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Abstract: This paper presents a new mark-up approach to service creation in Next
Generation Networks. The approach allows deriving added value from network
functions exposed by Parlay/OSA (Open Service Access) interfaces. To demonstrate
approach applicability markup language constructions for data and method
definitions, flow control, time measuring and supervision, and database access are
developed. The comparison with existing standardized service creation technologies
is performed.
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I. Introduction

To survive in the competition for subscribers, network operators and service providers
need to offer attractive, content rich, highly customized and ubiquitous applications
and services.

The first step towards feature rich services is the concept of Intelligent network
(IN). The idea of the IN has been to offer a set of generic service building blocks
(SIBs) to create a multitude of value added services, similar to a distributed operation
system that enables plenty of applications to be executed. This means that the
combination of IT middleware and telecommunications system enlarged drastically
the programmability of the telecommunications network. It has to be recognized, that
the IN concept decoupled the service provision from the underlying network, which
allows in principle to provide IN-based services on top of ohe different bearer networks.
Thus the IN has been applied originally to the fixed networks and later to the mobile
ones. The IN suits very well to circuit switched environment with centralized control.
It is not applicable to packet switched communications with distributed control.

Applications have to be portable both across different network interfaces, as
well as across a variety of end user interfaces and thus they have top be provided
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through application programming interfaces (APIs). APIs at the service creation level
should not only allow developers to work in a familiar programming environment,
but to integrate the protocols required to handle calls with those that control other
forms of communication on the web. Standardized APIs provide functional abstraction
allowing applications to achieve portability across disparate systems and networks.

Parlay/ Open service access (OSA) APIs were inspired by the idea to provide
multimedia services for converging networks and to open network interfaces for the
3rd party service developers. These APIs allow software developers to create new
services of components. Although defined for UMTS networks, Parlay/OSA APIs
are also applicable to next generation network domain providing a standard object
oriented model for delivering services.

Programming languages like C++ and Java might be used for implementing APIs.
However the declarative languages like eXtensible Markup Language (XML) are
much easier for description of service logic in certain domain. XML is used as a basis
for defining object parameters, as well as for the glue between low-level APIs and the
application logic, which itself consists of these variously assembled objects. On the
basis of this type of framework, it is possible to conceive of whole generalized
applications (a voicemail program, for example) being defined as a set of standards,
portable objects, which could then be made available as resources to a more specific
application that might need to employ them.

Several XML-based languages such as CPL, CCXML, VoiceXML and SCML
for service creation are developed [1, 2, 3]. These languages can be used to create
applications combining network functions mainly for call control and user interaction.
The existing markup languages can not derive added value from mobility, charging,
terminal capability, messaging and others and none of them supports the whole variety
of network functions accessed through Parlay/OSA interfaces.

In this paper we present in brief a new mark-up language called Service Logic
Processing Language (SLPL) oriented towards Parlay/OSA APIs and that can be used
for service creation. SLPL combines attractive features of XML-based languages,
flexibility and expressiveness of programming languages. We compare SLPL service
creation capabilities with those of the existing standardized markup languages. Further
to illustrate the language applicability it is discussed how traditional intelligent network
services can be implemented in OSA environment by the use of SLPL. Last, SLPL is
evaluated with respect to criteria defined in [4] for classification and comparison of
different service creation technologies.

II. Standardized mark-up languages for service creation and SLPL

Call Processing Language (CPL) is a language for call processing in Session Initiation
Protocol (SIP) based telephony network. CPL tells a SIP server what to do with a call.
On contrary, SLPL is oriented towards Parlay/OSA APIs and is protocol agnostic.
Parlay/OSA APIs provide application developers with programmability of network
resources such as telecommunication protocol stacks by defining these resources in
terms of objects and methods, data types and parameters that operate on those objects
hiding network specificity (Fig.1). SLPL provides means for data types and method
definition. Service logic described by SLPL can access networks functions by
invocations of Parlay/OSA interface methods.
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Fig. 1. Place of SLPL and CPL scripts in programmability architecture

Each CPL script installed in a SIP server has an owner, and is always associated
with the address of this owner. CPL describes decision structures for routing incoming
or outgoing calls. CPL does not provide means to handle multiparty or conference
calls. Based on Parlay/OSA call control features, it is possible with SLPL to manipulate
the individual parties in a call and their connections. Within the context of a call,
SLPL service logic can add or drop call parties and connections, create multimedia
call, delete multimedia call legs and define additional relationships between the parties.
Further, SLPL supports the whole variety of Parlay/OSA service capability features.
Besides from call control the language can derive added value from network
functionalities as mobility, data session control, user interaction, messaging, presence
and availability and others.

