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Abstract: Repetitive control is an effective strategy for periodic perturbance 
suppression via filtering their influence onto the control system, assuming that the 
period of perturbances is known. In this present paper, modified Memory Loop 
(ML) structures are proposed and analyzed in the repetitive robust control systems. 
To achieve that purpose, different methods are used for the elaboration of 
configuration and functional capabilities of the ML-structures, in order to set 
repetitive control systems in the class of robust control systems.  
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1. Introduction 

Repetitive control is an effective strategy for automation of technological objects 
characterized by periodic signal perturbances. Repetitive control systems can be 
distinguished from the traditional feedback systems, due to the fact that they contain 
ML-filter [1-10]. The structure of a system with repetitive regulator RRC (containg 
basic regulator R and memory loop MLML) and plant G is shown in Fig. 1. The 
internal parametric disturbances are denoted by ξ. It is assumed that the control 
signal y0 or any other signal perturbances of the system (v, f) show periodic 
character with known constant value of the period Tp. The basic ML is a cut-off 
filter in the system for frequency ωp = 2π/Tp of harmonic signals with a period Tp 
coinciding with the period of v, f or y0. The efficiency of the repetitive system     
(Fig. 1) is manifested in its ability to filer out the influence of these perturbances via 
the ML-filter. It contains a model of a delay e–pT and stores the cut-off frequency ωp. 
Its function is realized through an additive component ε0 over the error ε due to its 
specific structure as a dynamic system. Equations (1)-(3) are valid, where the input 
for R  is ε*, 
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The properties of repetitive systems (Fig. 1) are based on ML-filter with 
memory ML (3). This is obvious from the structure (Fig. 2) and the description of a 
single fictitious closed-loop repetitive system, from which, after equivalent 
transformation equations (4)-(5) are derived 
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The properties of a single system with ML-structure (5) (Fig. 2) are similar to 
those of a standard repeater. Hence, the name of this class of systems is repetitive 
systems or systems with “repetition”. Their properties are preserved independently 
on the application points of the periodic disturbances (v, f, y0). The characteristics of 
the single closed-loop system ΦML (5), which contains the basic MLML, are 
described further in this paper.  

The disadvantages of the strategy for repetitive control are the requirements 
for:  

• precise determination in advance of the period Tp of the signal disturbances   
v,  f,  y0  and  

• lack of fluctuations in the value of Tp.  
In practice, the efficiency of repetitive control using basic ML can be achieved 

only if the period Tp of the signal disturbances is constant and known in advance. In 
[8-10] some systems are proposed for repetitive control based on real-time 
measurement of Tp and adjustment of the ML in respect to the fluctuations of the 
value of Tp. 

In contrast to them, the present paper aims to propose efficient modifications 
of the basic ML towards ML-structures, by means of which the repetitive systems 
with a fixed structure to be set in the class of robust control systems, and their 
disadvantages overcome. In order to achieve this goal several tasks are solved:  

• modified functional and at fluctuations of the value of Tp ML-structures are 
created;  

• the properties of the proposed new ML-structures are analyzed;  
• the design of ML-filters with memory is analytically described;  
• the efficiency of the proposed structures is assessed. 
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2. Improved ML 

In this paper elaborated MLML is proposed (Fig. 3) for the repetitive control 
systems (Fig. 4). It is distinguished from the basic ML-cut-off filter ML [1-10] for 
the use of a model of a delay e–pT, as the delay is a part of another structure  
(Fig. 1). The characteristics of the elaborated MLML as a bandwidth filter, are 
shown in Fig. 5. Equations (6) and (7) are valid and equations (8) and (9) are valid 
for the fictitious single closed-loop system that comprises the filter. The reason for 
the creating of ML (7) is to fulfill the requirements for:  

• Stability of the ML as a component in the repetitive system; 
• Use of ML bandwidth filter with memory allowing modifications needed to 

set repetitive systems in the class of robust systems. 
A comparison between the characteristics of a single system with ML (3) and 

the elaborated ML (8) is shown in Fig. 5. The properties of the fictitious single 
system with ML coincide with those of a standard repeater as a dynamic system, due 
to the higher convergence rate of series (7) compared to series (5). 
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In contrast to the basic ML cut-off filter ML (3), the elaborated ML bandwidth 
filter with memory ML (7) is a stable dynamic system. The quality control 
parameters of repetitive systems with ML are better than those of single systems 
with ML. The realization of the ML is possible when rational approximation of the 
delay e–pT is applied using one of the well-known methods (one dimensional rows, 
chain polynomials, orthogonal or spherical polynomials, n-dimensional symmetric 
or asymmetric series) [11-12].  

