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Abstract: The paper proposes a neural network solution to the indirect vector control
of three phase induction motor including a real-time trained neural controller for the
IM  angular velocity, which permitted the speed up reaction to the variable load. The
basic equations and elements of the indirect field oriented control scheme are given.
The control scheme is realized by one recurrent and two feedforward neural networks.
The first one is learned in real-time by the dynamic BP method and the two FFNNs
are learned off-line by the Levenberg-Marquardt algorithm with data taken by PI-
control simulations. The final set up MSE of the LM algorithm is of  10-10. The graphical
results of modeling show a better performance of the adaptive NN control system
with respect to the PI controlled system realizing the same computational control
scheme with variable load.
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1. Introduction

The Neural Networks (NN) applications for identification and control of electrical
drives became very popular in the last decade. In [1] an adaptive neuro-fuzzy system
is applied for a stepping motor drive control. In [2] a multilayer perceptron-based-
neural-control is applied for a DC motor drive. In [3] a recurrent neural network is
applied for identification and adaptive control of a DC motor drive mechanical system.
In the last decade a great boost is made in the area of induction motor drive control.
The Induction Motor (IM), particularly the cage type, is most commonly used in
adjustable speed AC drive systems [4]. The control of AC machines is considerably
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more complex than that of DC machines. The complexity arises because of the variable-
frequency power supply, AC signals processing, and complex dynamics of the AC
machine [4, 5]. In the vector or Field-Oriented Control (FOC) methods, an AC machine
is controlled as a separately excited DC machine, where the active (torque) and the
reactive (field) current components are orthogonal and mutually decoupled so they
could be controlled independently [47]. There exist two methods for PWM current
controlled inverter – direct and indirect vector control, [4]. This paper will consider
the indirect control method, where the slip angle, the direct and quadrature axes stator
current set point components in stationary rotation frame are computed from the torque
and rotor flux set points and used for vector control. There are several papers of NN
application for AC motor drive indirect vector control. In [8] a Feedforward NN
(FFNN) and Backpropagation (BP) learning are used for angular velocity estimation
and control of an IM, using only the stator current measurements. The authors of [9]
presented a method of NN velocity estimation and IM control based on the flux,
voltage and currents models. In [10] a neural controller is implemented based on a
TMS320C30 microprocessor in order to emulate an indirect Field Oriented Control
(FOC) of an IM drive. In [11] an adaptive velocity controller is presented by a reference
model, based on neural networks. In [12] a model referenced robust method of NN
velocity control is proposed, that is based on neural identifier and a neural PI controller.
In [13] a NN based adaptive control of an IM is proposed. The NN learning algorithm
is derived using the Lyapunov theorem of stability. In [14] the authors proposed an
IM velocity control scheme, containing a conventional PI controller, a dynamic
compensator, a neural IM parameter identifier and a NN load torque estimator. The
NN identifier is used to estimate the IM parameters and so to tune the dynamic
compensator gains and the output signal of the NN load torque estimator is used for
feedforward control. In [15] it is proposed to use a NN in order to design a self tuning
PI velocity controller incorporated in an IM indirect vector control scheme. The paper
[16] proposed to use a NN as an adaptive feedforward IM velocity controller. In [17]
a FFNN-based estimator of the feedback signals is used for induction motor drive
FOC system. The authors of [18] proposed two NN-based methods for FOC of
induction motors. The first one used a NN flux observer in a direct FOC. The second
one used a NN for flux and torque decoupling in an indirect FOC. The results and
particular solutions obtained in the referenced papers show that the application of
NN offers a fast and improved alternative of the classical FOC schemes. The present
paper proposes a total neural solution of an indirect IM velocity vector control problem
which assures fast response and adaptation to a variable load.

