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Abstract: The paper proposed a new adaptive control system containing a Recurrent
Neural Network (RNN) identifier, a Sliding Mode Controller (SMC), and an I-term
controller. The SMC is derived defining the sliding surface with respect to the output
tracking error and using a nonlinear plant identification, and state estimation RNN,
which gives all the necessary state and parameter information to resolve the SMC.
Furthermore, the adaptive abilities of the RNN permit the SMC to maintain the sliding
regime when the plant parameters changed. So to compensate constant process
disturbances, an I-term controller is used. Comparative simulation results obtained
with a fed-batch fermentation plant model confirmed the good quality of the proposed
control scheme.
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1. Introduction

The sliding mode control (SMC) raised a great fame in the last decade. The theory
basis of such control in continuous time cases, is given in the fundamental book of
U t k i n [1]. In [2], a sliding mode control is designed via Lyapunov approach. The
main definitions for the discrete-time sliding mode control (DTSMC), are given in
[3, 4], and the designed control is bounded in an admissible domain. In [5], the DTSMC
has been applied for two-mass mechanical system where a full order observer is used
to estimate the necessary state variables. In [6], it is proposed to use the discrete-time
sliding mode to control multi-input, multi-output plants, where a stability analysis of
the closed loop system is done. In more recent publications like [7] a SMC is used for
weight update of Radial Basis Function Neural Network adaptive controller of inverted
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pendulum system. This idea is first proposed by Sira-Ramirez, [8], who updated the
weights of an adaline Feddforward Neural Network (FFNN) by means of a SMC. In
[9] it is proposed a new type of SMC – fuzzy-neural networks (FNN) SMC, which is
developed for a class of large-scale systems with unknown bounds of high-order
interconnections and disturbances. The author here proposed to eliminate the chattering
caused by the discontinuous sign control function using a continuous output of the
FNN to replace it. In some other publications like [3], the chattering is eliminated
substituting the sign function by saturation or dead-zone one, (see also [6]). In [10], a
SMC of nonlinear systems is proposed using Neural Network (NN). Here the NN of
peceptron type is used to determine the sliding surface function and the control input.
The chattering is eliminated using a sigmoid activation function instead of sign one.
In [11], the SMC is applied for a class of hydraulic position servo where good
experimental results are obtained. The desired trajectory is defined by a two order
reference model, the SMC is designed via Lyapunov function, and the saturation
function is used instead of the sign function, so to reduce the degree of chattering. In
[12], a robust SMC is obtained for a class of uncertain dynamic delay systems. The
SMC is designed by means of coordinate transformation and Lyapunov function,
which guarantees uniform ultimate boundedness of all motions. In [13], an adaptive
fuzzy SMC of nonlinear systems is proposed. The unknown state and input
nonlinearities are estimated by a fuzzy logic system and two Lyapunov function based
design methods are given. In [14], a robust SMC with fuzzy tuning is proposed. The
control action is adapted by means of fuzzy system so to compensate the influence of
unmodelled dynamics and chattering. In [15], a DTSMC for nonlinear systems with
unmatched state and control uncertainties is proposed. The designed saturation function
generates the necessary robust boundary layer which is used also to smooth the
chattering. Finally, the paper of [16] represents a practical engineer’s guide to SMC
for both continuous and discrete-time cases. The main problem of the SMC is that the
sliding surface is defined with respect to the state error, [9], and not to the output
error, so all state variables are to be known. Also the systems noise, uncertainties and
chattering have to be overcame, [16]. The present paper proposes to define the sliding
surface with respect to the output tracking error, and to use a nonlinear plant
identification and state estimation Recurrent Neural Network (RNN), [17], which
gives all the necessary state and parameter information to resolve the SMC.
Furthermore, the adaptive abilities of the RNN permitted the SMC to maintain the
sliding regime when the plant parameters changed. So to compensate constant process
disturbances, an I-term controller is added. The paper is organized as follows: Part 2
give a short description of the RNN topology and learning; Part 3 derive the sliding
mode control algorithm; Part 4 described the SMC with I-term, Part 5 give graphical
simulation results with nonlinear plant; Part 6 represents the concluding remarks.

