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Abstract:  A new family of image processing algorithms, called STEC /Standard
Time Equivalent Conversions/ is introduced in this paper . Their main advantage
is their parallel design, which makes them ideal for implementation in parallel
processing systems. The notion of parallelism in STEC is analogous to physical
diffusion processes, which makes them suitable for wide area of tasks beside
image recognition. Further in the paper a new concept called dynamic moments
is examined. It is demonstrated how the latter can be used with contour and
global methods for image recognition. Experimental results and graphics are
provided
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1. Introduction

In the last two decades calculating machines endured significant improvement. The
speed for information transfer raised thousand times, mainboards and processors
became 32 and 64-bit, hard disks have shrunk in size and their capacity may soon
reach 1 TB. Computer processors are constantly increasing their frequency., there
are already processors with velocity above 3 GHz.
      There are however several physical limitations that impose upper limits on this
development. When the size of magnetic layers or transistors becomes from the scale
of the inter-atom distances the effects of electromagnetic interference become too
significant. When processor frequency rises above 10 GHz the infrared radiation
becomes too big and there are too many problems with processor cooling. Higher
power consumption is needed, also electric switches; diodes and capacitors cannot

1 This research has been elaborated in the frames of the project “Access Methods for Image Databases”,
partially supported by research funds of BAS, and maintained by Institute of Information Technologies
(IIT No 010056).
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work at such small time intervals. Even if PC processors become with frequency
above 10 GHz, their difficult maintenance and high price will make them unsuitable
for the common user. Besides, the upper limit for the mainboard frequency is even
lower – below 1GHz, which further limits computer speed.  Lately much attention has
been paid to the idea of optical and quantum computers which could operate at 10
GHz frequency or above. However with this kind of computers there are even more
serious problems, which is hardly to believe that would be resolved in the next twenty
years.

It is clear that the computing power of the current sequential computers, or von
Neuman computers, is insufficient for the resolving of the real problems in science.
For example the calculations in molecular biology and physics are realized on parallel
systems. There are already parallel supercomputers with more than 5000 processors
[1].

There are however many parallel processes in nature, like gas diffusion, crystals
lattice oscillations, electromagnetic waves propagations, quantum system vibrations
etc., which in some cases can be used for parallel computing. The current paper
examines the possibility of realizing the real parallel processes in the framework of
natural physical phenomena. In particular a concrete example is presented demon-
strating the use of diffusion processes for image processing and recognition. A
successive linear blurring filter was used and direct analogy between this filter and
heat diffusion is presented.

2. Dynamic moments

Several geometric moments are used for images description. The most commonly
used are the central inertia moments [2]. Let us get an image, which contains N
points with values ia . The central inertia moments are defined for a gray-scale image
from the equation
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where kI  is the inertia moment from order k, N is the number of the points in the
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In more general case the distances from the center can participate in the
calculation of the geometrical moments with some weight, this gives the so-called
weighted inertia moments:
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The inertia moments give some information of the point’s distribution around
mass or geometric center. They are rotational invariants and can be used for classi-
fication of one image. However when the figure has some important details on the
figure ridge they cannot be caught from the central moments and it is better to use the
so-called distributed inertia moment:
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The distributed inertia moment gives more precise information for the points
distribution and does not depend on the mass center position. It is now possible from
every figure to be extracted one unique identifier (UI) that could be used to classify
this figure within a s set of similar figures. In this way all UIs can be ordered and fast
binary search can be accomplish for every new image that enters the recognition
system.

However geometric moments have two main drawbacks – they are not scale-
invariant and their calculation is time-consuming. For example finding of the distributed
geometric moment needs at least 2N  calculations and N scans of the image. It is not
easy to be implemented even on parallel system.

The dynamic moments, introduced below, are substitutes for the geometric
moments. Let us suppose that in some moment nt  a discrete image is given. The
image can be further transformed by some kind of transformation law. The case
when this transformation is a discrete linear digital filter, for example the average
blurring filter, will be examined. It blurs the entire image according to the equation
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where ija  are the values in all neighboring pixels, and m is the neighboring pixels block
width and height. This filter substitute the value in one pixel with the average of the
pixels values in the block of pixels m x m with center of that pixel.

At the end of the blur a new transformed image is generated. If this operation is
repeated many times an entire set of new images can be produced for every next
moment of time. It will be supposed that this blurring process is implemented
simultaneously. Only in this way the algorithms presented here are efficient.



This parallel blurring implementation however is similar to many real physical
processes.  Equation (2) can be written for the more general case of blurring using
weights for the neighboring pixels for continuous time, for the interval dt in the following
way:
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where dt  is the time interval of the blur, nka ,  is the new value of the pixel, 1, nia are
the values in neighboring pixels, ip  are inflow coefficients and iq  are outflow
coefficients and m is the neighboring pixels block width and height. In another words
the first member in the sum is the total quantity that flows in, and the second gives the
total quantity that flows out from the pixel in the n-th moment. But if na  expresses
density of something, for example fluid density, and if we suppose that inflow and
outflow coefficients are equal, (5) expresses nothing but a diffusion law. If we set
flow coefficients equal to constant c, and re-order members in the brackets, (5) can
be written in the following form:
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where D is the number of the lines in which the magnitude of the flow is evaluated,

nka ,  is the value of one point k in the n-th moment and j
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the corresponding neighboring points in the i-th line. Fig. 1  illustrates the connection
between (5) and (6) for 3x3 block, where i varies from 1 to 4 for 3x3 block, because
there is 4 straight lines. For more details about numerical differencing and derivative
approximations see [3, 4].