CPL is targeted at the end user who can upload his CPL script on a SIP server.
CPL does not allow internal to the service provider actions such as charging. The
intention of Parlay/OSA APIs is to give service provider full control over service
capability features and thus SLPL is suitable for 3rd party development.

CPL can be used as a high-level service-creation language with restricted
expressive power. It allows end users to define their call-processing preferences over
the SIP-based network. On contrary, SLPL supports means for flow control, which
draws the language near to programming languages. Flow control statements such as
“if”-statement, “case”-statement and “while”-statement provide flexibility in service
logic description. “If”-statement is used to check a logical condition, with “case”-
statement decision may be done based on multiple choices and “while”-statement is
used when a set of iterations has to be repeated when a predefined condition is true.
“Try-catch” language construction makes possible to capture exceptions arising from
method execution and to define exception specific processing.

In telecom applications the notion of time is important and the use of timers is
frequent. The normal use of time and timers is when forming delays, supervising
functions to be performed and measuring intervals. Time measuring and supervision
means in CPL and SLPL are semantically overlapped i.e. both languages provide
constructions handling with intervals and time. But while in CPL time handling
capabilities are presented in a declarative form, in SLPL time constructions are rather
procedure-oriented. Usually it is said, that the declarative form is easier to use while
the procedure-oriented presentation provides more flexibility and expressive power.
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In CPL time-switches allow a CPL script to make decisions based on the time
and/or date the script is being executed. CPL supports the notion of timers without
explicitly defining timer concept. Specific call routing may be done at repeating
intervals secondly, minutely, hourly, daily, weekly, monthly, yearly. Time switching
can be applied to a call during the set-up phase but there are no means to affect the
call during the connection phase. For example, it is not possible to send the user a
reminding message every 2 minutes during the active phase of the call.

In SLPL to handle with notion of “real” time predefined types “Date”, “Time”,
“DateTime” and “Duration”, based on the type float are introduced. Two operations
“CurrentDate” and “CurrentTime” are used to acquire the value of the current time.
Also, the concept of timers is adopted as a predefined type. When a timer is set using
operations “SetTime” or “SetDate”, a “Tme” or “Date” value is associated with the
timer respectively. When a timer is reset by “Reset” operation, the associated value is
lost. In many applications the decisions are made on the days of week so the enumerated
type “Day” is defined and is used to denote the days of week.

In CPL locations for routing calls can be specified up through external means.
CPL allows the SIP server to query an external database to retrieve the locations.
CPL does not allow writing in a database, for example the CPL script can not modify
data in subscriber database. SLPL provides service logic with means for database
access. In SLPL the method “DB_modify” is used to update, insert or delete record(s)
in an existing table and the result it returns corresponds to the number of modified
records. The method “DB_retrieve” is used to retrieve data and the result returned
consists of database response (for example the requested information). The database
query is in a form of SQL statement and in method invocation this query is an argument
of type string. As the method “DB_retrieve” returns a string, that string has to be
converted in a reasonable SQL response. This conversion is done by another method
“DB_conversion” which returns a set of structures representing records retrieved
from the database. For each SQL statement a different "DB_conversion" method is
defined that reflects the structure of logical records returned in database response.

CPL does not support user interaction. User interactions could be implemented
in CPL by proxying calls to a special voice response server. To allow a user to interact
with a web server through voice recognition technology, VoiceXML can be used.
VoiceXML is also XML-based language designed for creating audio dialogs that
feature synthesized speech, digitized audio, recognition of spoken and DTMF key
input, recording of spoken input, telephony, and conversations with mixed initiative.
SIP and VoiceXML can be used together to initiate or terminate not just signaling or
control sessions but also content session. As SLPL supports user interaction service
capability feature most of the services can benefit from this Parlay/OSA API. It is the
responsibility of the service logic to conduct the user interactions. For example, when
a user approaches a petrol station the service logic can determine his position using
Parlay/OSA Mobility interface and initiating a call it can play the user a message
using User Interaction interface.