2. Models of the induction machine

2.1. A phase (a, b, c) model
The Induction Motor (IM) equations [6, 7], for stator and rotor voltages in vector-
matrix form are given as

(1)                                    abcs s abcs abcsv r i p  ,

(2)                                     abcr r abcr abcrv r i p  ,
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(3)                                  3s sr r I ; 3r rr r I ,
where:

(4)     
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   
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T T

T T
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, , ; , , ;

, , ; , , ;

, , ; , ,

abcs as bs cs abcr ar br cr

abcs as bs cs abcr ar br cr

abcs as bs cs abcr ar br cr

v v v v v v v v

i i i i i i i i

       

 

 

 

are voltage, current, and flux, stator and rotor, three dimensional (a, b, c) vectors,
with given up phase components; rs and rr are stator and rotor winding resistance
diagonal matrices, with given up equal elements rs and rr, respectively; I3 is an identity
matrix with dimension three, and p. is a Laplacian differential operator. The vector-
matrix block-form representation of the flux leakage is given by the equation

(5)                     
T

?

?? ?? ( )

abc abcabcs abcsss sr

abc abc
abcrsr rrabcr

iL L

iL L





     
     
        

,

where the stator, rotor and mutual block-inductance 33 matrices are:

(6)                

/ 2 / 2
/ 2 / 2
/ 2 / 2

ls ss ss ss
abc
ss ss ls ss ss

ss ss ls ss

L L L L
L L L L L

L L L L

   
     
    

,

(7)                

?

? ?

?

/ 2 / 2

/ 2 / 2

/ 2 / 2

lr ss ss ss

abc
rr ss lr ss ss

ss ss lr ss

L L L L

L L L L L

L L L L

   
 
    
 
    

,

(8) 
T

  ? ?
cos cos[ (2 / 3)] cos[ (2 / 3)]

cos[ (2 / 3)] cos cos[ (2 / 3)]
cos[ (2 / 3)] cos[ (2 / 3)] cos

r r r
abc abc

sr rs ss r r r

r r r

L L L
    

    
    

  
       
   

.

The matrix elements here are: Lls , Llr – stator and rotor leakage inductances;
 Lss, Lrr – stator and rotor winding inductances. Using the winding turns stator/rotor
ratio n, the relative leakage inductance L'ls , could be written as

2?
lr lrL n L ; 

0
( ) (0),

t

r r rd     
where θr and ωr are the angular rotor position and the angular rotor velocity,
respectively.

Now, the voltage equations (1) and (2) could be expressed with respect to the
stator in the final (a, b, c) form
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(9)             
?

? ?? ? ?( )

abc abc
abcs abcss ss sr

abc T abc
abcr abcrsr r rr

v ir pL pL

v ipL r pL

    
    
        

,

where the relative rotor voltage, current, flux and resistance values are:

(10)                    2

? ?

? ?
; (1/ ) ,

; .
abcr abcr abcr abcr

abcr abcr r r

v nv i n i

n r n r 

 

 

2.2. A (q, d, 0) model

The (a, b, c) model is very complicated for control, so it could be simplified using a
transformation to the (q, d, 0) form. The AC motor equations for the stator and rotor
voltages in vector-matrix form are given as follows:

(11)                         0 0 0 0qd s s qd s qd s qd sv r i p    ,

(12)                   ' ' ' '
0 0 0 0qd r r qd r qd r qd rv r i p     ,

where:

(13)

   
   
   

TT ' ' ' '
0 0 0 0

TT ' ' ' '
0 0 0 0

TT ' ' ' '
0 0 0 0

, , ; , , ,

, , ; , , ,

, , ; , ,

qd s qs ds s qd r qr dr r

qd s qs ds s qd r qr dr r

qd s qs ds s qd r qr dr r

v v v v v v v v

i i i i i i i i

       

 

 

 

are: voltage, current, and flux, stator and rotor, three-dimensional (q, d, 0) vectors,
with given up components; rs and rr are stator and rotor resistance diagonal matrices,
given by (3); Ω, and Δ Ω are diagonal angular velocity matrices, given by

(14)          

0 0
0 0 ;
0 0 0




 
    
  

  

0 0
0 ( ) 0 .
0 0 0

r

r

 
 

 
     
  

The vector-matrix block-form representation of the flux leakage is given by the
equation

(15)                          

0 00 0

0 0
00

?

