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Abstract: In this paper, the effectiveness of three features in speech detection tasks is
experimentally studied. The first feature is obtained by processing of the spectral
autocorrelation function, while the second one is based on the multi-band spectral
entropy. The well-known mel-cepstrum is utilized as a third feature. A multi-layer
perceptron based speech detector is developed and speech detection tasks with noisy
data are carried out for each feature. The performance analysis of the speech detection
results is done using the ROC curves and measures. The experimental results revealed
that the feature obtained by processing of the spectral autocorrelation function is
more suitable for noisy speech detection than the other two features.
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1. Introduction

The finding of speech fragments in a given signal has many names, of which some
are speech detection, endpoints detection, voice activity detection, speech activity
detection, and speech/non-speech segmentation [6].

The speech detector is one of the key components in speaker recognition systems
designed to operate in noisy real-world environments. The recognition error in such
systems is due to many causes, one of which is the inaccurate speech fragments
detection. The speech fragments usually provide data for speaker model estimation.
The non-speech ones are discarded or are used for noise parameters estimation with
the purpose of reducing the noise influence on the recognition performance.

The existing Speech Detection (SD) algorithms can be divided into three major
groups: energy-type SD, statistics-based SD and pattern recognition-based SD. In
each group, different features are utilized combined with different decision rules.
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The algorithms belonging to the energy-type SD usually analyze the time
variations (trajectories) of selected parameters and utilize a set of thresholds and
finite-state automata in order to produce a speech/non-speech decision for a particular
segment [6].

The statistical-based SD includes algorithms that examine statistical properties
of speech and noise signals. It is assumed in [17] that the spectral components of
speech and noise signals have Gaussian distribution. The speech detection in that
case is based on the likelihood ratio test. Other works focus on the different properties
of the higher-order statistics of speech and noise signals in order to separate them in
noisy environments [10].

The third group comprises algorithms based on pattern recognition techniques.
Recently, different classification approaches are proposed in attempts to find the
optimal classification rule in speech detection. Some of these approaches are tree-
based modeling [16], support vector machines [2] and neural network classifiers [5,
15].

During the last few years, the frequently used features for speech detection in
noisy environments are based on the spectral entropy characteristics [7, 13]. In this
case, the main assumptions are, firstly, the signal spectrum is more “organized” in the
speech rather then in the noise regions and secondly the Shannon’s entropy can be
used as an appropriate measure of signal organization [13].

In this paper, the effectiveness of three features in speech detection tasks is
experimentally studied. The first feature is the Mean-Delta (MD) feature, which is
obtained by processing of the spectral autocorrelation function [12]. The second one
is based on the multi-band spectral entropy characteristics [9]. The well-known Mel-
Frequency Cepstral Coefficients (MFCC) is utilized as a third feature [19].

In order to examine the features, a Multi-Layer Perceptron (MLP) based speech
detector is developed. For each of the mentioned above features are carried out speech
detection tasks with noisy data. The effectiveness of the features is estimated by
comparison of the detection results using the Receiver Operating Characteristics (ROC)
graphs technique.

The present work is focused on the raw speech/non-speech classification without
speech enhancement and hangover mechanisms. Its aim is to identify which feature
is more effective in real-world noisy environments.

2. The robust features

2.1. The Mean-Delta feature

The MD feature is proposed in [12] and it is defined as the mean absolute value of the
delta spectral autocorrelation function of the power spectrum of speech signal. Let
x(i) is a discrete signal, where i = 0, …, I – 1, I is the number of samples and the
spectrum X(k) of x(i) is obtained by the Discrete Fourier Transform (DFT), where
k = 0, …, K/2, K is the number of points in the DFT.
The biased spectral autocorrelation function Rp(l) is defined with the power spectrum
|X(k)|2as [12]
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Where l = 0, …, L, L is the number of correlation lags and L = K/2–1.
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In order to remove the tilt in the spectral autocorrelation function and enhance its
peaks, in [12] is proposed a parameter obtained in a way similar to the delta cepstrum
evaluation [20]. It is named as Delta Spectral AutoCorrelation Function (DSACF).
This parameter is computed as an orthogonal polynomial fit of the first-order derivative
(in correlation domain) of the spectral autocorrelation function.

For a particular frame, the DSACF is computed utilizing only the frame’s spectral
autocorrelation lags. For the nth frame, the DSACF Rp(n, l) is
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where l = 0, …, L; n = 0, …, N – 1, N is the number of frames. The parameter Q
defines the window width around the lag l and it influences over the accuracy of the
approximation. For the purpose of this study, it is chosen to be between 10 and 15
lags (based on preliminary experiments). For n-th frame the MD feature md(n) is
computed as follows
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where Rp(n, l) is the DSACF in (2) for lag l, L1 and L2 are the boundary lags and
L = L2 – L1 + 1. For more details about the MD feature, see [12].

