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Abstract: We consider a polling system with adaptive polling mechanism describing 
the performance of broadband wireless Wi-Fi and WiMax networks. A server visits 
queues in cyclic order depending on the state of queues in the previous cycle in the 
following way. A queue is skipped (not visited) by a server if it was empty in the 
previous cycle. The skipped queues are polled in the next cycle only. Such a polling 
mechanism is referred to as adaptive one. We propose to reduce an adaptive 
polling mechanism to a Bernoulli polling scheme allowing investigation of the 
model with the mean value analysis.  
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1. Introduction 

The models of polling systems whose study dates from the late 1950’s found wide 
use in the public health systems, air and railway transportation, and communication 
systems. The number of works on the polling systems is quite large. Classification 
of polling systems, methods and results of their investigation are reviewed in [4, 5, 
6, 11, 13, 14].  

The rapid development of the telecommunication networks and cellular 
communications in particular which is often called “the wireless revolution” has 
made it necessary to create and investigate the models describing the features of 
such systems and networks [10]. The polling models for investigating the 
characteristics of personal and local wireless networks are analyzed in [3, 7]; those 
intended for the regional wireless broadband regional networks with centralized 
control, in [8, 9].  
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The adaptive polling mechanism with queue skips in a cycle adequately 
describes the performance of broadband wireless Wi-Fi and WiMax networks 
where the number of abonent stations is large. When base station polls the abonent 
ones cyclically it can be impossible to poll all stations in a cycle thus some of them 
have to be skipped. One of the criteria to skip (not to poll) a queue (abonent station) 
in a cycle is its emptiness at the previous polling moment. The polling moment of a 
queue is referred to as a moment when the server (base station) checks if there are 
packets in a queue to be transmitted. Unfortunately the adaptive mechanism is hard 
enough to be analyzed so we use approximation methods and polling schemes, e.g. 
a threshold polling scheme [12].  

In the present paper we show how the adaptive polling mechanism can be 
reduced to a Bernoulli scheme and develop an approximate algorithm for 
calculation of the mean waiting time in a queue on the base of mean time  
analysis [15].  

2. Model 

We consider a polling system with a single server and N queues, N ≥ 2. Each queue 
has infinite buffer capacity. The server visits and serves the queues in a cyclic 
adaptive order. Such an order is not fixed but changes at the beginning of a cycle 
depending on the states of queues in the previous cycle.  

The i-th queue has its own Poisson input of customers with rate λi. The service 
times in the queue i are independent, identically distributed random variables with a 
mean bi and second moment bi

(2)
. Service at each queue is a gated one: when the 

server visits a queue it serves all, and only, customers present in the queue at the 
polling instant.  

When the server visits the queue the setup time is incurred of which the first 
and second moment are denoted by gi and gi

(2)
, 1,i N= .  

We refer to a queue polling instant as a moment when the server has 
completed the setup time and ready to serve the queue. It is supposed that the server 
does not know the queue length until the setup time is expired. If a queue is empty 
at its polling moment the server will skip (not visit) this queue in the next cycle. If 
all queues are to be skipped the server initiates an empty cycle, i.e. takes a vacation 
having an exponential distribution with mean τ and then polls all queues starting 
from queue 1.  

The occupation rate ρi at queue i is defined as ρi =λibi, 1,i N= . The total 
occupation rate is 1

N
iiρ ρ== ∑ . The necessary and sufficient condition for the 

stability of the polling system under consideration is ρ < 1 [2].  
In the next section we develop the approximate approach and reduce the 

adaptive mechanism to Bernoulli polling, [1]. The system under consideration 
differs from the one in [1] by the fact that the setup time is incurred only if a queue 
is visited for service.  
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3. Mean cycle length and probability of a queue visit 

Suppose that the queue i is visited in the current cycle with a probability ui. Suppose 
that the probability does not depend on the number of the cycle. In that case the 
adaptive polling mechanism can be approximated by a Bernoulli scheme which is 
described as follows. The set of probabilities (u1, …, uN), is fixed, 0< ui ≤1, 1,i N= . 
The queue is served in the cycle with a probability ui and with additional probability 
the server moves to the next queue.  

For the adaptive mechanism the probabilities u1, …, uN depend on the mean 
cycle length C and can be calculated as  

1 (1 )iC
i i iu u u e λ−= − + − ,  

where C is the mean cycle length. The cycle length means the time for the server to 
visit queues from 1 to N excluding queues to be skipped. Let us give a short 
explanation for the formula above. A queue is visited in a cycle when it was 
skipped in the previous cycle (with a probability 1 – ui) or it was visited in the 
previous cycle (with a probability ui) and customers arrived to the queue during the 
intervisit time (the time between two successive visits to the queue).  