?? ??
,

( )

qd qdqd s qd sss sr

qd T qd
qd rsr rrqd r

iL L
iL L





     
     
        

where the stator, rotor and mutual block-inductance 33 matrices are:
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(16)                       0

0 0
0 0 ,
0 0

ls ss
qd
ss ls ss

ls

L L
L L L

L

 
   
  

(17)                     
0

?

? ?

?

0 0

0 0 ,

0 0

lr m

qd
rr lr m

lr

L L

L L L

L

 
 
  
 
  

(18)                                
T

 0  0
3

? ?qd qd
sr rs mL L L I    ,

where Lm represents the mutual inductance.
The (q, d, 0) model could be written in the stationary and synchronous frames

taking the angular velocity equal to: ω = 0 and ω = ωe, where ωe corresponds to the
angular velocity of the stator field.

Now we could write the scalar electromagnetic torque equation which could be
expressed in the following four forms:

(19)                                
 

T
em , ,

'T '
, ,

3 [
2 2

],

d q s q d s
r

r d q r q d r

PT i

i




  

 

 

 

 

(20)                                     T
em , ,

3
2 2 d q s q d s

PT i   ,

(21)                                    'T '
em , ,

3
2 2 q d r d q r

PT i   ,

(22)                                     'T
em , ,

3
2 2 d q r q d s

PT i i  ,

where P is the number of poles and

   
   
   

TT ' ' '
, ,

TT ' ' '
, ,

T T' ' ' ' ' '
, ,

, ; , ,

, ; , ,

, ; , .

d q s ds qs d q r d r qr

q d s qs ds q d r qr dr

d q r dr qr q d r qr dr

i i i i i i

i i i

     

  

 

 

 

   

 

  

If we know the output power Po of the IM, we could write the following relation
for the torque with respect to the rotor angular velocity
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(23)                               oem (  / )
2 r
PT P  .

2.3. Field orientation conditions

The flux and torque equations decoupling must transform the stator flux, current and
voltage vectors from (a, b, c) reference frame to (q–d, s) reference frame and then to
stationary and synchronous reference frame. Fig. 1 illustrates the current and voltage
vector representations in stator and rotor synchronous frames. Fig. 1 illustrates also
the magnetic field orientation, where the rotor flux vector is equal to the d-component
of the flux vector, represented in a synchronous reference frame (λ’e

dr=λr), which is
aligned with the d-component of the current in this frame. For more clarity, the current
and flux orientation in the synchronous reference frame are shown on Fig. 2. So, the
field orientation conditions are the following [7]:

(24)                                ? 0e
qr  ; ? 0e

qrp  ; 'e
r dr  .

Taking into account that the rotor windings are shortcut (the rotor voltage is zero) and
the field orientation conditions (24), the first two components of the equation (12),
obtain the form

(25)                              

' ' '

' ' '

0 ( ) ,

0 .
r qr e r dr

r dr dr

e e

e e

r i

r i p

  



  

 

From (15), for the q-component of the rotor flux, it is obtained:

(26)                 ' ' ' 0;e
qr m qs r qr
e eL i L i     ' '

r lr mL L L  .

Fig. 1. The current and voltage vector representations
in stator and in rotor synchronous reference frames
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Fig. 2. The stator current and the rotor flux vector representations in synchronous reference frame

From (26) it is easy to obtain:

(27)                                      ' '( / ) e
qr m r qs
ei L L i  .

Taking into account the condition (24), the torque equation (21) could be written
in the form

(28)                                      em
' '3

2 2 dr qr
e ePT i  .

The substitution of (27) in (28) finally gives

(29)                                  em
'

'
3
2 2

em
dr qs

r

eLPT i
L

 .

This equation shows that if the flux of the rotor is maintained constant, the torque
could be controlled by the q-component of the stator current in synchronous reference
frame. From the second equation of (25) it is easy to obtain the slipping angular
velocity as:

(30)                                 ' ' '( / )e e
e r r qr drr i     .