More details on SLPL construction and usability might be found in [5, 6, 7, 8
and 9].

Table 1 shows how CPL elements can be translated to SLPL.
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III. Intelligent network services implemented in OSA environment

From subscriber’s point of view network services are described as composed of service
features. Service feature is a part of service functionality. A service feature is  built of
one or more Service independent building blocks (SIBs). Features are often combined
by using a set of SIBs, but they are not themselves services, that is they should not be
used directly by users. They are combined with other features, SIBs or both to create
a service.

All IN services can be implemented by OSA APIs using SLPL, so these services
can be available to users in IP-based networks.

Call related IN services implemented in OSA environment use Call Control
API. The IN call-unrelated services allow user interactions outside the context of a
call, for example in mobile networks user authentication and location updating. These
services implemented by OSA APIs use Mobility API. It is possible call-related and
call-unrelated user interactions to use out-channel signaling connections (for example
short message). These IN services implemented by OSA APIs use Multimedia
Messaging API or Data Session Control API. To allow service logic to interfere based
on call-related or call-unrelated events it has to subscribe to receive notifications
form the corresponding OSA APIs for those events.

Most of IN services may need originating or terminating user prompting and
when implemented in OSA environment these services use User Interaction APIs.
The IN services with special charging treatment are implemented in OSA using
Charging API. IN service features for access control such as authentication,
authorization and off-net access or restriction services like call screening and closed
user group require service logic to consult with database. SLPL constructions for
database access allow service logic to retrieve service-specific subscriber data from
an external database.

Table1. Mapping of CPL elements to SLPL

CPL element SLPL equivalent 
Address-switch “Case”-statement with eventInfo parameter of the Call control method 

callEventNotify() as an identifier for comparison 
String-switch “Case”-statement with the corresponding string as an identifier for 

comparison 
Language-switch “Case”-statement with the corresponding string as an identifier for 

comparison 
Priority-switch “If-then else”-statement 
Time-switch “Case”-statement with time-related construction 
Location Corresponds to redirectingAddress parameter of the Call control method 

routeReq() 
Lookup Method DB_retrieve combined with method DB_conversion 
Remove-location “Case”-statement combined with method DB_modify 
Proxy  Invocation of Call control method routeReq() with a specified 

redirectingAddress parameter 
Reject Invocation of Call control method release() 
Redirect Invocation of Call control method routeReq() with an update 

redirectingAddress parameter 
Mail Invocation of Multi-media messaging method sendMessageReq() 
Log Method DB_modify by the use of result returned by Call control method 

getCallInfoRes 
Subaction Method definition and invocation 
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A. SIBs and SLPL
Each SIB has one logical starting point and several logical ends. The logical

start and ends are where the SIB is connected into the control flow. Multiple logical
ends allow each SIB to be used as a decision point in the service script. The SIB acts
on call instance data (CID). This is the call-dependent data, and includes the
originator’s address, the dialed number, and the destination routing address. Further
the SIB may need service support data (SSD), which is independent on the call.
Fig. 2 shows the structure of a SIB with its parameters.

Fig. 2. SIB

Each of the SIBs, which functionality is used in service logic may be described
by a method in SLPL. The most general SLPL description of a SIB is shown in Fig.3.

Fig. 3. General SLPL description of a SIB

Service support data are described as method parameters. Call instance data, on
which SIB acts are also described as method parameters. Call instance data that are
result of SIB execution are described as result of method invocation (i.e. data returned
by method). Data returned by the method might be composed of several components
organized as structure. Errors that can be raised during SIB execution are described
as exceptions. SIB functionality is described in the method body.

Global functional plane of Capability Set 1 defines 14 SIBs. SIBs functionality
is elementary although the complexity varies for different SIBs.