 
             a)      b)          c) 

Fig. 5  
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3. Modified MLi -structures 

On the basis of the ML-bandwidth filter ML (Fig. 3), 5 modified MLi-structures in 
the repetitive control systems are proposed in this paper (Fig. 4) – ML,1, ML,2, ML,3, 
ML,4, ML,5, where i  is a structure index. The main reasons for their development are: 

• to be achieved by ML,i a typical characteristic (10) of a bandwidth filter in the 
presence of horizontal profile in the module | ML,i (jω)| of the angular frequency 
∆ωi, symmetrical to the cut-off frequency ωp with lower ωb,i and upper ωh,i limits 
(ωb,i < ωp ; ωh,i > ωp), 
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● to be determined the dynamical parameters of the adjustment of the MLi-
structures, in order to prove the design of MLi -structures and repetitive systems; 

● to fulfill the requirements for: improving the quality and set repetitive 
systems in the class of robust control systems; achieving superior quantitative 
parameters of the quality of repetitive systems with MLi-structures in comparison 
with those with a single ML. 

3.1. The first structure ML,1 (11) is based on modifications of ML (7), shown in 
Fig. 6. They represent augmentation of the cut-off frequency bandwidth of the ML 
(7)  via  consecutive  connection  of  n  dynamic  links  (n = 2, 3, 4, …)  with a 
delay e–pTp.  

 
Fig. 6 
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Fig. 7 
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Fig. 9 

 
Fig. 10 
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3.2. The second structure ML, 2 (12) is based on modifications of ML (7), shown in 
Fig. 7, consisting of augmentation of the cut-off bandwidth frequency via 
combination of series and parallel connections of m links  (m = 2, 3, 4, …)  with a 
delay e–pTp. This structure imposes requirement (13) on the sum of modules |Wk| of 
the equivalent inertial links in the scheme;  
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3.3. The third structure ML, 2 (14) is based on modifications of ML (7), shown in    
Fig. 8, consisting of augmentation of the cut-off bandwidth frequency via parallel 
connection of m groups (m = 2, 3, 4, …) with n (n = 2, 3, 4, …) connected in series 
links with a delay e–pTp. This structure imposes requirement (13) on the sum of 
modules |Wk| of the equivalent inertial links in the scheme;  
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3.4. The fourth structure ML, 4 (15) is based on modifications of ML (7), shown in 
Fig. 9, consisting of augmentation of the cut-off frequency bandwidth via parallel 
connection of links with a delay e–pTp and another group of n links (n = 2, 3, 4, …) 
connected in series with a delay e–pTp. The structure imposes requirement (13) on the 
sum of modules |Wk|; 

(15)         

( ) ( )
( )

( ) ( ) ( )

( ) ( )( )( )

, 4

1

0 1
2

1
0 1

*

2

2 .

pp

p p

L

n
pTpT

q
q

pT pqT

p
p

p

W p e W p e

W p e W p e

ε
ε

−

−−

=
−

− −

= =

⎛ ⎞⎛ ⎞
= − + =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

= − +

∏

M

  

3.5. The fifth structure ML, 5 (16) is based on modifications of ML (7), shown in     
Fig. 10, consisting of augmentation of the cut-off frequency bandwidth via parallel 
connection of links with a delay e–pTp and m groups (m = 2, 3, 4, …) of n links         
(n = 2, 3, 4, …) connected in series  with a delay e–pTp. The structure imposes 
requirement (13) on the sum of modules |Wk|: 

(16)             

( ) ( )
( )

( ) ( ) ( )

( ) ( )

L, 5

1

0
1 2

1

0
1

*

2

2 .

pp

p p

nm
pTpT

k q
k q

m
pT pqkT

k
k

p
p

p

W p e W p e

W p e W p e

ε
ε

−

−−

= =

−

− −

=

= =

⎛ ⎞⎛ ⎞
= − + =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∑ ∏

∑

M

 