The substitution of (27) in (30) finally gives

(31)                            ' ' '( / )( / )e e
e r r m r qs drr L L i    .

The final equations (29), (31) give the necessary basis for a direct decoupled
field oriented (vector) control of the AC motor drive, where following Fig. 2, the
q-component of the stator current produces torque and the d-component of the stator
current produces flux.

2.4. Coordinate transformations

First of all we need to perform a coordinate transformation of stator variables from
(a, b, c) to (q–d, s) reference frames and its inverse. For sake of simplicity we shall
show only the stator currents transformation – the other vectors transformations are
similar to that, which is
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(32)       

1 0
1 1/ 2 1/ 2 1 3;

2 20 3 / 2 3 / 2
1 3
2 2

as ass s
qs qs

bs bss s
ds ds

cs cs

i i
i i

i i
i i

i i

 
 

                                         
   

.

The (q–d, s) to (q–d, s, e) transformation of stator currents in synchronous reference
frame and its inverse (see Fig. 1) are given by

(33)           
cos sin cos sin

;
sin cos sin cos

e s s e
qs qs qs qs
e s s e
ds ds ds ds

i i i i
i i i i

   
   

           
                     

.

The combined stator current transformation from (a, b, c) to (q–d, s, e) synchronous
reference frame and its inverse are obtained combining equations (32) and (33), as

(34)           
1 2

2 4
3 4

1 3

cos sin
cos

; ,
sin

as ase e
qs qs

bs bse e
ds ds

cs cs

i i
i f f i

i i f f
i f f i

i i f f

 



     
                                    

(35)                    

1

2

3

4

[ (1/ 2)cos ( 3 / 2)sin ],

[ (1/ 2)cos ( 3 / 2)sin ],

[ (1/ 2)sin ( 3 / 2)cos ],

[ (1/ 2)sin ( 3 / 2)cos ].

f

f

f

f

 

 

 

 

  

  

  

  

2.5. Stator current set point estimation

The indirect control is based on equation (31). If this equation holds, this is a necessary
and sufficient condition to produce an adequate field orientation. This assure that the
d-flux rotor component in synchronous reference frame λ’e

dr will be aligned with the
d-current stator component in synchronous reference frame ie

ds (see Figs.1 and 2).
Furthermore, this condition could be propagated to the set-point variables. The equation
(31) could be expressed with respect to set point variables, so to obtain

(36)                        * *' ' '( / )( / )e e
e r r m r qs drr L L i    .

In the same manner, from equation (29), written for the set-point variables, we
could obtain a relationship for the q-current stator set-point component in synchronous
reference frame ie*

qs , expressed with respect to torque and flux set-points, as it follows:

(37)           * * * * *' ' ' '(2 / 3)(2 / )( / )( / );e e e
qs r m em dr dr ri P L L T     .
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The computation of the d-current stator set-point component in synchronous
reference frame ie*

ds, required some more mathematical manipulations. From the rotor
part of the equation (15) we could extract the equation for the d-flux rotor component
which is

(38)                               ' ' ' 'e e e e
dr lr dr m ds drL i L i i    .

From (38) we could obtain:

(39)                                 ' ' '( ) /e e e
dr dr m ds ri L i L  .

From the second equation of (25) we could obtain the following equation:

(40)                                      ' ' '/e e
dr dr ri p r  .

Equating the right parts of (40) and (39), and expressing the result with respect
to the set-point variables, we could obtain the necessary d-current stator set-point

component in synchronous reference frame *e
dsi  as follows:

(41)                                 * *' ' ' '( / )e e
ds r r dr r mi r L p r L  .

If we accept that the rotor flux set- point (see (37)) is constant and its derivative
is zero, the equation (41) is simplified as follows:

(42)                               * * * *' '; /e e e
dr m ds ds r mL i i L   .