2. Recurrent Neural Network topology and learning

In [17, 18], a discrete-time model of Recurrent Trainable Neural Network (RTNN),
and a dynamic Backpropagation (BP) weight updating rule, are given. The RTNN is
given by
(1)                                 X(k+1) = AX(k)+BU(k),
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(2)                                      Z(k)=[X(k)],
(3)                                    Y(k) = [CZ(k)],
(4)                               A = block-diag (Ai); Ai 0,

where  X(k)  is an  N-state vector of  the system; U(k) is a  M-input vector; Y(k) is a
L-output vector; Z(k) is an auxiliary vector variable with dimension L; (.) is a vector-
valued activation function with appropriate dimension; A is a NN weight-state
diagonal matrix with elements Ai; B and C are weight input and output matrices with
appropriate dimensions and block structure, corresponding to the block structure of
A. As it can be seen, the given RTNN model is a completely parallel parametric one,
so it is useful for identification and control purposes. The controllability, observability
and stability of this model are discussed and proved in [17]. Parameters of that model
are the weight matrices A, B, C and the state vector X(k). The equation (4) is a stability
preserving condition. The BP learning is given by:
(5)              Wij(k+1) = Wij(k) + Wij(k) + Wij(k  1),

where Wij (C, A, B) is the ij-th weight element of each weight matrix (given in
parenthesis) of the RTNN model to be updated; Wij (Cij , Aij, Bij) is the ij-th
weight correction of  Wij of each weight matrix (given in parenthesis); ,  are learning
rate parameters. The weight updates Cij , Aij, Bij of model weights Cij , Aij , Bij , are
given as follows:
(6) Cij(k) = [Tj(k) Yj(k)] j' [Yj(k)] Zi(k),
(7)                             R1 = Ci(k) [T(k)  Y(k)] j' [Zj(k)],
(8) Aij(k) = R1 Xi(k 1),
(9) Bij(k) = R1 Ui(k),

where T is a target vector with dimension L and [TY] is an output error vector also
with the same dimension; R1 is an auxiliary variable;  ' (x) is the derivative of the
activation function, which for the hyperbolic tangent is j' (x) = 1  x2. The application
of this RTNN model requires the target T normalization.

3. Sliding mode control system design

Let us suppose that the studied nonlinear plant possess the following structure:
(10)                             Xp(k + 1) = F [Xp(k), U(k), Q(k)],
(11)                                         Yp(k) =Xp(k)],
where Xp(k), Yp(k), U(k), Q(k) are plant state, output, input and disturbance vector
variables with dimensions Np, L and M, where L=M is supposed; F and  are smooth,
odd, bounded nonlinear functions. The linearization of the activation functions of the
learned identification RTNN model, which approximates the plant (see equations
(1)-(3)), leads to the following approximated linear local plant model:
(12)                                 X(k + 1) = AX(k)+BU(k),
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(13)                                        Y(k) = CX(k),
where L = M, is supposed. Let us define the following sliding surface with respect to
the output tracking error:
                                                                    P
(14)                   S(k + 1) = E(k + 1) +  i E(ki + 1);  |i | < 1,
                                                                   i=1

where: S(.) is the sliding surface error function; E(.) is the system output tracking
error; i  are parameters of the desired error function; P is the order of the error
function. The additional inequality in (14) is a stability condition, required for the
sliding surface error function. The tracking error is defined as
(15)                                     E(k) = R(k)  Y(k),
where R(k) is an L-dimensional reference vector and Y(k) is an output vector with the
same dimension.

Block-diagram of the SMC closed-loop system with RTNN identifier is shown
on Fig. 1. The objective of the sliding mode control systems design is to find a control
action which maintains the systems error on the sliding surface which assure that the
output tracking error reaches zero in P steps, where P<N. So, the control objective is
fulfilled if:
(16)                                      S(k + 1)=0.

The iteration of the error (15) gives
(17)                               E(k + 1) = R(k +1)  Y(k + 1).
Now, let us iterate (13) and substitute (12) in it so as to obtain the input/output local
plant model, which yields:
(18)           Y(k + 1) = CX(k + 1) = C[AX(k) + BU(k)].