The SIB “Algorithm” applies a mathematical algorithm to data in order to produce
a data result. It can be used to implement a simple arithmetic operation e.g. increment
of a counter. In SLPL the method body is the placeholder of the arithmetic operation
e.g. “increase” or “decrease”, to be applied on data described as method parameter.
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<method name=”theSIB”> 

<arguments> 
<argument name=”SSD” type=”sibSSDType”/> 
<argument name=”inCID” type=”sibInCIDType”/> 

 </arguments> 
 <returns type=”theSIBResult”/> 
 <raises> 
  <exception name=”theError”/> 
  <!—description of all errors --> 
 </raises> 
 <body> 
  <!—description of method functionality --> 
 </body> 
</method> 
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The SIB “Charge” determines the special charging treatment for the call. In
SLPL the method body with the respective functionality involves setting values of
parameters to the corresponding methods of OSA Charging API.

The SIB “Compare” performs a comparison of an identifier against a specified
reference value. In SLPL its functionality is described by language construction “if-
then-else”-statement.

The SIB “Distribution” distributes calls to different logical ends based on user-
specified parameters. In SLPL its functionality is covered by language construction
“case”-statement with multiple choices.

The SIB “Limit” limits the number of calls related to IN provided service feature.
In SLPL the limiting functionality is achieved by applying time-related language
construction when calls are passed for specific duration at specific intervals. When
the functionality is concerning counting algorithm for call limiting then SLPL ‘increase’
operation is applied.

The SIB “Log call information” logs detailed information for each call into a
file. In SLPL to log call-related information the method for database modification
might be used.

The SIB “Queue” provides sequencing of IN calls to be completed to a called-
party. In SLPL to organize queue a numbered list of data elements might be defined.
Each data element presents the set of parameters for specific call waiting on the
queue. The primitives for the queue i.e. pushing and popping are realized by simple
iterations over the list.

The SIB “Screen” performs a comparison of an identifier against a list to
determine whether the identifier has been found in the list. In SLPL to access the
SSD list service logic uses method for database retrieval. Using the “while”-statement
and if language constructions the equivalent functionality is achieved.

The SIB “Service data management” enables end-user specific data to be replaced,
retrieved, incremented or decremented. In SLPL corresponding functionality is
achieved by using of database retrieval and modification constructions.

The SIB “Status notification” provides the capability of inquiring about the status
and/or status changes of network resources. This functionality in SLPL is achieved
by straightforward invocation of the corresponding OSA methods of User Status
service.

The SIB “Translate” determines output information from input information. In
SLPL the functionality might be achieved by defining static lists or by database
retrieval.

The SIB “User Interaction” allows information to be exchanged between the
network and a call party. This functionality in SLPL is achieved by straightforward
invocation of the corresponding OSA methods of User Interaction API.

The SIB “Verify” provides confirmation that information received is syntactically
consistent with the expected form of such information. In SLPL the corresponding
functionality is achieved by language constructions “case”-statement and/or  “if-then-
else”-statement.

The SIB “Basi Call process” is specialized SIB which provides the basic call
capabilities. This functionality in SLPL is achieved by straightforward invocation of
the corresponding OSA methods of Call Control API.
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B. An example of SIB functionality described in SLPL
In order to illustrate the SLPL applicability to IN service description in this

section we give an SLPL description of SIB “Distribution” in the context of a specific
service. This SIB distributes calls to its different logical ends based on a user identified
algorithm. Potential service applications of this SIB are Mass calling, Televoting and
Freephone.

The service support data include the following:
 algorithm type – percentage, sequential, time of day and day of week;
 number of logical ends;
 algorithm parameters;
 CID field point that specifies where in output call instance data the error

cause will be written.
There are no input call instance data. The SIB output enumerates logical ends.

The output call instance data describe the error cause. Fig. 4 shows the graphical
representation of SIB “Distribution”.

Fig. 4. Distribution SIB

Let us consider the SLPL description of the Distribution SIB in the context of
service which distributes calls to different logical ends based on time of day and day
of week. For example, the call distribution might be done based on the working hours
of the day i.e. between 8 a.m. and 5 p.m. and on working days of the week To implement
this distribution functionality we need two Distribution SIBs – one for time-dependant
distribution and another one for day of week-dependant distribution as depicted on
Fig. 5.