It follows from the equation above that  

(1)   1 1
1 ii Cu i N

e λ−= , = , .
+

 

The mean queue length is determined by the formula  

(2)          1 1
(1 )

1

NN
i i ii i

g u u
C

τ
ρ

= =
+ −

= .
−

∑ ∏  

The relations (1) and (2) give the system of equations for calculation of the 
unknown values C and u1, …, uN.  

The second way to determine the probabilities ui, 1,i N= , can be applied 
when the probability that a queue is empty at a polling instant can be calculated or 
estimated. This way is described as follows.  

Consider the stochastic process ci,j, j≥1, where ci,j is the status of the queue i in 
j-th cycle, that is ci,j =0 if the queue is skipped and ci,j =1 otherwise.  

The state of the process ( )i
jc , 1j ≥ , depends on its previous state and the queue 

i state in the j-th cycle. If ( )
1 1i

jc − =  and the queue i is empty at the polling instant in 

the (j – 1)-th cycle, we have ( ) 0i
jc = . Otherwise, ( ) 1i

jc = . The probability ui that the 
queue i is visited by the server in an arbitrary cycle is the stationary state probability 
that ( ) 1i

jc = ,  
( )lim { 1} 1i

i jj
u P c i N

→∞
= = , = , .  

Let ( )
0

iπ  be the stationary state probability that the queue i is empty at a polling 

instant and ( )i
lkx , 0 1l k, = , , be one step transition probabilities of the process 

( ){ 1}i
jc j, ≥ ,  
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(3)    ( ) ( )
00 010 1i ix x= , = ,  

(4)         ( ) ( ) ( ) ( )
10 0 11 01i i i ix xπ π= , = − .  

The probability ui can be calculated from the balance equation  
( ) ( ) ( ) ( )

01 11{ 0} { 1}i i i i
i j ju P c x P c x= = + = .  

Hence,  
( )
0(1 ) 1 (1 )i

i i iu u u π= − ⋅ + −  
and from (3) we have  

(5)        ( )
0

1
1i iu

π
= .

+
 

Note that probabilities ( )
0

iπ , 1,i N= , are unknown and the formula (5) can 
only be exploited when these probabilities are calculated or estimated.  

4. Mean queue length 

In this section we derive the approximation for the mean queue length at an 
arbitrary time on the base of mean value analysis [15].  

Let iθ  be the average time the server spends in the queue i plus the average 
setup time to queue i +1 under condition that the queue i +1 is visited by the server, 

1,i N= . We suppose that in the empty cycle the server is cyclically visiting all the 
queues and it spends the mean time Nτ /  in each queue without customer service. 
The value iθ  is defined as  

1 1 1i i i iC g u v N i Nθ ρ τ+ += + + / , = , ,  

where 
1
(1 )N

ii
v u

=
= −∏  is the probability that a cycle is empty, { }i NI =  equals 1 if 

i N=  and equals 0 otherwise. As in [15] we define the (i, j)-period as the sum of j 
consecutive visit times starting from queue i , the mean of the period is defined as  

1

1
i j

i j n
n i

i j Nθ θ
+ −

,
=

= , , = , .∑  

The fraction of time the system spends in the (i, j)-period is given by  

1i j
i jq i j N

C
θ ,

, = , , = , .  

The mean of a residual (i, j)-period is given by  
(2)

1
2i j

i j

i j

R i j Nθ

θ
θ,

,

,

= , , = , ,  

where (2)
i jθ ,  is the second moment of (i, j)-period length.  

Denote by Li,j the mean queue i length at an arbitrary epoch of visiting the 
queue j, , 1,i j N= . The corresponding unconditional queue length is defined as  
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1
1

1
N

i n i n
n

L q L i N, ,
=

= , = , .∑  

The value Li,j in the case i = j is the sum of two variables iL  and i jL , . The 
value iL  is the number of customers to be served at an arbitrary epoch of visit to 
queue i. The value i iL ,  is the number of customers that arrived during the service 
time of the queue and will be served in the next cycle. In case i j≠  i ji jL L ,, = . That 
is  

{ } 1i
i i ji j i j

i

L I i j NL Lu
ρ

,, == + , , = , .  

