
3 6

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 6, No 1

Sofia 2006

A System for Storing, Retrieving, Organizing and Managing Web
Services Metadata Using Relational Database*

Ivo Marinchev
Institute of Information Technologies, 1113 Sofia

Abstract: In this paper we present our system for efficient storage, update, and
retrieval of web service metadata documents in relational database. Initially we
investigate all of the existing approaches for efficient storage and retrieval of
XML documents in relational database. As a result we selected a recently proposed
structure-centered storage schema named DLN (Dynamic Level Numbering). As
there is no freely available implementation of DLN method, as in its original
form it does not support namespaces, and as the web services metadata documents
rely heavily on namespaces we created our own clean-room implementation that
we extended to support XML namespaces.

Keywords: XML, XML namespaces, XML Schema, Structure-Centered XML
Storage, WSDL, Relational Database Management Systems, Business to Business
Integration.

Introduction

In the past several years more and more data is presented in XML files. All recent
technologies rely on XML formats. In the field of the web services and especially
semantic web services the usage of XML is almost ubiquitous (except WSMO [16]
related specifications that prefer to use human oriented file formats, nevertheless they
also have XML encoding schemes). At the same time the native XML databases are
not so widely used (and applicable) to small and medium size projects (including research
ones). The reason behind this fact is that native XML databases tend to be too expensive
and resource hungry (requiring separated servers, clusters etc.), if proprietary, or
incomplete (unstable, unreliable) in case of the several open source ones. At the same

* The research has been partially supported by “Technologies of the Information Society for Knowledge
Processing and Management” – IIT–BAS Research Project No 010061.

3 7

time the usage of relational database management systems (RDBMS) is ubiquitous
(every organization has at least one RDBMS). Contemporary RDBMS are feature
complete, heavily optimized, and include enterprise features such as clustering,
transactions, replications, partitioning, monitoring tools, etc. There are a lot of different
flavors RDBMS for any conceivable deployment scenario – from small embedded
databases such as SQL Lite and HSQL, through full featured light-weighted SQL
servers as MySQL,, PostgreSQL, Firebird (Interbase) to the “heavy artillery”
represented by Oracle, Sybase, Informix, Progress, SAP DB, Microsoft SQL Server,
etc.

There are two types of XML databases – Native XML databases and XML
enabled relational database management systems.

Native XML databases – they are built from the ground up with the purpose to
manage XML data. They store the data in their internal format that is optimized for
XML processing. These databases have good support for XML standards but tend to
be very expensive (if proprietary). At the same time the open source XML databases
tend to be non-scalable and sometimes even reliable as they are early versions (or
research projects) and concentrate on feature implementations rather than rigorous
testing and performance.

XML enabled relational database management systems – they are actually
relational databases that are extended to output (and sometimes to input) data in XML
format. In fact all major relational database vendors have added XML support to their
products. Currently, two main kinds of mappings for integrating XML data into the
relational model are supported [1, 2]. The first is a document-centered one, the
documents are stored as a whole entity. This approach poses restrictions on query
ability and intra-document updates. The second is a data-centered one and requires a
XML DTD or schema to map XML data to application-specific tables and attributes.
While this approach supports application specific SQL operations over the data it
loses information such as element sibling order and leads to an expensive reconstruction
of document fragments.

Both mappings are not able to efficiently manage large-scale document-centric
XML data that must be updated and accessed via standard XML interfaces like XPath,
XQuery or DOM. The later requirements can be met by a third kind of mapping
named structure-centered storage. It does not require a XML DTD or schema and
maps the tree or graph structure of XML documents generically into predefined
relations. Such a generic XML storage is especially useful in data integration systems
to manage highly diverse XML documents.

Classical approaches

Different relational mappings for generic storage of XML documents are proposed.
In [3] the tree-like node structure of XML documents is represented as parent-child
relationships, but this approach is inefficient for reconstructing documents; [4] encodes
the document tree in binary relations, but also has performance difficulties for
reconstructing document fragments. A multidimensional mapping using document id,
value and path surrogate is published in [5]. However this approach does not deal with
update operations and its path coding restricts the number of child elements per node.

3 8

A key approach to improve query and retrieval performance is the use of
semantically meaningful node-ids when mapping XML data into nodes according to
the Document Object Model (DOM). Therefore several numbering schemes have
been proposed. One of the first numbering schemes supporting ancestor-descendant
relationships was published in [6]. It labeled each tree node with a pair of preorder
and postorder position numbers. So for each pair of nodes x and y, x is an ancestor of
y if and only if preorder(x)<preorder(y) and postorder(x)>postorder(y). A similar
scheme was chosen in [7]. While this numbering scheme is easy to compute and can
be used for streamed XML data it is highly inefficient when new nodes are inserted.
Here each node in preorder traversal coming after the inserted node has to be updated.