From (14), (16) and (17), it is easy to obtain
                                                                 P

(19)                       R(k + 1) – Y(k + 1) +  i E(k  i + 1) = 0.
                                                                       i=1

The substitution of (18) in (19) gives
                                                                       P

(20)               R(k + 1) – CAX(k) – CBU(k) +  i E(k – i + 1) = 0.
                                                                            i=1

As the local approximation plant model (12), (13), is controllable, observable
and stable, [17], the matrix A is diagonal, and L=M, the matrix product (CB) is

Fig. 1. Block-diagram of the closed-loop system containing neural identifier and sliding mode controller
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nonsingular, and the plant states X(k) are smooth non-increasing functions. Now,
from (20) it is possible to obtain the equivalent control capable to lead the system to
the sliding surface which yields:
                                                                                  P
(21)            Ueq(k) = (CB)1[– CAX(k) + R(k + 1) +  i E(ki + 1)].
                                                                                 i=1

Following [16], the SMC avoiding chattering is taken, using a saturation function
inside a bounded control level U0, taking into account plant uncertainties. So the
SMC obtains the form:

 Ueq(k), if ||Ueq(k)|| < U0,
(22) U(k) = 

U0 Ueq(k)/||Ueq(k)||, if ||Ueq(k)||  U0.
The proposed SMC copes with the characteristics of the wide class of plant

model reduction neural control with reference model, defined by  N a r e n d r a  and
P a r t h a s a r a t h y, [20], and represents an indirect adaptive neural control, given
by B a r u c h [18].

4. Sliding mode control system with I-term

Let us suppose that the studied nonlinear plant is Bounded – Input – Bounded –
Output (BIBO) stable one, given by the equations (10), (11). The block diagram of
the control scheme is shown on Fig. 2. It contains identification and state estimation
RTNN, an indirect adaptive sliding mode controller and an I-term The stable nonlinear
plant is identified by a RTNN with topology, given by equations (1) to (4) which is
learned by the stable BP-learning algorithm, given by equations (5) to (9), where the
identification error Ei(k) = Yp(k) – Y(k) tends to zero (Ei 0, k  ). If we supposed
U0 = 1 and linearized the saturation function in (22), we could state U* = Ueq.

This identification error could be considered acceptable if it reached a value below
of 2% and it is considered as part of the process disturbance. The linearization of the
activation functions of the learned identification RTNN model, which approximates
the plant (see equations (1)-(3)), leads to linear local plant model (12), (13) adding
the disturbance term, which yields:
(23)                          X(k + 1) = AX(k) + B[U(k) + Q(k)],
(24)                                     Y(k) = CX(k).
The systems control U(k) have two parts:
(25)                                  U(k) = U*(k) + UI(k),
where U*(k) is the dynamic compensation control part, based on SMC, which could
be taken in its simple form (21), as stated above; UI(k) is the I-term control part,
which is:
(26)                           UI(k + 1) = UI(k) + T0 KI Ec(k),
where T0 is a period of discretization; KI is a diagonal (LL) I-term gain matrix.
The identification and control errors EI(k), Ec(k), are:
(27)                  EI(k) = Yp(k)  Y(k); Ec(k) = R(k) Yp(k).
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The RTNN identifier is proved to be convergent, (see B a r u c h  et al. [17]). So
the RTNN output tends to the plant output (Y(k)  Yp(k)), and the control error is in
fact the tracking error, Ec(k) = E(k) = R(k) – Y(k). The substitution of the control
component U*(k), given by (21), in (25), and then – the obtained control signal U(k)
 in the linear model (23), (24) give us, after some mathematical manipulations, an
expression for the error dynamics:
(28)              Ec(k + 1) =   Ec(k)  (CB)UI(k)   (CB)Q(k).
The equations (26) and (28) could be rewritten in operators form and the closed-loop
systems error dynamics could be derived as:
(29)                             UI(z) = (z 1)1T0 KI Ec(z),
(30)                   (zI + ) Ec =  (CB) UI(z)   (CB) Q(z),
(31)          [(z 1)(zI + ) + T0 (CB) KI] Ec(z) =  (z1) (CB) Q(z).