 52 

4. Analysis of MLi-structure properties 

The properties of the modified MLi-structures ML, 1, ML, 2, ML, 3, ML, 4, ML, 5, designed 
for repetitive systems (Fig. 4), are determined by the dynamic parameters          
(Figs. 6-10): 

●∆ωi – frequency bandwidth of the horizontal profile of the characteristic; 
●|ML,i| – value of the characteristic module for the bandwidth ∆ωi of the 

horizontal profile, which values are generally a function of the corresponding MLi -
structure, with a number of links or groups of links l with a delay and the value of 
cut-off frequency ωi. 

The structures ML, 1, ML, 2, ML, 3, ML, 4, ML, 5 (Figs. 6-10) are simulated for a 
period Tp = 100 s. The links with a delay are approximated by symmetrical             
n-dimensional series of Padé [11-12]. The results of the model simulation of the 
MLi -structures and the ML-loop are shown in Fig. 11.  

 
  b)          d)                f) 

Fig. 11 

The structures (Figs. 6-10) are modifications of ML (7), shown in Fig. 3. Via 
auxiliary links (regarding the ML-structure) or groups of links with a delay e–pTp, the 
characteristics (Fig. 11) of the MLi-structures (|ML, i|) are profiled as band-pass 
filters (10). The number of links l  being used or groups of links adds l-order of 
auxiliary harmonics (which are multiples of ωp for ω = lωp = 2lπ/Tp, l = 2, 3,          
4, …) in the characteristic of the MLi-structure. These harmonics are placed 
symmetrically regarding ωp in the characteristic. Thus, through the introduced l 
auxiliary harmonics, the point at ω = ωp of the ML-structure characteristic is 
transformed in a horizontal profile for the frequency bandwidth ∆ωi, ∆ωi = f(ωp, li) 
of the corresponding MLi-structure characteristic (Fig. 11). In logarithmic 
representation the bandwidth ∆ω has a central point ωp. Its width is proportional to 
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the number of links l being used or groups of links in the MLi-structure. The 
horizontal profile of the corresponding MLi-structure augments its cut-off properties 
(at the point (ω = ωp) toward bandwidth cut-off properties in ∆ωi. Apparently, if an 
even multiplier is chosen (l = 2, 4, 6, …), the characteristic of the corresponding 
MLi-structure is closer to the desired form of standard bandwidth filter (10). Such 
shaping of the characteristic via auxiliary harmonics is possible only if the 
dynamics of the links or groups of links with a delay in the MLi-structure is 
approximated by n-dimensional series of Padé [11-12]. The realization of the links 
or groups of links via approximation of the delay by one dimensional series of 
Taylor, Maclaurin, Butterworth or by chain approximation, or by Bessel-spherical 
approximation, or by Chebyshev-orthogonal polynomial approximation does not 
offer possibilities for shaping of the characteristics of the MLi-structures via 
auxiliary harmonics.  
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● the cut-off properties of MLi-structures as bandwidth filters are determined 
by the module of the horizontal profile |ML, i(jω)| (10) for the frequency bandwidth 
∆ωi, which is a function of the structure i; depending on the structure i in the region 
of the frequency bandwidth ∆ωi, the module is the range from |ML, 3| = –3 dB to 
|ML, 3| = –7 dB; for each structure i the module of the horizontal profile in the region 
of ∆ωi is |ML, i| = const, independent on the number of the links with a delay being 
used; 

● each of the proposed modifications is a feasible solution of the assigned task 
to work out MLi-structures, which are efficient even at fluctuations of the value of 
Tp in the repetitive control systems (Fig. 4);  

● under one and the same conditions, the properties of the MLi-structures as 
cut-off bandwidth filters differ; their properties are a function of:  the structural 
solution for shaping the characteristic (Figs. 11, 12, 13);  the used number l of 
auxiliary links or groups of links with a delay;  the used method and order of the 
approximation of the delay;  the value of the cut-off frequency ωp. 