Fig. 1. Discrete approximation of diffusion in 3x3 box of the point i



The expression in the parenthesis in (6) is discrete approximation of second
derivative. If time and the density are considered continuous, (6) becomes
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where x,y and z are the spatial dimensions (they are only two for images because for
simplicity we considered only the flow between the closest points and ignore diagonals,
in other words we consider the flow between two diagonal points as two-step process).

In physics the differential law in (2) is well known, all diffusion equations are
from this kind, for example in thermodynamics the heat transfer is given from the heat
diffusion equation [5]
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where T is the temperature, and a and b are constants. In this example the temperature
plays the role of  “energy density”, (6) and (7) are discrete analogues of this equation.

So diffusion processes and blurring are not so different things. Two kinds of
dynamic moments from first order – the average leaving time and the average
resting time, will be defined. Let's take an arbitrary binary image and start to blur it in
such a way that over its contour there is absorption. Said in physical language, this
means that there is boundary condition that the fluid density over the contour is zero:
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where Г is the multitude of all contour points as illustrated in Fig 2.
If the initial number of pixels in the image is

assigned as Q, it is clear that during the blur all the
quantity in the image will be absorbed on the contour
if blurs are repeated infinity number of times
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where nS  is the total absorbed quantity in the n-th
moment. The average leaving and rest times are given
from the expressions:
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 – the average resting
time in the k-th pixel,  nka ,  – pixel value in k-th pixel in the n-th moment, nks ,  – total

Fig. 2. Contour absorption. The
quantity that reaches the contour
does not return back



absorbed quantity in the k-th pixel in the n-th moment  (or the quantity that leaves the
system from that pixel), nt  is the time offset of the blur and is taken equal to ndt
because moments of the blur is averagely distributed, k

S  and k
M  are defined as

follows:
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and represents dynamic moments from order zero. Similarly to inertial moments,
dynamic moments from order r are defined as follows:
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If time is considered continuous (9) and  (10) becomes:
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While the average resting time can be calculated for every pixel, the average
leaving time can be calculated only for contour pixels, because only in these pixels
there is irreversible flow out from the system. More generally, average leaving time is
the average time or mathematical expectation a system to leaves its state and to pass
to another state under some kind of conditions, and the average resting time is the
average time that the system will remain in its current state. These two dynamic
moments will be explained in more details. In the theory of Probability well known are
the so-called ruin problems [6]. The classic ruin problem can be illustrated in the
following way:

Lets suppose that two gamblers John and Pier are playing heads and tails.
They start with some amount of money, say m and n dollars. When the coin falls
on its heads side John wins one dollar, when the coin falls on its tails side Pier
wins one dollar. The game continues until Pier or John money reach zero. The
following variables had to be found:

1) q(m) and q(n) – probability John and Pier to win the game;
2) D – the average number of tosses until John or Pier wins (duration of

the game).
      This problem had been solved in detail in [6]. Written in the above assignments,
the solutions are
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If for example John has 5 dollars, and Pier 3 from (12) follows that there is
62.5 % chance John to win, 37.5% Pier and that the average game duration would be
15 tosses.

The ruin problem example was used because the first order dynamic moments
are analogical to the game average duration. The probability to win more generally
can be named probability for leaving.

It can be shown that the dynamic moments as defined in (9) and (10) are
convergent. Because of the constant discharge of the fluid through its contour, the
quantity in the system decreases exponentially. This is so because the inflow and
outflow coefficients in the used model do not depends from fluid density, which is
typical for the diffusion processes. Then for every point from the contour is fulfilled

k
k

k

a

da


where k  is a constant because the contour does not change during the blur. Then if
we approximate the total leaved quantity through the k-th pixel as
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which represents the well-known Euler’s gamma function Г(r+1), multiplied by constant.
Since Г(r+1) is equal to r! [7], it is clear that Rkt ,  is finite. Since the sum of finite
numbers is also finite, total leaving and resting times are also convergent.

The average leaving and resting time can be useful because from the entire set
of blurred images every pixel can be taken with some weight, corresponding to the
time offset from the original image. This is the simplest way for the calculation of the
dynamic moments. It can be used when nothing is known for the image content a
priori. If for example we know that in an image sequence, an explosion occurs in
some moment we will calculate the dynamic moments in different way – the maximum
weight will be taken in the moment of the biggest interest – the explosion.

While geometrical moments are influenced only by the spatial distribution of the
points in the image, the dynamic moments are influenced by the change of the values
of the points with time as blurring or some other transformation occurs. The use of the
average leaving and resting time for image recognition is examined below.