Typically, this feature is designed for energy-type SD with trajectory analysis.
In order to be used as a frame feature vector in pattern recognition tasks some changes
in its definition have been made. Instead of mean value estimation in (3), here is
proposed to find the maximal values of Rp(n) in different non-overlapping ranges of
lags. The MD feature vector for nth frame is formed as {md(1), …, md(J)}. Its
components are defined as follows (for simplicity, the frame index is omitted)

(4)                   1)(max)( pd
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where j = 1, …, J,  J is the number of ranges and {L1, L2}, … {Lj, Lj+1}, … {L2J–1, L2J}
are pairs of boundary lags for each range.

The proposed algorithm for the MD feature vector estimation is summarized as
follows (for each frame):

apply Hamming window to the analyzed signal;
compute the power spectrum of the windowed signal via FFT;
 compute the non-normalized biased spectral autocorrelation function by

equation (1) with lags L=K/4;
compute the delta spectral autocorrelation function by equation (2);
take the absolute value of the delta spectral autocorrelation function;
divide the number of lags L into J non-overlapping lags ranges of equal size;
find the maximal values of Rp(l) in the lags ranges {L1, L2}, … {Lj, Lj+1}, …

{L2J–1, L2J} according to (4);
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take the logarithm of the maximal values and obtain the MD feature vector in
the form {lg(md(1)), …, lg(md(J))}.

The last step in the MD feature vector estimation is the mean normalization. It is
done by dividing the MD feature vector for each frame by the average MD feature
vector computed over all frames. If the speech data consists of different speech records
(files), the mean normalization should be applied for each file separately.

2.2. Multi-band spectral entropy

The spectral entropy for the n-th frame is estimated in the following steps [9]. First,
the Probability Mass Function (PMF) P(|X(n, k)|2) for the full-band power spectrum
|X(n, k)|2 is computed as
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where k = 0, …, K/2, K is the number of DFT-points and n = 0, …, N–1, N is the
number of frames.

Second, the spectral entropy H(n) for n-th frame is computed as follows
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The entropy in (6) is named as full-band spectral entropy [9]. To capture a local
variation in the spectrum, the idea of multi-band spectral entropy is introduced in [9].
The core of this idea is to divide the full-band PMF into sub-bands and then the
spectral entropy to be computed for each sub-band using full-band PMF. In this case,
one entropy value is obtained for each sub-band.

According to [9] the Multi-Band Spectral Entropy (MBSE) feature vector for
the nth frame is formed as {HMBSE(n, 1), …, HMBSE(n, G)} and its components are
computed as
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where P(|X(n, k)|2) is the full-band PMF in (5); g = 1, …, G, G is the number of sub-
bands and {B1, B2}; … {Bg, Bg+1}; … {B2G–1, B2G} are pairs of boundary spectral bins
for each sub-band.

The MBSE feature is utilized in [9] as additional feature in automatic robust
speech recognition tasks. So far, it is not used as feature for robust speech detection.

3. The neural network

A feedforward multi-layer perceptron structure with one hidden layer is used in the
experiments. The selected activation functions of the neurons are – hyperbolic tangent
function (in hidden layer) and sigmoidal function (in output layer). It is known that
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the standard Back Propagation (BP) learning algorithm for MLP suffers from slow
convergence speed and local minima problem. In the past, some fast learning algorithms
have been proposed for the MLP training, such as Rprop, Quickprop, the Levenberg-
Marquadt, etc. [8]. In the present work, the Rprop algorithm with most typical
parameters settings, according to recommendation in [14] is applied.

4. Experiments

In the experiments are utilized speech samples selected from two databases – updated
version of the BG-SRDat corpus [11] and the SpEAR database [1].

The BG-SRDat is a corpus in Bulgarian language collected over noisy analog
telephone channels and designed for speaker recognition. The speech data included
in the BG-SRDat are sampled with frequency of 8 kHz at 16 bits, PCM format and
mono mode [11].

The SpEAR database contains samples of noise-corrupted speech that have been
recorded by acoustically combining clean speech and noise. All WAV files in the
database are with sampling frequency of 16 kHz at 16 bits, PCM format and mono
mode [1]. The speech files selected from SpEAR database are down sampled at 8
kHz. The analyzed frequency range is up to 4000 Hz. No additional filtering is applied.
The analysis parameters are frame length – 30 ms, the frame shift – 10 ms, and the
FFT-points – 512.