5. Design of MLi-filters 

The dynamic properties and the values of the parameters for adjustment of the 
regulator R should obey the aim and criteria, presented to the system (Fig. 4) during 
its synthesis. They are not a function of the corresponding MLi-filter with memory 
in the regulator RRC. In this respect, the design of the MLi-filter with memory in 
repetitive control systems (Fig. 4) is autonomous and it is not related to the 
synthesis of R. Taking into account the results of the analysis of the ML-structure 
properties in the preceding section, visualized by l(Ω, ωp) (17) in Fig. 14, it follows 
that the design method of the MLi-filters determines the type of the structure i and 
the number l of links with a delay (17), and the design algorithm consists in:   

● the choice of the most suitable of the modified structures (Figs. 6-10), 
according to the desired value of the module |ML, i(jω)| of the characteristic for the 
bandwidth ∆ωi of the horizontal profile (Fig. 12);  

● the determination of the number l of the links or groups of links with a 
delay, according to the desired size of the frequency bandwidth ∆ω − analytically 
with given values of ωp and Ω using equation (17) or graphically using Fig. 14 
(0.0001 s–1 ≤ ωp ≤ 0.5 s–1, 1.5 s–1 ≤ Ω ≤ 3.0);  

● the choice of the method for approximation of the delay; 
● the analytical design or the corresponding pre-programming in digital 

technical tools for automation of the components of the chosen MLi-filter structure. 
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pω  pω  pT  pT  

rad/s s–1 s min 

0.000628 0.0001 10000.0 166.66 
0.449110 0.0715 13.9832 0.2330 
0.897591 0.1429   6.9965 0.1166 
1.346073 0.2143   4.6654 0.0777 
1.794555 0.2857   3.4994 0.0583 
2.243037 0.3571   2.7997 0.0466 
2.691518 0.4285   2.3332 0.0388 
3.140000 0.5000   2.0000 0.0333 

Fig. 14 

6. Efficiency of MLi-structures 

In the present paper the efficiency of the proposed modified structures (Figs. 6-10) 
is determined by the fact to what extent each of them under one and the same 
altered conditions meets better the requirements for:  

● improving the quality parameters of the repetitive control systems (Fig. 4);  
● setting repetitive systems in the class of robust control systems;  
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● supremacy of the quantitative quality parameters of the repetitive systems 
with MLi-structures over those with ML and over the classical systems with a 
standard regulator and feedback.  

In order to assess the quality of the systems (including those for repetitive 
control with MLi-structures) on the basis of a particular numerical example of an 
industrial object (defined by a nominal model G* (18) and perturbed on the upper 
limit G  (19) model), as a criterion a critical aperiodic transient process with 
period Tp = 400 s of the perturbations, the following are designed: 

●a● a system comprising a standard PID-controller (20); 
●b● repetitive (Fig. 4) systems (21)-(27) with a PID-controller (20) with ML 

and MLi-structures (Figs. 6-10), for Tp = 400 s and with approximation of the delay 
by n-dimensional symmetric series (28) for n = 2, m = 4; 

●c● repetitive (Fig. 4) systems (21)-(27) with a PID-controller (20) with   
ML2-structure (Fig. 7), for Tp = 400 s and with approximation of the delay: by        
n-dimensional symmetric series (28), by chain polynomials (29), by one-
dimensional Butterworth series (30), by spherical Bessel polynomials (31); by 
orthogonal Chebychev polynomials (32) for n = 2, m = 10; 

●d● repetitive (Fig. 4) systems (21)-(27) with a PID-controller (20) with     
ML-and ML2-structure (Fig. 7), for Tp = 400 s and with approximation of the delay 
by n-dimensional symmetric series (28) for n = 2, m = 2, 4, 6, 8, 10: 

(18)    ( ) ( ) 1 10* 0.15 1 4 ,pG p p e− −= +  

(19)              ( ) ( ) 1 100.24 1 3 ,pG p p e− −= +  

(20)   ( ) ( )( ) ( )( ) 1
2.35 1 8 2 1 8 0.4 1 ,R p p p p p

−
= + + +  

(21)        ( ) ( ) ( ) ( )( ) 11 400
2, 22 2 ,ppT

L p e R p
−−−= − = −M  

(22)        ( ) ( ) ( ) ( )( )( ) 1
1 400

, 1 2, 22 2 ,p
i

piT
L p e R p

−
−−= − = −M  
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110
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, 2 2, 2
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k
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Synthesized systems according to “a, b, c, d” are modeled. These models are 
simulated in parallel, and the results are presented as follows. For each system, 
considering equations (18)-(19), the following is done: 