The corresponding unconditional mean queue length Li is calculated as  

(6)   1
1

1
N

i i
i ii i ni n

ni i

L q i NL LL Lu u
ρ ρ

,,
=

= + = + , = , .∑  

One more equation for the value Li can be derived by Little’s law  
(7)     i i iL Wλ= ,  
where Wi is the mean waiting time in the queue i (the time from a customer’s arrival 
at queue i until its service starts).  

The customer arriving to queue i has to wait for the service of all customers 
iL  waiting before the gate on its arrival. Further, it has to wait until the first polling 

instant of queue i equalling a residual (i, N)-period, i.e., a residual cycle. And with 
probability 1 – ui  the queue i was not visited in the previous cycle, so the customer 
has to wait one more cycle. Thus, the mean waiting time Wi is given by  
(8)            (1 ) 1 ,

i jii i iW b R u C i NL θ ,
= + + − , = ,  

which, in combination with Little’s Law (7), gives us the following relation  
(9)              (1 ) 1

i jii i i iL R u C i NL θλ λ
,

= + + − , = , .  

The number of customers at an arbitrary moment of the period (i, j) is the 
number of Poisson arrivals during the age of the period plus the arrivals during the 
cycle if the queue was not visited in the previous cycle,  

(10)     
1

1 (1 ) 1
i j

i j
n

i n i i i
n i i j

q
R u C i j NLq θλ λ

,

+ −
,

,
= ,

= + − , , = , .∑  

Substituting (6) in (9) we get  

(11) 1
1

(1 ) (1 ) 1
i j

N
i

ii ni n i i i
n i

q R u C i NLL u θ
ρ

ρ λ λ
,,,

=

− + = + − , = , .∑  

Note that equations (10) and (11) form the system of N(N+1) linear equations 
for iL , i jL ,  and 

i j
Rθ ,

. To calculate the unknown mean residual (i, j)-periods from 

this system, below we obtain dependence of 
i j

Rθ ,
 on iL  and i jL , .  
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The mean residual (i, 1)-period lasts at least the sum of the service times of the 

customers behind the gate if the queue i is visited for service. With probability 
,1

i

i

Cρ
θ

 

the mean residual service time  
(2)

2i

i
b

i

bR
b

=  

and the mean setup time for queue i + 1 is added given that the queue i + 1 is not 

skipped. Further, with a probability 1 1

1

i i

i

u s
θ
+ +

,

 the mean residual setup time for the 

queue i + 1  

1

(2)
1

12i

i
g

i

gR
g+

+

+

=  

is generated. Finally, the mean residual (i, 1)-period equals to the mean residual 
time server spends at queue i, that is, τ / N if the cycle is empty (with probability v). 
Thus, we have  

(12)          
1 1

1 1
1 1

1 1
i i i

i i i
ii i b i i g

i i

C u g vR u b R u g RL Nθ
ρ τ
θ θ, +

⎛ ⎞ + +
⎜ ⎟+ +⎝ ⎠

, ,

= + + + + .  

Consider the case of the mean residual (i, 2)-period. With probability 1

2

i

i

q
q

,

,
, the 

value of 
2i

Rθ ,
 equals 

1 2 2i i iR g uθ , + ++  plus the service times of customers present in 
the queue i + 1 at an arbitrary moment when the server visits the queue i and of 
customers arriving to the queue i + 1 during the mean time 

