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Abstract: We consider a polling system with adaptive polling mechanism describing
the performance of broadband wireless Wi-Fi and WiMax networks. A server visits
gueues in cyclic order depending on the state of queues in the previous cycle in the
following way. A queue is skipped (not visited) by a server if it was empty in the
previous cycle. The skipped queues are polled in the next cycle only. Such a polling
mechanism is referred to as adaptive one. We propose to reduce an adaptive
polling mechanism to a Bernoulli polling scheme allowing investigation of the
model with the mean value analysis.
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1. Introduction

The models of polling systems whose study dates from the late 1950’ s found wide
use in the public health systems, air and railway transportation, and communication
systems. The number of works on the polling systems is quite large. Classification
of polling systems, methods and results of their investigation are reviewed in [4, 5,
6, 11, 13, 14].

The rapid development of the telecommunication networks and cellular
communications in particular which is often caled “the wireless revolution” has
made it necessary to create and investigate the models describing the features of
such systems and networks [10]. The polling models for investigating the
characteristics of personal and local wireless networks are analyzed in [3, 7]; those
intended for the regional wireless broadband regional networks with centralized
contral, in[8, 9].



The adaptive polling mechanism with queue skips in a cycle adequately
describes the performance of broadband wireless Wi-Fi and WiMax networks
where the number of abonent stations is large. When base station polls the abonent
ones cyclicaly it can be impossible to poll al stations in a cycle thus some of them
have to be skipped. One of the criteriato skip (not to poll) a queue (abonent station)
in acycleisits emptiness at the previous polling moment. The polling moment of a
gueue is referred to as a moment when the server (base station) checks if there are
packets in a queue to be transmitted. Unfortunately the adaptive mechanism is hard
enough to be analyzed so we use approximation methods and polling schemes, e.g.
athreshold polling scheme [12].

In the present paper we show how the adaptive polling mechanism can be
reduced to a Bernoulli scheme and develop an approximate algorithm for
calculation of the mean waiting time in a queue on the base of mean time
analysis[15].

2. Mode€

We consider a polling system with a single server and N queues, N > 2. Each queue
has infinite buffer capacity. The server visits and serves the queues in a cyclic
adaptive order. Such an order is not fixed but changes at the beginning of a cycle
depending on the states of queuesin the previous cycle.

The i-th queue has its own Poisson input of customers with rate 4. The service
timesin the queue i are independent, identically distributed random variables with a

mean b, and second moment bi(z). Service at each queue is a gated one: when the
server visits a queue it serves al, and only, customers present in the queue at the
polling instant.

When the server visits the queue the setup time is incurred of which the first

and second moment are denoted by g, and gi(z), i= L_N .

We refer to a queue polling instant as a moment when the server has
completed the setup time and ready to serve the queue. It is supposed that the server
does not know the queue length until the setup time is expired. If a queue is empty
at its polling moment the server will skip (not visit) this queue in the next cycle. If
all queues are to be skipped the server initiates an empty cycle, i.e. takes a vacation
having an exponential distribution with mean z and then polls al queues starting
from queue 1.

The occupation rate p, at queue i is defined as p =4b;, i=J,_N. The totd
occupation rate is pzzi’ilpi. The necessary and sufficient condition for the

stability of the polling system under considerationis p < 1[2].

In the next section we develop the approximate approach and reduce the
adaptive mechanism to Bernoulli polling, [1]. The system under consideration
differs from the one in [1] by the fact that the setup time is incurred only if a queue
isvisited for service.



3. Mean cycle length and probability of a queue visit

Suppose that the queuei is visited in the current cycle with a probability u;. Suppose
that the probability does not depend on the number of the cycle. In that case the
adaptive polling mechanism can be approximated by a Bernoulli scheme which is
described as follows. The set of probabilities (uy, ..., uy), isfixed, O<u; <1, i =1, N.
The queue is served in the cycle with a probability u; and with additional probability
the server moves to the next queue.
For the adaptive mechanism the probabilities uj, ..., uy depend on the mean
cyclelength C and can be calculated as
u=1-u+ul-e*%),
where C is the mean cycle length. The cycle length means the time for the server to
visit queues from 1 to N excluding queues to be skipped. Let us give a short
explanation for the formula above. A queue is visited in a cycle when it was
skipped in the previous cycle (with a probability 1 — u) or it was visited in the
previous cycle (with a probability u;) and customers arrived to the queue during the
intervisit time (the time between two successive visits to the queue).
It follows from the equation above that
1 T
D U e i=1N.
The mean queue length is determined by the formula

Co Zi’il gy + THi’il(l_ u) .
1-p
The relations (1) and (2) give the system of equations for calculation of the
unknown values C and uy, ..., Ux.

The second way to determine the probabilities u;, i =1, N, can be applied
when the probability that a queue is empty at a polling instant can be calculated or
estimated. Thisway is described as follows.