The substitution of (42) in (36) gives

(43)
* *

0

' '(1/ )( / );  ( / ); ( ) .
t

e e
sl e r r qs ds r r r sl ri i L r ds            

So, the basic equations for an indirect FOC of IM are (37), (41) and (43).

3. Indirect vector control of the IM

3.1. A general control scheme

A general block diagram of the indirect vector control of the Induction Motor drive is
given on Fig. 3. The indirect control scheme contains five principal blocks. They are:
G1 – block of angular velocity PI controller; block of the stator current set-point
estimation. This computational block estimates the (q–d, s, e) components ie*

qs , ie*
ds

and the slip velocity ωsl , performing field orientation (see equations (37), (41) and
(43)); block C of  ρ, sin ρ, cos ρ computations (see equation (43)), where the slip
velocity is added to the measured rotor velocity and the result is integrated on time
(see (43)) to obtain the ρ-angle; block of coordinates (q–d, s, e) to (a, b, c) current
transformation (see equations (34), and (35)); block of the converter machine system,
and induction motor. The block of the converter machine system contains a three
phase bridge ASCI DC-AC current fed inverter, current hysteresis controllers, an
induction motor model, and a model of the whole mechanical system driven by the
IM, which is

5
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(44)                              em L(2/ ) ( / )rP J d dt T T   ,
where J is the moment of inertia; TL is the load torque.

Fig. 3. General block-diagram of the indirect IM vector control

3.2. A Neural Network (NN) realization of the indirect vector control scheme

The simplified block-diagram of the direct neural vector control system, given
on Fig, 3 is partly realized by NNs. It contains three NNs. We will describe in brief
the function, the topology and the learning of each NN.

RNN1: The first Recurrent NN1 (RNN1) is an angular velocity recurrent neural
controller with one input (the velocity error) and one output (the torque set point).
The weights learning is done in real time using the Backpropagation (BP) algorithm.
The topology (see Fig. 4), learning and stability proof of this RNN are fully described
in [3].

Fig. 4. Topology of the RNN1 velocity controller

The RNN1 function is given by
(45) h o

vel* ( 1) { ( 1) [ ( ) ( ) ( ) ( ) ( )] ( 1)},T k c k a k x k b k e k w k w k         
where: a(.) and b(.) are hidden layer RNN1 weights; c(.) is an output layer RNN1
weight; wh(.), wo(.) are threshold weights of the hidden and output RNN1 layers,
respectively; φ is a tanh activation function; evel  is a velocity error; T* is the torque
set point – output of the RNN1. The BP algorithm of learning for the output layer of
the RNN1 [3] is given by

+ Z -1 +
b k( )

u k( )

hw k( )
x k+1( ) x k( )

a k( )

z k( )
c k( )

ow k( )
v k( ) y k( )

-1-1

-
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(46)            
2

vel
o o 2

vel

*

*

( 1) ( ) ( )[1 ( ( )) ] ( ),

( 1) ( ) ( )[1 ( ( )) ]( 1).

c k c k e k T k z k
w k w k e k T k





   

    

The BP algorithm of learning for the hidden layer of the RNN1 [3] is
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where the learning rate η = 0.01.
FFNN2: The second Feedforward NN2 (FFNN2) performs a current set points

ie*
qs , ie*

ds  and slip velocity ωsl estimation, by means of a field orientation (see equations
(37), (41) and (43)), given the torque and flux set points. If we admit that the flux set
point is constant, we could use equation (42) instead of equation (41). The topology
of this multilayer FFNN2 is of two inputs (flux and torque set points), three outputs
(two current set points and slip velocity) and five and two neurons in the hidden
layers (2-5-2-3). The off-line algorithm of its learning is the Levenberg-Marquardt
(LM) one [19, 20]. The FFNN2 is learned by 2500 input-output patterns (half period)
and generalized by another 2500 ones (the other half period) during 496 epochs. The
final value of the MSE reached during the learning is of 10-10.

