
presented in the paper show that in Poisson and Binomial impulse noise the 
excision CFAR pulse detectors are more appropriate in cases when the probability 
of occurrence of a random pulse is within the interval (0, 0.5). In the case when the 
probability of occurrence of a random impulse is high and exceeds 0.5 (Binomial 
impulse noise), the usage of CA CFAR pulse detectors is more appropriate.   

For comparison, the analytical expressions for calculating the quality 
characteristics of detectors are presented not only for the Binomial model, but for 
the Poisson model as well. It is shown that the expressions for the Poisson model 
can be easy obtained from the corresponding expressions for the Binomial model. 
Therefore, the proposed detectors can be used in different radar systems and 
secondary applications of communication technologies. 
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