As it could be seen from the equation (31), the closed-loop systems stability
could be assured by an appropriate choice of the diagonal gain matrices  and KI ,
respectively. It could be seen also that the effect of the I-term on the control error
resulted in the introduction of a difference on the disturbance term which reduces
substantially that error, especially for constant process disturbance, and accelerates
the RTNN learning.

5. Simulation results

In this section, the quality of the derived SMC will be illustrated by a fed-batch
fermentation of Bt. process control.

List of symbols used:
u(t) Nutrient feeding rate at a t time, l / h;
Sf  Substrate concentration in the feeding g / l;
S(t)  Substrate concentration in the culture, g / l;
X(t)  Biomass concentration in the culture, g / l;
V(t)  Culture volume into the bioreactor at t, l.

The fed-batch fermentation model described a microorganism Bt. cultivation in
a sterile reactor, [19], maintained under operational conditions, adequate for
microorganism growth at a desired specific growth rate. The operational conditions

Fig. 2. Block-diagram of the adaptive SMC system, with a neural identifier and an I-action
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considered are: temperature of 30 ?C, pH of  7.1 and dissolved oxygen in a
concentration greater than 40%. The nutrients are supply during the exponential phase
of Bt. growth. So, to derive the model, some suppositions are taken into account.
They are: 1) yield coefficient is constant during all the fermentation (Y); 2) the substrate
consumption for the maintenance cells is negligible; 3) the increased volume in the
bioreactor is equal to the nutrient volume fed; 4) cell dead is considered negligible
during the fermentation.

Sketch of the Fed-batch bioreactor is shown on Fig.3. The model is based on the
derivation of the Mass balance equations of the bioreactor, [19], which are as follows:

evolution of the culture volume
                                              dV
(32)                                       u (t);
                                               dt

 evolution of the total microorganism mass in the bioreactor

(33)                                
d VX

S t X t V t
dt

 ;

 evolution of the limiting substrate in the bioreactor

(34)                   
      

f

S t X t V td SV
u t S

dt Y


  ;

 the specific growth rate S(t is described by the Monod equation, [19]

(35)          ,
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where max is the maximal growth rate; KM is a Michaelis–Menten constant. The
derivation of (33) and (34) gives:
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where V(t): 00 is a growth function, representing the culture volume in the
bioreactor at t (t is the current time); u(t): 00 is the input to the bioreactor at t;
Sf >0 is the substrate concentration in u(t) at t; S(t) is the substrate concentration in
the culture at t; X(t) is the cell concentration in the culture at t; finally, Y > 0 and
(t, S): 0  0 0 are continuous functions for (t, 0) = 0  t  0. The initial
conditions of the state variables and the constant parameters are: V(0) = 3.0;
X(0) = 3.58 g/l; S(0) = 15.6 g/l; Sf = 34.97 g/l; max=1.216; KM = 5; Y = 7.5.

The nonlinear mathematical model of the fed-batch fermentation of Bt.
bioprocess, derived, is validated with experimental data, produced in optimal operating
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conditions, [19]. The results, obtained, are presented in Figs. 4, 5 for an optimal
nutrient rate. The results represented the case of SMC control without process noise
(the ideal case). The figure shows two cycles of the Bt. fermentation, being of duration
of 21 hours. The process terminated with the break in the nutrient feeding. The neural
control is trained with the output of the fed-batch fermentation model, represented by
equations (36), (37), (38) for different values of nutrient feeding rate in the interval
[0.1; 0.7] l/h. The nutrient concentration in the feeding rate is constant. In order to
avoid saturation of SMC and the RTNN during the learning, the plant output is
multiplied by the scaling constant k0 = 0.0025. The identification RTNN has topology
(1-5-1). The values of learning parameters are = 0.1, =0.01. The SMC parameters
(see equations (21), (22)) are U0 = 1, P = 1, and γ = 0.9. The graphics of Fig. 4a gives
a comparison between the desired reference signal and the output of the plant. The