Consider the stochastic process ¢, j>1, where ¢ is the status of the queuei in
j-th cycle, that iscij =0 if the queue is skipped and ¢;; =1 otherwise.

The state of the process ¢, j >1, depends on its previous state and the queue

(2)

i state in the j-th cycle. If ¢, =1 and the queue i is empty at the polling instant in
the (j — 1)-th cycle, we have c{” = 0. Otherwise, ¢!’ =1. The probability u; that the
gueuei isvisited by the server in an arbitrary cycle is the stationary state probability
that ¢’ =1,
= lim P{c’ =1, i=1N.

Let z$’ be the stationary state probability that the queue i is empty at a polling
instant and x{’, |, k=0,1, be one step transition probabilities of the process
{c,i>3,



(©) =0, x =1
(4) Xo =76, X
The probability u; can be calculated from the balance equation

U = P(c = 0 + Plcl) =3

=1-7{".

Hence,
u=@Q-u) 1+ul- ”oi))
and from (3) we have

) u

1
1+ 70"
Note that probabilities z{", i =1,N, are unknown and the formula (5) can
only be exploited when these probabilities are cal culated or estimated.

4. Mean gqueue length

In this section we derive the approximation for the mean queue length at an
arbitrary time on the base of mean value analysis [15].
Let & be the average time the server spends in the queue i plus the average

setup time to queue i +1 under condition that the queuei +1 is visited by the server,
i=1,N.We suppose that in the empty cycle the server is cyclicaly visiting all the
queues and it spends the mean time 7/ N in each queue without customer service.
Thevalue 6 isdefined as

6 =pC+g. U, ,+vr/N, i=1N,
where V=Hil(1— u;) is the probability that a cycle is empty, 1,_,, equals 1 if

i =N and equals 0 otherwise. Asin [15] we define the (i, j)-period as the sum of |

consecutive visit times starting from queue i, the mean of the period is defined as
i+j-1

0, = Z 6,, i,j=1N.

The fraction of time the system spendsin the (i, j)-period is given by

o, .. —
qi,jz?a I’JZ:LN-
The mean of aresidud (i, j)-period is given by
o —
:L’ i’ . = N)
Rﬂ,j 20 =1

ij
where 6% is the second moment of (i, j)-period length.

Denote by L;; the mean queue i length at an arbitrary epoch of visiting the
gueuej, i, j =1, N . The corresponding unconditional queue length is defined as



N —
L= 0l i=LN.
n=1
The value Lj; in the case i = | is the sum of two variables [; and [, ;. The

value [; isthe number of customers to be served at an arbitrary epoch of visit to
queue i. The value [;; isthe number of customers that arrived during the service

time of the queue and will be served inthe next cycle. Incasei= | L, =[;;. Tha

1
B

is
L, = E%'M +C, j=LN
The corresponding unconditi olnal mean queue length L; is calculated as
(6) u=£i+ti§:iqn,lti,n+ti§, i=1N.
One more equation for the val ule Lin;;n be derived Iby Little's law
(7) L = AW,

where W, is the mean waiting time in the queue i (the time from a customer’s arrival
at queuei until its service starts).
The customer arriving to queue i has to wait for the service of al customers

Li waiti ng before the gate on its arrival. Further, it has to wait until the first polling
instant of queue i equalling a residual (i, N)-period, i.e., aresidua cycle. And with
probability 1 — u; the queuei was not visited in the previous cycle, so the customer
has to wait one more cycle. Thus, the mean waiting time W, is given by

(8) W=[h+R, +(1-u)C, i=1N,
which, in combination with Little's Law (7), gives us the following relation
9) L =(+AR, +4@-u)C, i=1N.

The number of customers at an arbitrary moment of the period (i, j) is the
number of Poisson arrivals during the age of the period plus the arrivals during the
cycleif the queue was not visited in the previous cycle,

i+j-1 -
(10) > hip AR, +A@-W)C, i.j=IN.
n=i Y !

Substituting (6) in (9) we get
1) @-p)Y Gl L=4R, +4@-u)C, i=1N.

n=1 i
Note that equations (10) and (11) form the system of N(N+1) linear equations
for [;, [;; ad RGH . To calculate the unknown mean residual (i, j)-periods from

this system, below we obtain dependence of Re,_J on[; and ;.