Fig. 5. Calls distribution based on time and day of week
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In SLPL this kind of functionality is described by the use of one method that
exploits time related language constructions as shown in Fig. 6. For the sake of
simplicity just one of the method arguments is checked against whether invalid value
is assigned.

Fig. 6. SPLP description of time and day of week based distribution of calls

IV. Assessment of SLPL using evaluation criteria

In [4] are defined evaluation criteria for classification of service creation technologies.
In brief these criteria include the following: supported network capabilities, mapping
towards reference architecture, interface abstraction, kind of interface and description
language, suitability for 3rd party development and usability.

The suggested markup approach to service creation is based on Parlay/OSA
interfaces and all network capabilities exposed by these APIs are accessible. SLPL
provides application developers with functional abstraction of underlying network
and allows adding value to call control, data session control, mobility, user status,
charging, user interaction, messaging and others.

 

 

<method name=”theDistribution”> 
 <arguments> 
  <argument name=”beginTime” type=”Time”/> 
  <argument name=”endTime” type=”Time”/> 
  <argument name=”theDay” type=”Day”/> 
 </arguments> 
 <returns type=”Integer”/> 
 <raises><exception name=”invalidArgument”/></raises> 
 <define> 
  <variables> 
   <id name=”theMoment” type=”Time”/> 
  </variables> 
 </define> 
 <body> 
  <if> 
   <condition test=”beginTime NOT BTW 00:00 AND 24:00”/> 
   <then> 
    <raise name=”invalidArgument”/> 
   </then> 
  </if> 
  <case refid=”theDay”> 
   <on val=”SU”><return value=”2”/></on> 
   <on val=”SA”><return value=”2”/></on> 
  </case> 
  <set refid=”theMoment”> 
   <value> <CurrentTime/> </value> 
  </set> 
  <if> 
   <condition test=”theMoment BTW beginTime AND endTime”/> 
   <then> 
    <return value=”2”/> 
   </then> 
  </if> 
  <return value=”1”/> 
 </body> 
</method> 
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The second criterion defines the place of the SLPL in NGN service architecture.
The SLPL interpreter is placed either at the application side of the programmability
architecture or at the Parlay/ OSA gateway side. This means that both the operator
and the 3rd party can support programmability through SLPL scripting.

The third criterion evaluates SLPL interfaces regarding interface abstraction
and kind as well as the kind of interface description language. SLPL provides high
level abstraction hiding technical details of network technology from application
developers. The kind of interface describing communication method by which SLPL
exposes network capability is XML-based. SLPL is scripting language and SLPL
interpreter parses the script at runtime. XML schemes are used to define data types
and methods in SLPL.

As the Parlay/OSA technology opens network interfaces for 3rd party SLPL
attracts larger application developer community.

SLPL might be used for service creation in many different scenarios: using scripts
created by end users or using scripts created by service providers. SLPL scripts are
highly customized allowing service or end user specific data to be stored in an external
database.

One of the factors that determine language usability depends on availability of
supporting tools. For SLPL are developed the following tools:

 Java based Backus Naur Form (BNF) translator for syntactical grammar
verification and generation of basic interpreter classes

 Java based SLPL interpreter
Translator of Interface Description Language (IDL) descriptions into SLPL.
Another factor that influences on usability of the suggested service creation

approach and accompanying language is measured in terms of the knowledge/
experience needed the supporting of the Parlay/OSA interfaces minimizes necessity
of preliminary knowledge for network protocol and technologies.

V. Conclusion

In this paper a new markup approach to service creation is presented. Following this
approach the service logic can derive added value from network functionalities
accessible through APIs. The service logic is described by the use of an XML-based
language SLPL that is platform independent, lightweight and suitable for 3rd party
application development. As the language is intended to be used with OSA APIs,
services described in SLPL can benefit from network functions hiding network protocol
complexity. On contrary to the other markup languages SLPL allows control over
call-unrelated events such as change of position, user status, TCP/IP session, presence
and availability and so on. SLPL follows closely the architecture and APIs definitions
developed by Parlay/OSA. Traditional value-added services provided in intelligent
networks can be implemented by SLPL and thus accessible also in IP-based networks.
These language features get telecommunication service development near to IT
community and shorten time to market.

4
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