● determined time for regulation tp (Fig. 15) in respect to the transfer function 
h(t) in the closed-loop systems “a, b, c, d”  using the nominal model G* (18);  

● assessed stability (Fig. 16) by means of the reserve of stability in module 
GM (33.a) and in phase PM (33.b) using G* (18) of the systems “a, b, c, d”, 

(33.a) ( ) ( )10GM 20 log * dB, :arg * ,W j W jπ π πω ω ω π= ≡  

(33.b)  ( )( )( ) ( )0 0 0PM arg * 180 deg, : * 1,W j W jω ω ω= − + ° =  

where: ωπ-value of the frequency ω, for which the argument of the open-loop 
system has a value of 180° (ωπ: arg(W*(jωπ)) ≡π – the first intersection point of the 
hodograph W*(jω) with the negative part of the real axis when increasing the value 
of frequency in the interval ω∈[0, ∞) in polar coordinate representation); ω0 – the 
value of the frequency ω, for which |W*(jω)| obtains the value of one 
(ω0|W*(jω0)|=1 – the first intersection point of the hodograph |W*(jω0)| with the unit 
circle when increasing the value of the frequency in the interval ω∈[0, ∞) and 
W*(jω) enters the unit circle in polar coordinate representation).  

 
             a)      b)          c) 

Fig. 15 

 
             a)      b)          c) 

Fig. 16 
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Table.1 

GM PM tp GM PM tp GM PM tp System 
dB deg s 

System 
dB deg s 

System 
dB deg s 

PID –8 –62 76 PID –8 –62 76 PID –8 –62 76 
2

, 2
n=
LM  –12 –75 238 , 2LM  –17 –105 200 Padé

, 2LM  –17 –105 200 
4

, 2
n=
LM  –14 –82 232 , 4LM  –16 –96 358 Chain

, 2LM  –16 –98 200 
6

, 2
n=
LM  –15 88 225 , 5LM  –15 –91 426 Betterworth

, 2LM  –16 –98 200 
8

, 2
n=
LM  16 96 220 , 3LM  –14 –88 580 Bessel

, 2LM  –16 –98 200 
10

, 2
n=
LM  –17 –105 200 , 1LM  –13 –82 650 Chebychev

, 2LM  –16 –98 200 

Number of the links 
or groups of links with a delay  Type of the ML-structure Method for delay approximation 

Regarding the reserves of stability, the results (Figs. 15, 16), summarized in 
Table 1, confirm the advantage of the repetitive systems (21)-(27) over the standard 
systems (20), but it is at the expense of increased time for adjustment tp. Its 
magnitude depends on the structure i and the number of used links l in the structure. 
The time for adjustment tp is not a function of the method used for approximation of 
the delay. 

● Nyquist-robust analysis is performed of the characteristics of the open-loop 
systems “a, b, c, d” (34)-(35) and the robust stability and robust quality of the 
repetitive systems with MLi-structures are proven. The functional set Π (34) models 
the uncertainty in the real object under control, where ( ) ( )Π Gj jω ω∈ . It is defined 
by the variations ∆G of the characteristic of the real plant G around its nominal 
model G*. The maximum value of this re-parametrization and/or restructuring a  
(respectively m ) determines the so called “perturbed on upper limit” model of the 
plant G . The variations of G are the reason for changes in the characteristic of the 
system, which are modeled by a functional set π (35). The Nyquist-analysis method 
represents graphically the form of π through a family of circles π (jωi). The centers 
of π (jωi) are the featuring points ωi of the hodograph of the nominal open-loop 
system W*(jωi) = R(jωi)G*(jωi). For each value ωi of the frequency ω, the 
corresponding circle π (jωi) is the locus, which can be occupied by the featuring 
point ω = ωi as a result of the variations of the real system W(jωi) = R(jωi)G(jωi), 
from W*(jωi) to “the pertubed on upper limit” system 