The update problem has been addressed by the extended preorder numbering
scheme introduced in [8] and adopted in [9] as durable node numbers. They also
use a pair of numbers for each node. The first number captures the total order of the
nodes within the document like the preorder traversal but leaves an interval between
the values of two consecutive nodes. The second number is a range value. As with
the preceding scheme the ancestor-descendant relationship between node x and y can
be determined from x is an ancestor of y iff order(x) < order(y) order(x) + range(x).
With the sparse numbering insert operations will not necessarily trigger renumbering
of following nodes if the difference of the order value of preceding and following node
is larger than the number of inserted nodes. However inserting new sub trees with a
substantial number of nodes requires renumbering as well.

In [1] a numbering scheme called SImple Continued Fraction (SICF) is proposed.
It numbers the nodes from left to right and top-down. Each node number can be
expressed as a sequence of integer values – adding an integer per tree level – or a
fraction. This approach reduces the update scope (the set of nodes whose numbers
(potentially) have to be updated) after a node insertion to the right siblings and their
descendants of the inserted node. However this still can be a large number. Furthermore
SICF fails if a certain tree depth is reached.

Another approach with left to right and top-down numbering is published in [10].
The so-called Unique element IDentifiers (UID) are based on a tree with a fixed fan-
out of k. If a node has less than k children virtual nodes are inserted. The UID allows
the computation of the parent node id and the id of child i. This approach has two main
drawbacks: 1) fixed fan-out is problematic with irregular structured documents,
2) node insertion requires updates of all right siblings and their descendants.

Some of the UID drawbacks were tackled in [11] with the definition of recursive
UIDs (rUID). Here the tree is partitioned in local areas allowing different fan-outs
and reducing updates after insertion of nodes. However it needs access to the whole
tree in order to compute the identifiers which prevents the streaming of data to be
inserted.

Theoretical findings for labeling dynamic XML trees are given in [12]. The
described schemes determine labels that are persistent during document updates and
contain ancestor information. Furthermore lower bounds for the maximum label length
are presented. However no sibling order of the XML nodes is maintained and therefore
it is not suitable for general XML document management.

A recent paper proposed the so-called ORDPATH numbering scheme [13]. It is
based on a hierarchical labeling scheme using a prefix-free encoding and supports
insertion of new nodes without re-labeling existing nodes.

3 9

Decimal classification and dynamic label numbering methods

Since simple preorder numbering has afore-mentioned drawbacks for insert operations,
order encoding based on decimal classification (DC) was introduced in [14]. DC ids
are composed of a sequence of numeric values separated by a dot. The root node is
assigned a single numeric value. Child node ids start with the id of the parent node
appended by a dot and a numeric value, which we call the level value. The level value
of a left sibling from a node A must be less than the level value of A. As illustrated in
Fig. 1, this approach restricts the update scope after a node insertion to the right
sibling nodes and their descendants. Besides this property the encoding has further
advantages: 1) the parent can be computed from the id, 2) the ancestor-descendant
relationship can also be determined using only the id value and 3) the ids can be
sequentially assigned.

Fig.1. DC order encoding. Highlighted is the update scope after insertion of middle chapter element

Unfortunately the DC encoding also has some shortcomings. 1) the id length
depends on the tree depth, 2) a binary or string comparison of the ids may deliver
wrong results with respect to the total node order, e.g. comparing 1.9 and 1.10 and
3) inserting a node as a child of a parent with a high fan-out may still result in a large
number of nodes to be updated.

In [14] two solutions for the second shortcoming were proposed. The simple
approach uses a fixed number of digits for each level number. Thus our example may
be translated to 0001.0009 and 0001.0010 which now delivers a correct result using
string compare. However this solution restricts the maximum fan-out of a node to a
fixed value and on the other hand uses too much storage space for child nodes with
few siblings resulting in long path ids. Therefore the second approach uses UTF-8
(Unicode Transformation Format-8, defined in RFC 2279) encoding for the level numbers
where small values can be represented by single bytes and larger values by two or
more bytes. This encoding results in smaller path ids and permits binary compare
operations.

With the UTF-8 encoding we still need at least one byte per level value. Given
that most nodes of a XML document have a low fan-out this seems to be a waste of
storage space. As a consequence of this and the still unsatisfying update behavior in

 Document

Chapter Chapter Chapter

Section Section Section 1.1.1 1.1.2

1.1 1.2 1.2 1.3

1.2.1 1.3.1

1

4 0

[15] proposes a new numbering scheme called Dynamic Level Numbering (DLN)
which is based on DC.