Fig. 3. Sketch of the fed-batch bioreactor of the fermentation process of Bt
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Fig. 4. Simulation results of the discrete-time adaptive SMC of a fed-batch fermentation process:
a) comparison of the reference signal with the plant output; b) comparison of the output of the plant
with the output of the identification RTNN; c) instantaneous error of control; d) instantaneous error of
identification; e) mean square error of control; f) Mean square error of identification; g) control signal;
h) systems states, estimated by the identification RTNN



2 9

equations of the bioprocess model did not represent micro-organisms death, so the
graphics of this part are complemented with semi-square pulses. The graphics, given
on Fig. 4b, represented comparison between the output of the plant and the output of
the identification RTNN. The graphics of Fig. 4c, and d, represented the instantaneous
error of control and identification, respectively.

The graphics of Fig. 4e and f, gives us the Means Squared Error (MSE%) of
control and identification, which are 4% and 2.5%, respectively. The control action,
given on Fig. 4g, was carried out during 8 hours in the exponential growth phase.
After this time, the control signal is equal to zero and the behaviour of the plant’s
output is unknown. The last graphics (Fig. 4h) shows the five states, estimated by the
identification RTNN, and used for feedback control. Some additional process
information is given on Fig. 5, where Fig. 5a repeats the control signal for one cycle
of fermentation. Fig. 5b shows the evolution of the culture volume into the bioreactor.
Fig. 5c gives the evolution of the limiting substrate in the bioreactor. Fig. 5d shows
the evolution of the specific growth rate St.

Simulation results of the fermentation plant governed by 10% constant process
noise controlled by a SMC with integral term are given on Fig. 6. For sake of
comparison on Fig. 7 are shown the same results but for system without integral term.
The results show that the constant process noise affects the system output for SMC
without integral term and does not affect the system with I-term, which behaved like
the ideal case of  Fig. 4. The obtained simulation results confirmed the good quality
of the derived adaptive SMC with I-term.

Fig. 5. Additional simulation results of the discrete-time adaptive sliding mode control application:
a) control signal; b) evolution of the culture volume into the bioreactor; c) evolution of the limiting
substrate in the bioreactor; d) evolution of the specific growth rate St
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Fig. 6. Simulation results of the discrete-time adaptive SMC with I-term and 10% constant process
noise, applied for a fed-batch fermentation process;  a) comparison of the reference signal with the
plant output for three cycles; b) detailed view of a) for one cycle; c) comparison of the output of the
plant with the output of the identification RTNN; d) detailed view of  b) for one cycle

Fig. 7. Simulation results of the discrete-time adaptive SMC without I-term and with 10% constant
process noise, applied for a fed-batch fermentation process: a) comparison of the reference signal with
the plant output for three cycles; b) detailed view of a) for one cycle; c) comparison of the output of the
plant with the output of the identification RTNN; d) detailed view of b) for one cycle
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6. Conclusions

A new Recurrent Trainable Neural Network model and a dynamic Backpropagation-
like learning algorithm are applied in an indirect adaptive neural control scheme of a
fed-batch fermentation of Bt. The control scheme, proposed, contains identification
RTNNs and a sliding mode controller. The SMC is derived defining the sliding surface
with respect to the output tracking error, and using a nonlinear plant identification
and state estimation RNN, which gives all the necessary state and parameter
information to resolve the SMC. Furthermore, the adaptive abilities of the RNN permit
the SMC to maintain the sliding regime when the plants parameters changed. An
extension of the SMC scheme incorporates an I-term to the control law, permitting to
reduce a process noise. A nonlinear mathematical model of a feed-batch fermentation
process of Bt. is derived and validated with experimental data. Simulation results
using this model and applying the adaptive SMC with and without I-term are obtained.
The identification results reproduced the exponential and the lag phase of the
experimental data with a MS approximation error of 2.5%. The obtained closed-loop
MS control error of noisy plant is below 4% which is a satisfactory result. The results
show that the proposed SMC with I-term could completely remove a constant process
noise.
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