( ) ( ) ( )i i iW j R j G jω ω ω= . The radius r0(ωi) of the circle π (jωi), corresponding 
to each value of ωi, is determined by (36), and the parametric equation of the 
circumference π 0(jwi), which describes the circle π (jwi), is (37): 

(34)   ( )
( ) ( ) ( ) ( ) [ )

( )
( ) ( )

( )
( ) ( ) ( )

( )

: * , 0;
* ,

: ,
* *

a

a
m m

G j G j G j
G j G jj

G j
G j G j

ω ω ω ω ω
ω ω ωω

ω ω ω
ω ω

⎧ ⎫∆ − ≤ ∈ ∞
⎪ ⎪−Π = ⎨ ⎬∆ ≤ =⎪ ⎪
⎩ ⎭
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(35)                                         ( ) ( ) [ ), 0; ,j jπ ω ω ω∈ ∈ ∞W  

(36)                    r0(ωi) = |la(ωi)R(ωi)| = |lm(ωi)R(ωi)G*(ωi)|,  

(37)                 ( ) ( ) ( ) ( ) [ )
( ) ( ) ( ) [ )

0
0

0
Re Re* cos , 0, .Im Im* sin , 0,

i i i
i

i i i

rj r
ω ω ωπ ω ω ω ω

⎧ = + Ω Ω∈ ∞=⎨ = + Ω Ω∈ ∞⎩
  

The system is stable for the whole range Π of the variations ∆G (in this 
respect, robustly stable), if the set π (jω), which corresponds to Π, does not contain 
the point (–1, j0) for any of the values of the frequency ω in the range ω∈[0, ∞). 
This is possible only in the cases, when the distance between any point ω = ωi of 
W*(jω), determined by the value of the module |1 + G*(ωi)R(ωi)| and the point        
(–1, j0) is greater than the radius r0(ωi):  

(38)                                    ( ) ( ) ( ) ( )0 * .i i i m ir G Rω ω ω ω=  

The requirement for achieving robust stability of the system toward all points 
from ( )ωπ j  (35) in these cases is affected by (39), (40) (Fig. 17) for the variations 
(18)-(19);  

(39)                                       ( ) ( ) ( )01 * ,G R rω ω ω ω+ > ∀,   , 

(40)                             ( ) ( ) ( ) ( ) ( )1 * * .mG R G Rω ω ω ω ω ω+ > ∀,   

 
             a)      b)          c) 

Fig. 17 

 
             a)      b)          c) 

Fig. 18 

● Robust analysis is done on the characteristics of the response of the closed-
loop systems “a, b, c, d”  and for the variations (18)-(19) the robust stability and the 
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robust quality of the repetitive systems with MLi-structures are proven (Fig. 18). 
The closed-loop systems are robustly stable and with robust performance if the 
requirements toward the sensitivity functions e* and the complementary sensitivity 
functions η* are fulfilled: 

(41)                               ( ) ( )* 1 ,mη ω ω ω< ∀,   

(42)                    ( ) ( ) ( ) ( )* * 1, .m e vη ω ω ω ω ω+ < ∀   

The results (Figs. 17, 18) prove that in the assigned by (18)-(19) region, the 
repetitive systems (Fig. 4) with ML and with MLi-structures “b, c, d” fulfill 
requirements (39)-(42) and they are robustly stable and with robust quality. For the 
system “a” with a standard PID-controller (20) is proven that it does not fulfill 
requirements (39)-(42). It is an essential advantage of the repetitive systems and 
confirms the fact that by means of the proposed MLi-structures the repetitive 
systems “b, c, d” (Fig. 4) are set in the class of the robust control systems. 

● the reserve of robust stability is determined [11] on the characteristics of the 
open-loop kMSOL (43) repetitive systems “b, c, d” (Fig. 19), and on the 
characteristics of the closed-loop kMSCL (44) repetitive systems “b, c, d” (21)-(27) 
for the variations (18)-(19): 

(43)                  ( ) ( )
( ) ( ) [ )MSOL 1, , 0, ,

1 *
r j

k
R j G j

ω
ω ω ω

ω ω
= ≤ ∀ ∈ ∞

+
 

(44)                       ( ) ( ) ( ) [ )MSCL 1 0, , 0, .mk ω η ω ω ω ω= − ≥ ∀ ∈ ∞  
● the reserve [11] of robust performance kMPOL (45) (Fig. 20) of the repetitive 

systems “b, c, d” (Fig. 4) (21)-(27) is determined for the variations (18)-(19); 

(45)               
( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) [ )

M POL

1 *
1

1 *
1, , 0, .