Fig. 2. DNL numbering with adjusted number of digits

Fig. 3. IDS after insertion of left chapter subtree and middle section node in chapter 1.2

DLN contains solutions for the stated problems two and three of DC encoding
and has an efficient binary representation, which tackles problem one. In order to
obtain comparable ids a fixed number of digits for level values (fixed length) is used.
This restriction can be relaxed so that only the level values of sibling nodes need to
have the same lengths. Hence the number of digits per level value can be dynamically
adjusted according to the number of sibling nodes. In the example of Fig. 2, the siblings
at the second level use 1 digit, while the descendants of node 1.1 at the third level use
3 digits per level value.

DLN reduces the renumbering effort after insert operations by the introduction
of subvalues. The basic idea is that between two consecutive level values a and b
one can add further values by adding a suffix to a. The resulting ids need to be larger
than all ids of children nodes of a. This is accomplished by inserting a special character
between a and the suffix which is greater than the dot separating the level values.

The application of subvalues is shown in Fig. 3. Nodes 1.0/1 and 1.2/1 could be
inserted without renumbering the existing nodes. It is important to note that the inserted
chapter node must not get level value 0 (or id 1.0). Otherwise we would have no
possibility to add further nodes via subvalues to the left of it. Subvalues can be used

 Document

Chapter Chapter Chapter

Section Section Section 1.1.0001 1.1.100

1.1 1.2 1.3

1.3.1

1

 Document

Chapter Chapter Chapter

Section Section 1.0/1.1

1.0/1 1.1 1.2

1.2.1/1

1

Section Section
1.2. 1 1.2.2

4 1

recursively. For instance to insert a node between nodes with ids 1.1/1 and 1.1/2 we
can add a further subvalue level and assign 1.1/1/1 to the new node. The only
disadvantage of subvalues is the increased id length.

There is also a binary representation of DLN ids. The level values are binary
coded using the same number of binary digits for all sibling nodes as required before.
To separate the level values and to distinguish between values of the next level and
subvalues only one bit. ‘0’ is used that means the following value belongs to the next
hierarchy level whereas ‘1’ depicts a subvalue.

Before we discuss the properties of our encoding we give some examples to
demonstrate the transformation into binary representation. If we use 2 bits for the first
level and 4 bits for the second level we would encode our examples 1.09 as
01 0 1001 and 1.10 as 01 0 1010. To insert a node between both siblings without
renumbering we have to use a subvalue resulting in 1.09/01 or in binary notation
01 0 1001 1 0001.The length of a subvalue should be identical to the length of the level
value. With this property we can minimize the metadata needed to calculate the ids of
following nodes and the parent node id.

Implementation and applications

The DLN approach is suitable for our needs as it supports a wide range of XML
documents, especially:

 irregular documents having nodes with low fan-out as well as high fan-out. All
WSDL, XML Schema are samples for irregular documents;

 large documents which can only be sequentially inserted;
 explicitly express the total nodes order to allow node clustering for high retrieval

performance of document fragments using sequential scans;
 reduce the necessity for renumbering after insert operations;
 assist in the efficient processing of XPath queries, e.g. containment queries;
 in order to use this numbering scheme with a conventional RDBMS it should

be exploitable by the indices and query optimizer of the database system.
In our implementation we do not currently employ binary representation of DLN

ids. We use string representations for easier debugging and testing of more complex
algorithms needed for XPath support. String values bring, of cause, some performance
degradation but corresponding code is abstracted in separated classes and can be
easily changed to binary representation in the final version.

Fig. 4 shows the database ER diagram of the database used by our system. It
contains the following tables. The foreign keys that correspond to relationships are
implied. Form this conceptual model we generate concrete database schemas
corresponding to different possible databases. In practice we tested our system with
MySQL and MS SQL Server, but it should work with any SQL compliant RDBMS as
only basic SQL features are employed.

The rest of our system is implemented as Java library that uses SAX (or DOM)
parser for processing raw XML documents. We are considering now to use stream
based parser (for example StaX) that more naturally fits in our settings.

We have built our system with the intention to organize a large collection
categorized web services [17] gathered from salcentral [18] and Xmethods [19].

4 2

In the original data the services are classified as a set of file-system directories
and subdirectories. A TXT file with the following structure accompanies each WSDL
file:

1 line = service provider
2 line = original classification by SALCentral
3 line = service name
4 line = URL of the original WSDL file on the Web
5 line = Plain text description of the service crawled from the SALCentral/

Xmethods web page
We took a different approach in order to create a coherent representation of the

web service metadata contained in this representation. Actually we represent all of
the data as XML files. The directory structure as a big XML file and the TXT
descriptions of the services as an associated XML files:

<service_description>
<service_id></service_id>
<service_provider></ service_provider>
<original_classification></original_classification>
<service_name></service_name>
<url></utl>
<description></description>

</service_description>
This way we can store all of the data in our system in an uniform way and then

use simple XPath queries to retrieve any part of it. Such representation is much more
convenient for processing and analysis than the original bunch of directories. Our
unified approach shows its advantages when the annotated OWL-S services [20] and
other semantic data are added to the picture.