The number of sub-bands in the entropy estimation is G = 15. The number of
lags regions is the same, i.e., J= 15 and Q= 15 in (2).

A Mel-scale triangular filter bank with 24 filters is used to generate the MFCC
feature. The MFCC vector size is 15 – 14 static coefficients and the zeroth cepstral
coefficient. In addition, cepstral mean subtraction is applied (for each file separately)
to obtain the MFCC feature.

The selected speech data is divided into four sets, named as S1, S2, S3 and S4.
The purpose of each set is, as follows: S1 – for train and test, S2 – for train and test,
S3 – for test and S4 – for validation. The sets S1, S2 and S4 are selected from the BG-
SRDat, while S3 is from the SpEAR database. Each set comprises speech data from
different speakers with different linguistic contents. The sets parameters (as number
of speakers and total number of frames) are S1 – 3 speakers/5103 frames; S2 – 3
speakers/5828 frames; S3 – 2 speakers/1906 frames and S4 – 2 speakers/8918 frames.

To create the targets sequence for neural network training, all WAV files are
manually segmented into speech/non-speech frames. For SpEAR database examples
the segmentation is done on the clean files, but in the experiments are used their
noisy versions. Unfortunately, the BG-SRDat corpus does not possess speech records
in the form ‘clean speech reference – its noisy version’ and the segmentation in that
case is done on the original noisy files.

The speech examples from SpEAR database are factory noise example (Signal-
to-Noise Ratio (SNR) = –9.96 dB); car noise example (SNR = –14.58 dB); pink noise
example (SNR = –10.33 dB) and F-16 noise example (SNR = –1.05 dB).

The MLP with a structure 15-20-1 is selected. The network has 20 neurons in
one hidden layer and a single output neuron. The input vector size is set to 15. The
used target levels are – minimal 0.1 and maximal 0.9 and the network is trained in
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batch mode. In testing mode, the output neuron level is thresholded at 0.5. No attempts
are made in the experiments to estimate the optimal number of neurons and layers.

Here the combination of the MLP and a single feature is considered as a single
classifier. In the experiments, three combinations are made and they are noted as
MLP-MD, MLP-MBSE and MLP-MFCC, i.e. the classifiers MLP-MD, MLP-MBSE
and MLP-MFCC are under analysis in the work. The effectiveness of the features is
estimated indirectly by performance comparison of the classifiers.

The four train/test sets are prepared, noted as S1-S2, S1-S3, S2-S1 and S2-S3.
These sets are utilized by classifiers in a multiple runs scheme [4]. In the experiments,
10 runs are performed (typically, runs are not more then 20 [4]).

The MLP training is stopped, when based on the validation test with S4 a global
minimum in the output mean square error is found or this error is not changed
significantly up to 300th epoch.

5. The performance comparison

It is known that the recognition error (as a single quantity) is not a reliable estimation
of the recognition performance. This is true especially for the neural network classifiers
where the learning algorithms include random number based procedures (e.g., in
weights initialization, in training data selection, etc.) [4].

To compare the performance of the mentioned above classifiers the ROC
technique is applied [3]. This technique is popular in the examining of the two-class
classification problems. The ROC curve allows finding classifier that outperforms
another using only the visual evaluation. The ROC space for two-class problem is
two-dimensional plot where on Y-axis is True Positive Rate (TPR) and on X-axis is
False Positive Rate (FPR). In our case (i.e. speech detection), the TPR is computed as
ratio of the correctly classified speech frames to the speech frames. The FPR is
computed as ratio of the incorrectly classified non-speech frames to the non-speech
frames. Both rates are normalized between 0 and 1.

In order to compare the performance of different classifiers, their ROC curves
are drawn on a common two-dimensional plane. Each curve is obtained by the results
from a single run, i.e., it is an instance curve. In order to give an idea of the variance
range, the instance curves are shown instead of their averaged version.

Additionally three ROC-measures are computed – recall (i.e. TPR), precision –
(ratio of the frames correctly detected as speech to the frames detected as speech),
and F-measure (harmonic mean of precision and recall) [3, 18]. Their values are
shown in Table 1 and are obtained in the case when the MLP output is thresholded at
0.5. In the table, the maximal values for each measure (and for each train/test set) are
in the shaded cells.