3. Experimental results

Generally there are two methods using dynamic moments – contour and global methods.
In the first case all moments on the contour of an image are used, and in the second,
similarly to the recognition using geometric moments, one unique identifier is extracted
for the whole image.  Contour methods are broadly used for image recognition. The
main problems that arise are contour discontinuity and overlapping. The main purpose
of STEC algorithms is to solve these two problems. If we try to found a contour on the

,



original image there would be and other problem. Because of the quantization the
contour of one binary image, even if it were well preserved, can be very abrupt.

STEC contour methods are useful because of the smoother output curves and
noise stability. The blur filters the small contour disruptions.  In Fig. 3. is given the
gradient of the average resting time over the contour of several images.

As it can be seen from Fig 3, to every edge of the image contour in the curves
corresponds either minimum or maximum in the STEC output. Whenever there is
convex edge, there is a minimum and whenever there is a concave edge – maximum.
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Fig. 3. Contour results for several images of letters.  On the x-axis is given the contour points and on
the y-axis is given the average rest time gradient values. The first point from the images is the lowest
point on the left and the contour is passed in counter-clock direction



Every image can be recognized from the combination of minimums and maximums.
This is how the problem of image recognition is reduced to determining extremums in
one-dimensional signal.  If an image is represented as min-max combination
corresponding to the edges of its contour then the recognition will be possible after
rotation, scaling and even stretch are applied.

As was noted, the dynamic moments are analogues to geometrical moments.
They are even better then geometric moments when it comes to comparing different
images. It is much more easy for two geometric moments of images of different
classes to happens with close values than for the corresponding dynamic moments.  It
can be shown that dynamic moments are complex polynomial radicals, which depends
from radius vectors of the contour, transition probabilities and space dimension. They
are very sensitive to changes in the contour.

In Fig. 4. is given comparison between first geometric and dynamic moments for
several figures. The dependency is between the first dynamic moments of the whole
figure and the size of the figure (size is the initial number of pixels).

On the two upper figures are given the gradient of the resting moment and the
average leaving time for the images of ten letters. On the two lower are given the
corresponding central and distributed geometric moments. The moments are given as
functions from image sizes. It is clear that geometric moments are much more
convergent. The lines representing moment variation with image size overlaps and
this makes images classification harder.
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images scaled 20 times



If, from another hand, for the recognition are used dynamic moments, it is possible
every image to be described with similar to above curves. If there are slight overlapping
several dynamic moments can be used. Every dynamic moment can be referred as
“image feature”. If we are able to extract these features from the image we can
further classify this image and determine to which class it belongs. In this case dynamic
moments are the unique identifiers of the image, this moments can describe the image
more uniquely than geometric moments because they are formed in a more complex
and image-dependent way.

Except both first order dynamic moments – the average leaving and resting
times many other dynamic moments can be used. It can be chosen many time
dependencies. For example the exponential dynamic moment is calculated as follows:
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Actually this is an interesting moment and because of one another interpretation
of its meaning. In signal processing well known are the so-called Laplace
transformations [7, 8, 9, 10]. Equation (13) is discrete analog to these transformations.
They are used when we know the input and the output signal of one unknown system
and we need to find an analytical expression of the influence of this system. If   is
complex (13) becomes the well-known Fourier transformations.

If an image is treated as an unknown system, we can choose such a input signal
that guaranties invariance of the output from the image rotation and scale. It can be
averagely distributed over the image sinusoidal impulse, for example. If the output
signal is traced, we can find the image influence on the input. Every image has unique
influence and this can be used for its recognition.  Fourier and Laplace transformations,
in particular, uses coefficients ia  for the recognition, while the global methods proposed
here use integrals like (13).

4. Conclusions

In this presentation was shown that the repeating blur of an image could be used for
the calculation of the so-called dynamic moments. Then these dynamic moments, or
their gradients, can be used for the image recognition. Since the blur is very simple for
realization, and is similar to many diffusion processes in the nature, it is even possible
to be realized on very low physical level. This very much simplifies the parallel
realization of STEC algorithms. The only requirement is that on every blur pass the
values over a contour or a grid must be known. These values are needed for the
calculation of the dynamic moments.

As implies its abbreviation, STEC – the Standard Time Equivalent Conversions,
is by ideology dynamic presentation of the geometric data. In this way many parallel-
consequent and consequent-parallel transformations can be realized. It can be useful
for fast parallel processing of the information and its consequent management. Thus it
may be interesting these methods to be further examined.
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Обработване на изображения с техники за последователно изглаждане

Антон Е. Милев

Институт по информационни технологии, 1113 София

(Р е з ю м е)

В статията се разглежда нова фамилия алгоритми за обработка на изображения,
наречени STEC (Standard Time Equivalent Conversions). Основното им
преимущество е паралелизмът, който ги прави удобни за приложение в системи
за паралелна обработка. Идеята за паралелизма в STEC-алгоритмите е
аналогична на физичните процеси на дифузия,  което ги прави подходящи за широк
кръг задачи извън разпознаването  на образи. По-нататък в статията  се раз-
глежда нова концепция, наречена динамични моменти. Показано е как тя може
да бъде използвана в контурните и глобалните методи за разпознаване на образи.
Представени са експериментални резултати и графики.