The mean residual (i, 1)-period lasts at least the sum of the service times of the

customers behind the gate if the queuei isvisited for service. With probability i

the mean residual servicetime

i
Rq_2h

and the mean setup time for queue i + 1 is added given that the queue i + 1 is not

skipped. Further, with a probability u';—s’” the mean residual setup time for the
i1
gueuei +1

i+1 Zgnl

is generated. Finaly, the mean residual (i, 1)-period equals to the mean residual
time server spends at queuei, that is, 7/ N if the cycle is empty (with probability v).
Thus, we have

(12) |+1gi+1 vz

+—.
9- Rg|+1 N

|,1 'b'L' 9 (RA + |+1g|+1]
il
Consider the case of the mean residual (i, 2)-period. With probability g—l , the

i1

value of R, equas R, +g,U,, plusthe service times of customers present in

the queue i + 1 at an arbitrary moment when the server visits the queue i and of
customers arriving to the queue i + 1 during the mean time R, given that the

gueuei + 1isvisited. With additional probability (1—31) it equals R . Thus,
g -
(13) R@l 2 ) = [R@ll + ui+2$+2 + (2"|+1R6'L1 + Li+],i)h+lui+1j +
i,2
q| qi
1__1 Reun :_’l(Rgll(lJ’_ 'D”lui*l)—i_
G > " G '

. G ;
+U_ S, + Lisvi +lui+l)+(1_q_,lJ RHHl.l, : :l

i,2

Thevalues R, for j=2,N canbe obtained in asimilar way,

(14) R9 - ql = (RHMH (1+p|+nu|+n) +
j-1
+Z( |+n+1§+n+l+ L|+n|b|+n |+n) H (1+ pi+mui+m)J+
n=1 m=n+1
qi,j 141,j-1



Finally, the equations (12)-(14) form a set of N? linear equations. Solving the
equations (10)-(11) and (12)-(14), we get the unknowns |;, [;; and Ra,,, . Then,

the unconditional mean queue lengths and mean delays are easily calculated from
(6) and (8).

5. Numerical example

To illustrate the obtained results we present numerical examples. We compare the
approximate results presented above with simulation results.

Let us consider a symmetric polling system with two queues and exponentially
distributed service times. In this case we omit the subscript i for the queue
characteristics. The mean service time b = 0.311, mean setup time g = 0.091. The
approximate results (column “T"), simulation results (column “E") and relative
error of comparison (column “A”") are shown in Table 1. We compare the mean
cycle length C, probability u that queue is polled in the cycle and mean queue
length L.

Table 1. A symmetric system with two queues

A p C.ulL T | E | A% T | E [ A%
c 7=0.05 =01
2=05, 0.154 0.157 2.06 0.171 0.168 1.77
p=0311 u 0.526 0.534 15 0.528 0.537 17
L 0.240 0.233 2.9 0.247 0.235 49
c 7=0.05 7=0.1
A=1, 0.300 0.310 3.28 0.326 0.328 0.61
p=0.622 u 0.595 0.596 0.16 0.600 0.602 0.33
L 0.697 0.740 5.98 0.723 0.744 2.86

Now let the number of queues in the system be 5. The input intensities are
=1 A =2, 43=05, 14 =6, 45 = 0.5. The mean setup time is the same for al
gueues and eguals 0.05, the mean time of an empty cycle r = 0.05. Table 2 shows
results for two values of the mean service time 0.05 and 0.07.

Table 2. A system with five queues

Cu L, T | E [A % T | E | A%
b=0.05, p=05 b=0.07, p=07
C 0.321 0.331 3.0 0.587 0.593 1.05
Uy 0.579 0.620 6.74 0.642 0.678 5.33
U, 0.654 0.696 6.17 0.764 0.769 0.7
Us 0.539 0.568 5.25 0.572 0.608 5.98
Ug 0.871 0.851 2.25 0.974 0.910 6.51
Us 0.539 0.568 5.32 0.572 0.607 5.91
Ly 0.434 0.429 1.15 0.763 0.738 3.33
L, 0.843 0.793 5.76 1.47 1.400 4.87
Ly 0.222 0.227 2.30 0.393 0.400 1.76
Ly 2.50 2.351 6.18 5.013 4772 4.96
Ls 0.222 0.229 3.10 0.393 0.405 2.00




The results obtained for the mean service times b; = 0.07, b, = 0.015, b; = 0.1,
b, = 0.025, bs = 0.4 are shown in Table 3.

Table 3. Nonsymmetric service in queues

C, Ui, Li T E A , %
C 0.321 0.324 0.89
Uy 0.579 0.612 5.44
U, 0.654 0.676 3.20
Uz 0.539 0.564 4.38
Uy 0.871 0.819 6.19
Us 0.539 0.566 474
Ly 0.473 0.508 6.88
L, 0.846 0.887 4.73
Ly 0.287 0.285 0.70
Ly 2.416 2.376 1.66
Ls 0.287 0.286 0.35

6. Conclusion

A polling system with adaptive polling mechanism is considered. The adaptive
mechanism means that the order in which the server visits queues depends on the
states of queues in the previous cycle, i.e. the server does not visit queues that were
empty at their polling moments in the previous cycle. The adaptive mechanism is
reduced to a Bernoulli one, that is a queue is polled in a cycle with some
probability. The mean waiting time in each queue is obtained on the base of mean
value analysis.
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