In the figures bellow are depicted the instance’s ROC curves provided from the
pair of classifiers {MLP-MD, MLP-MBSE} and {MLP-MD, MLP-MFCC}. The
curves in Figs.1-4 are obtained when {MLP-MD, MLP-MBSE} utilize the train/test
set S1-S2, S1-S3, S2-S1 and S2-S3, respectively. In Figs.5-8 are shown the ROC
curves for classifiers {MLP-MD, MLP-MFCC} and the train/test set S1-S2, S1-S3,
S2-S1 and S2-S3, respectively.
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Fig. 1. Instance’s ROC curves of 10 runs         Fig. 2. Instance’s ROC curves of 10 runs
for MLP-MD and MLP-MBSE classifiers                    for MLP-MD and MLP-MBSE classifiers
and train/test set S1-S2                                                and train/test set S1-S3

Fig. 3. Instance’s ROC curves of 10 runs               Fig. 4. Instance’s ROC curves of 10 runs
for MLP-MD and MLP-MBSE classifiers               for MLP-MD and MLP-MBSE classifiers
and train/test set S2-S1                                           and train/test set S2-S3

Fig. 5. Instance’s ROC curves of 10 runs         Fig. 6. Instance’s ROC curves of 10 runs
for MLP-MD and MLP-MFCC classifiers                    for MLP-MD and MLP-MFCC classifiers
and train/test set S1-S2                                                and train/test set S1-S3

6
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Fig. 7. Instance’s ROC curves of 10 runs                   Fig. 8. Instance’s ROC curves of 10 runs
for MLP-MD and MLP-MFCC classifiers                  for MLP-MD and MLP-MFCC classifiers
and train/test set S2-S1                                              and train/test set S2-S3

             Table 1. ROC-measures

6. Discussion and conclusions

It is clearly seen in Fig.1 that for almost all values of FPR the MLP-MD classifier
outperforms the MLP-MBSE one. Moreover, it is evident in Fig.1 that the variance in
the instance’s ROC curves for MLP-MD classifier is substantially lower than these
ones for the MLP-MBSE classifier.

The curves that are depicted in Figs.2 and 4 reveal interesting fact about the
ability of the MLP-MBSE classifier to work in noisy conditions. In the ROC plane,
the diagonal line (between points (0, 0) and (1, 1)) represents the strategy of the
random class selection [3]. If the classifier provides ROC curves close to this diagonal
line then it would be ineffective in recognition tasks. As can be seen in Figs.2 and 4
that is the case with MLP-MBSE classifier for train/test sets S1-S3 and S2-S3. Again,
the MLP-MD classifier outperforms the MLP-MBSE one.

Similar conclusions can be made about MLP-MD and MLP-MFCC classifiers
based on curves shown in the Figs.5, 6 and 8, i.e. the MLP-MD yields better results.

Based only on the curves shown in Figs.3 and 7 it is not possible to say which
classifier is the better one. In this case, the experiments yield unclear results and it is
advisable to do a further research.

TRAIN/TEST SETS CLASSIFIERS MEASURES S1-S2 S1-S3 S2-S1 S2-S3 
Recall 0.854678 0.870870 0.893168 0.943988 
Precision 0.868651 0.560420 0.877602 0.566393 MLP-MFCC 
F-measure 0.861608 0.681976 0.885317 0.707991 
Recall 0.824922 0.514663 0.755782 0.411926 
Precision 0.835540 0.586303 0.898380 0.622636 MLP-MBSE 
F-measure 0.830197 0.548152 0.820934 0.495823 
Recall 0.838098 0.963050 0.835130 0.977419 
Precision 0.902047 0.564358 0.876093 0.559886 MLP-MD 
F-measure 0.868898 0.711670 0.855121 0.711951 
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As seen in Table 1 the best performance in terms of the F-measure is achieved
by the MLP-MD classifier – it is better in three of the four train/test sets.

Based on the obtained experimental results the following conclusions are made:
in all test the MLP-MD classifier performs equal or better than MLP-MBSE

one;
for some train/test sets, the MLP-MBSE classifier is ineffective – its decision

is close to the random class selection.
 in three of the four train/test sets, the MLP-MD classifier achieves the best

performance in terms of the F-measure.
These results are a confirmation of our assumption that MD feature is more

suitable for noisy speech detection than the multi-band spectral entropy. In some
cases, the MD feature provides better results than the well-known MFCC. The major
disadvantage of the MD feature is the increased computational costs. They are mainly
due to the amount of calculation needed for the spectral autocorrelation function
processing and the mean normalization.

We consider that the speech detector based on the joint work of the MD feature
and the neural network is a good choice for one of the key components in the speaker
recognition system designed to operate in real-world noisy environments.
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