1i
Rθ ,

 given that the 

queue i + 1 is visited. With additional probability ( )1

2
1 i

i

q
q

,

,
− , it equals 

1 1i
Rθ + ,

. Thus,  

(13)          
2 1 1

1
12 2 1 1 1

2

( )
i i i

i
i ii i i i i

i

q
R R u s R b uLqθ θ θλ

, , ,

⎛ ⎞,
⎜ ⎟+ ,+ + + + +⎝ ⎠

,

= + + + +  

(1 1 1

1 1
1 1

2 2

1 (1 )
i i

i i
i i

i i

q q
R R u

q qθ θ ρ
+ , ,

, ,
+ +

, ,

⎛ ⎞
+ − = + +⎜ ⎟⎜ ⎟

⎝ ⎠
 

)
1 1

1
12 2 1 1

2

1 1
i

i
i ii i i i

i

q
u s b u R i NL q θ + ,

,
+ ,+ + + +

,

⎛ ⎞
+ + + − , = , .⎜ ⎟⎜ ⎟

⎝ ⎠
 

The values 
i j

Rθ ,
 for 2j N= ,  can be obtained in a similar way,  

(14)   
1

1
1

1

(1 )
i j i

j
i

i n i n
ni j

q
R R u

qθ θ ρ
, ,

−
,

+ +
=,

⎛
= + +⎜

⎝
∏  

1 1

1 1
1 1

(1 )
j j

i n ii n i n i n i n i m i m
n m n

u s b u uL ρ
− −

⎛ ⎞
⎜ ⎟+ ,+ + + + + + + +⎝ ⎠

= = +

⎞
+ + + +⎟

⎠
∑ ∏  

1 1

11 1 2
i j

i

i j

q
R i N j N

q θ + , −

,

,

⎛ ⎞
+ − , = , , = , .⎜ ⎟⎜ ⎟

⎝ ⎠
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Finally, the equations (12)-(14) form a set of N2 linear equations. Solving the 
equations (10)-(11) and (12)-(14), we get the unknowns iL , i jL ,  and 

i j
Rθ ,

. Then, 

the unconditional mean queue lengths and mean delays are easily calculated from 
(6) and (8).  

5. Numerical example 

To illustrate the obtained results we present numerical examples. We compare the 
approximate results presented above with simulation results.  

Let us consider a symmetric polling system with two queues and exponentially 
distributed service times. In this case we omit the subscript i for the queue 
characteristics. The mean service time b = 0.311, mean setup time g = 0.091. The 
approximate results (column “T”), simulation results (column “E”) and relative 
error of comparison (column “∆”) are shown in Table 1. We compare the mean 
cycle length C, probability u that queue is polled in the cycle and mean queue 
length L.  
Table 1. A symmetric system with two queues 

λ, ρ C, u, L T  E  ∆, %  T  E  ∆, %   
τ = 0.05 τ = 0.1 C 

0.154 0.157 2.06 0.171 0.168 1.77  
u 0.526 0.534 1.5 0.528 0.537 1.7  

λ = 0.5, 
ρ = 0.311 

L 0.240  0.233  2.9  0.247  0.235  4.9   
τ = 0.05 τ = 0.1 C  

0.300 0.310 3.28 0.326 0.328 0.61  
u 0.595 0.596 0.16 0.600 0.602 0.33  

λ = 1, 
ρ = 0.622 

L 0.697  0.740 5.98  0.723 0.744  2.86   

Now let the number of queues in the system be 5. The input intensities are         
λ1 = 1, λ2 = 2, λ3 = 0.5, λ4 = 6, λ5 = 0.5. The mean setup time is the same for all 
queues and equals 0.05, the mean time of an empty cycle τ = 0.05. Table 2 shows 
results for two values of the mean service time 0.05 and 0.07.  
     Table 2. A system with five queues 

T  E  ∆ , % T  E  ∆ , %   C, ui, Li b = 0.05, ρ = 0.5 b = 0.07, ρ = 0.7 
C 0.321 0.331 3.0 0.587 0.593 1.05  
u1 0.579 0.620 6.74 0.642 0.678 5.33  
u2 0.654 0.696 6.17 0.764 0.769 0.7  
u3 0.539 0.568 5.25 0.572 0.608 5.98  
u4 0.871 0.851 2.25 0.974 0.910 6.51  
u5 0.539 0.568 5.32 0.572 0.607 5.91  
L1 0.434  0.429 1.15  0.763 0.738 3.33   
L2 0.843  0.793 5.76  1.47 1.400 4.87   
L3 0.222  0.227 2.30  0.393  0.400 1.76   
L4 2.50  2.351 6.18  5.013 4.772 4.96   
L5 0.222  0.229 3.10  0.393  0.405 2.00   
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The results obtained for the mean service times b1 = 0.07, b2 = 0.015, b3 = 0.1, 
b4 = 0.025, b5 = 0.4 are shown in Table 3.  
                               Table 3. Nonsymmetric service in queues  

C, ui, Li T  E  ∆ , %   
C  0.321 0.324 0.89   
u1 0.579 0.612 5.44  
u2 0.654 0.676 3.20  
u3 0.539 0.564 4.38  
u4 0.871 0.819 6.19  
u5 0.539 0.566 4.74  
L1 0.473  0.508 6.88   
L2 0.846  0.887 4.73   
L3 0.287  0.285 0.70   
L4 2.416  2.376 1.66   
L5 0.287  0.286 0.35   

6. Conclusion 

A polling system with adaptive polling mechanism is considered. The adaptive 
mechanism means that the order in which the server visits queues depends on the 
states of queues in the previous cycle, i.e. the server does not visit queues that were 
empty at their polling moments in the previous cycle. The adaptive mechanism is 
reduced to a Bernoulli one, that is a queue is polled in a cycle with some 
probability. The mean waiting time in each queue is obtained on the base of mean 
value analysis.  
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