1

R j G j r j
k

R j G j
R j G j r j

R j G j

ω ω ω
ω

ω ω
ω ω ω

ω ω
ω ω

+ −
= =

+
+ −

= ≤ ∀ ∈ ∞
+

 

 
             a)      b)          c) 

Fig. 19 
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         a)       b)              c) 

Fig. 20 

The reserves of robustness (43)-(45) are quantitative assessment of the the 
capability of the synthesized system, preserving its robust properties to counteract 
efficiently the parametric or structural disturbances outside the range of re-
parametrization and restructuring (18)-(19), specified during the design process. 
The greater the value of this quantitative assessment for a particular system is, thw 
greater its capabilities will be to counteract efficiently the disturbances outside the 
designed norms. 

In contrast to the reserves GM and PM (33) of stability of the systems with 
fixed structure and parameters (quantitatively determined as scalars), the reserves of 
robustness (43)-(45) are determined as functions of the frequency and they are not 
scalars quantities. They are quantitative assessment of the robust properties of 
control systems for industrial plants, which analytical model ( ) ( )Π j jω ω∈G  (34) 
varies parametrically and structurally as a function of the perturbances ξ (Fig. 4) of 
apriori uncertainty. 

The reserve of robust stability kMSOL(ω) (43) is determined either as a ratio for 
each value of the frequency ω = ωi, of the radius r0(ωi) of the circles π0(jωi), 
representing the apriori uncertainty, and the distance |1+G*(ωi)R(ωi)| from the 
corresponding point of the hodograph of the nominal open-loop system W*(jωi) to 
the point (–1, j0), or as kMSCL(ω) (44) – functional dependence of the frequency of 
the positive, complementary to unity module ( ) ( )mη ω ω  of the closed-loop 
system. 

The reserve of robust quality kMPOL(ω) (45) is determined for each value of the 
frequency ω = ωi as a ratio of the difference between the distance from W*(jω) to 
the point (–1, j0) and the radius r0(ωi) of the circles, representing apriori uncertainty, 
and the distance from ( )W jω  to the point (–1, j0), defined by the value of the 

module ( ) ( )1 .i iG Rω ω+     
The reserves of robustness (41) and (43) are shown in Figs. 19 and 20 for the 

analyzed repetitive systems “b, c, d” (Fig. 4). The results confirm the advantages of 
the systems with MLi-filters over the repetitive systems with ML-filter. 
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7. Conclusion 

The novelty of this work is in the achieved original and new results, methods and 
proves, giving rational solutions in the development and application of repetitive 
control systems: 

● Elaborated ML- and modified MLi-stable structures are proposed as 
bandwidth cut-off filters with memory and with horizontal profile in repetitive 
control systems, which are efficient even at variations of the period Tp of the 
disturbances; also a method for shaping the characteristics via additive harmonics is 
proposed; and it is proven that the proposed structures set repetitive systems in the 
class of robust control systems.  

● The properties of these systems are analyzed and the dynamic parameters 
are determined for adjustment of MLi-filters, their dependence upon the parameters 
of the corresponding structures and cut-off frequency is defined and analyzed 
analytically; 

● A method and an algorithm for the design of MLi-filters are developed for 
the synthesis of repetitive control systems; 

● The efficiency of the proposed MLi-stable structures is proven through: 
– Comparative assessment of the quantitative parameters of the quality 

(determined by the time for adjustment and the reserves of stability), 
– Proof of the robust properties, 
– Comparative assessment of the quantitative parameters of the robust 

properties (determined by the reserves of robust stability and the robust 
performance) of the standard and repetitive systems under one and the same 
conditions; 

● The advantages of the systems with MLi-filters over repetitive systems with 
ML-filter are confirmed; 

● A number of numerical examples are solved, confirming the efficiency of 
the proposed methods in the design of MLi-filters and repetitive control systems.  
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