FFNN3: The third NN3 performs a stator current set points (q–d, s, e) to (a, b, c)
transformation (using equations (34), (35)). The FFNN3 topology has four inputs
(two stator current set points  ie*

qs , ie*
ds ; sin ρ, cos ρ), three outputs ( * * *, ,as bs csi i i – stator

current set points) and two hidden layers of 30 and 10 neurons each (4-30-10-3). The
FFNN3 learning is off-line, applying the Levenberg-Marquardt algorithm [19, 20].
The final value of the MSE reached during the learning is of 1010. The FFNN3 is
learned by 2500 input-output patterns and generalized by 2500 ones during 30 epochs
of learning.

4. Graphical results of control system modelling

The parameters of the IM used in the control system modeling are: power 20 Hp;
nominal velocity – N = 1800 Rev/m; pole number P = 4; voltage 220 V; nominal
current – 75 A; phase number 3; nominal frequency 60 Hz; stator resistance
rs = 0.1062 ; rotor resistance referenced to stator rr' = 0.0764 ; stator inductance
Ls = 0.5689. 10–3 H; rotor inductance referenced to stator Lr' = 0.5689.10–3 H;
magnetizing inductance Lm = 15.4749.10–3 H; moment of inertia J = 2.8 kg.m2. The
control system modelling is done changing the load torque in different moment of
time. Figs. 5 and 6 show the angular velocity set point vs. the IM angular velocity
without and with load torque changes. The results show that the angular velocity
control system has a fast speed up response and satisfactory behaviour in  case of a
load change. Fig. 7 shows the flux graphics of the control system with PI control vs.
neural control without and with load changes. The results show a faster and better
response of the neural system. Figs. 8 and 9 show the graphics of the IM torque for a
system with PI control vs neural control without and with load changes. The results
show a faster and better response of the neural system in both of the cases.
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Fig. 5. General graphics of the angular velocity control with load variation in some regions

Fig. 6. Graphical results of angular velocity control with load changes
(pointed line-graphics of the load torque variations)
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Fig. 7. Graphics of the flux control using both control schemes (classical control  continuous line;
neural control  pointed line): a  systems start; b load variations

a

b

Fig. 8. Graphics of the torque control using both control schemes (classical control continuous
line; neural control  pointed line): a  process history; b  systems start

a

b
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b
Fig. 9. Detailed graphical results of torque control in load variation conditions applying both control

schemes (classical control-continuous line; neural control-pointed line): a  both torque graphics
from 0.7 up to 1.2 s; b both torque graphics from 1.2 up to 1.7 s

Fig. 10 shows the (a, b, c) stator current set-points and the (a, b, c) stator currents
of current hysteresis controlled system start. Fig. 11 shows the same variables in the
case of load changes. The results show a good performance of the neural control
system at all.

                                             a)   b)

                                             c) d)
Fig. 10. Graphical results of (a, b, c) stator current set points (Figs. a  and b  and (a, b, c) currents
(Figs. c and d during the start of the IM: a  current set points-PI control; b  current set points  

neural control; c   currents-PI control;  d   currents-neural control.

a

a

c

b

d
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Fig. 11. Graphical results of (a, b, c) stator current set points (Figs. a and b and (a, b, c) currents
(Figs. c and d during load variations: a current set points-PI control; b current set points-neural

control; c  currents-PI control;  d currents-neural control.

5. Conclusions

The paper proposes a neural network solution to the indirect vector control of a three
phase induction motor including a real-time trained neural controller for the IM angular
velocity which permitted the speed up reaction to the variable load. The basic equations
and elements of the indirect field oriented control scheme are given. The control
scheme is realized by one recurrent and two feedforward neural networks. The first
one is learned in real-time by the dynamic BP method and the two FFNNs are learned
off-line by the Levenberg-Marquardt algorithm with data taken by PI-control
simulations. The final set up MSE of the LM algorithm is of 10-10. The graphical
results of modelling shows a better performance of the adaptive NN control system
with respect to the PI controlled system realizing the same computational control
scheme with variable load.
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