Fig. 4. Conceptual data model used in our system

4 3

Conclusion and future work

We investigated different approaches for building universal mapping between the
structure of the arbitrary XML documents and relational schema. Among different
methods we selected the best one (Dynamic Level Numbering) and extend it to support
XML documents with namespaces. Then we created our clean room implementation
in Java of DNL method, and apply it for organizing a large collection of classified
WSDL files and their semantic analogous (OWL-S files). Our implementation is not
restricted to web services only and can be applied in many different scenarios where
XML files are involved.

Finally we enumerate some of the improvements to our system that are needed
to make it more robust and performant:

use stream based XML parser as Stax;
add full support of Xpath, now just basic subset of XPath is supported;
use binary representation of DLN ids;
create a more optimized database schema;
more examples

R e f e r e n c e s

1. K u c k e l b e r g, A., R. K r i e g e r. Efficient Structure Oriented Storage of XML Documents Using
ORDBMS. – In: EEXTT and DIWeb 2002, LNCS 2590. S. Bressan et al. (Eds.). Springer
Verlag, 2003, 131-143.

2. S h a n m u g a s u n d a r a m, J., E. J. S h e k i t a, J. K i e r n a n, R. K r i s h n a m u r t h y, S.
V i g l a s, J. F. N a u g h t o n, I. T a t a r i n o v. A General Techniques for Querying XML
Documents Using a Relational Database System. – In: SIGMOD Record , 30(3), 2001, 20-26.

3. F l o r e s c u, D., D. K o s s m a n n. Storing and Querying XML Data Using an RDBMS. – In: IEEE
Data Engineering Bulletin, 22(3), 1999.

4. S c h m i d t, A., M. L. K e r s t e n, M. W i n d h o u w e r, F. W a a s. Efficient Relational Storage
and Retrieval of XML Documents. – In: WebDB (Selected Papers) 2000, 137-150.

5. B a u e r, M. G., F. R a m s a k, R. B a y e r. Multidimensional Mapping and Indexing of XML. –
In: Proc. of German Database Conf. BTW 2003, 305-323.

6. D i e t z, P. F. Maintaining Order in a Linked List. – In: Proc. of the 14th Annual ACM Symposium
on Theory of Computing, California, 1982, 122-127.

7. S h i m u r a, T., M. Y o s h i k a w a, S. U e m u r a. Storage and Retrieval of XML Documents Using
Object-Relational Databases. – In: Proc. of the 10th Intern. Conf. on Database and Expert
Systems Applications (DEXA’99), LNCS 1677. Springer Verlag, 1999, 206-217.

8. L i, Q., B. M o o n. Indexing and Querying XML Data for Regular Path Expressions. – In: Proc. of
the 27th VLDB Conf., Roma, Italy, 2001.

9. C h i e n, S., V. J. T s o t r a s, C. Z a n i o l o, D. Z h a n g. Storing and Querying Multiversion XML
Documents Using Durable Node Numbers. – In: Proc. of the Intern. Conf. on WISE, Japan,
2001, 270-279.

10. L e e, Y. K., S. Y o o, K. Y o o n, P. B. B e r r a. Index Structures for Structured Documents. – In:
Proc. of the 1st ACM Intern. Conf. on Digital Libraries, 1996, 91-99.

11. K h a, D. D., M. Y o s h i k a w a, S. U e m u r a. A Structural Numbering Scheme for XML Data. –
In: EDBT 2002 Workshops, LNCS 2490. Chaudhri, A. B. et al. (Eds.). Springer Verlag, 2002,
91-108.

12. C o h e n, E., H. K a p l a n, T. M i l o. Labeling Dynamic XML Trees. – In: Proc. of PODS 2002.
13. O’N e i l, E., P. O’N e i l, S. P a l, I. C s e r i, G. S c h a l l e r, N. W e s t b u r y. ORDPATHs: Insert-

Friendly XML Node Labels. ACM SIGMOD Industrial Track, 2004.
14. T a t a r i n o v, I., S. V i g l a s, K. S. B e y e r, J. S h a n m u g a s u n d a r a m, E. J. S h e k i t a,

C. Z h a n g. Storing and Querying Ordered XML Using a Relational Database System. –
In: Proc. of SIGMOD Conf., 2002, 204-215.

4 4

15. B o h m e, T., E. R a h m. Supporting Efficient Streaming and Insertion of XML Data in RDBMS.
– In: Proc. 3rd Int. Workshop Data Integration over the Web (DIWeb), 2004.

16. Web Service Modeling Ontology
www.wsmo.org

17. http://www.few.vu.nl/~andreas/projects/annotator/ws2003.html
18. http://www.salcentral.com/
19. http://www.xmethods.net/
20. http://www.few.vu.nl/~andreas/projects/annotator/owl-ds.html

