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Abstract: The discrete cosine (and sine) transforms (DCT/DST) are analyzed in
this paper on the basis of the linear representations of finite groups and geo-
metrical approach. These transforms are extremely useful for multirate systems,
adaptive filtering and compression of speech signals and images. It is shown that
if the Discrete Fourier Transform (DFT) operator is referred to an appropriate
basis it takes a block-diagonal form. These blocks coincide with DCT-1/DST-1
for even dimensions of signals space and with DCT-5/DST-5 for odd ones. The
results enable the investigation of the full structure of DCT/DST.
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1. Introduction

Each Discrete Cosine Transform (DCT) uses n real basis vectors {€’ } with cosine
coordinates. These basis vectors are orthogonal. For example, in the DCT-4, the k-

: 1 1 : :
component of € is Lcos(k + E)(m + E)Z . There are eight different types of
n

Jn

DCT and this raises the question for their classification as a uniform structure. What
connects these transforms, do they cover all the transforms of this structure?

Ahmed, Natarajan and Rao have found the first cosine transformin 1974. This is
the so-called DCT-2 [1, 4]. There are four basic types — from DCT-1 to
DCT-4. Two of them, DCT-2 and DCT-4, are applied actively in image processing,
filter bancs and multirate systems [4]. It is important that they have got fast realizations.

This basic set was expanded in 1985 with four new transforms — from DCT-10
to DCT-IVO by WangandHunt[2, 4].

4 49



All DCTs are orthogonal transforms and the usual proof is the direct calculation
of the inner products of their basis vectors, applying trigonometric identities [4]. An
useful source of such identities is thisof H. Dwight [3].

The proof of orthogonality is obtained in Strang’s paper [4] by a second indirect
but neat way. The basis vectors are actually eigenvectors of symmetric second-differ-
ence matrices at different boundary conditions — of Neumann or Dirichlet. Orthogo-
nality is proved automatically (matrices are symmetric) and all DCTs are connected in
a fixed structure. Their multitude becomes largely comprehensible and explicable.

Does a more direct way exist to obtain these transforms, connecting them in a
joint structure, proving orthogonality and giving fast realizations?

The objective of this paper is to give answers to these questions.

2. Invariant spaces and projectors on them

2.1. Convolution and the Dihedral group

The input and output signals of a linear time-invariant system are connected by the
convolution operation [5, 6]:
1) y =x=xh.

Here h is the impulse response of the system. The sets of real numbers R, inte-
ger numbers Z and the integer numbers — multiple of some integer number n (i.e. nZ),
with addition as a binary operation, are groups [7, 8]. Of course we have R 5Z > nZ.
Periodical functions — continuous and discrete, could be defined on the factor-groups
R/Z and Z/nZ. The signals are functions usually defined on the R, Z, the torus group
T = R/Z, the residue system (mod n) Z/nZ, or their Cartesian products. As such they
are elements of some functional space, most often a Hilbert space H, which is supplied
with the form (x| y) that takes values in the field of the complex numbers C. This form,
called an inner or scalar product, is Hermitian and positive definite [8, 9].

If L%(a, b) denotes the space of square summable functions on the interval
(a, b), and L?(Z/nZ) denotes n-dimensional complex vector space of functions
(vectors), we have Hilbert spaces with inner products [6, 8, 9, 10]:

b
@ KIY)=OYO L &)= Tx*y,
The convolution (1) could be written as an inner product if the right shift operator
p and the sign operator o are used:p: xt)—>X({t-1), o: xt)ox-t). If
x,h eL?(—, o), then (x| ptoh) = [x(t) h(t— t)dt = x * h.

In the canonical basis of L2(Z/nZ), formed by vectors, {€ .}, €, = [6 . J k=
0,1,..., (n-1) (mod n), (3, is the Kroneker symbol), the two endomorphisms have the
following (orthogonal) matrices:
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pPll :I§knl-
K 1=0,1,... (-1 mod n)
000 1 170 0 0
100 0 000 1
©) _ e -
Pi= 1o 1 0 o] % 0010
0010 0100

In this case the k-th coordinate of the output vector y in (1) has the form

(4) Y = (X| prah),

and the convolution is cyclic. In (4) p and o define a linear representation of the
dihedral group D, [7, 8, 9] (see the definitions at the end of the paper):

(5a) D, =(o,ploz=pn =(0p)? =1).

One verifies from (3) that the matrices of two endomorphisms satisfy the defin-
ing relations of D_. The group D, has a second presentation, which is isomorphic to

(5a) (6 = 6,8 > op):
(5b) D, =(c,8| 62 =3 =(c3)" =1).

In this case 6 _=oc, p, and if n=4,

~ O O
o O
o O B+

(BN

00

The defining relations for D_ have the form (p could have arbitrary power
ph te R (or 2)):

o

(5¢) D =(o,plo?=(op)* =1).

It follows from (5) that not only the obvious symmetry o (which reflects functions
in ordinate axis) is involution, i.e. ® = 1. Involutions are the elements of dihedral group
p Yo (the “inner” polygon of the Cayley’s colored graph of D, [7]) in (4), that reflects
in the vertical lines t = k/2. These “parallel lines” coincide in the discrete case with
diameters of the unit circle. If we apply the Strang’s terminology [4], for even k this
symmetry realizes “meshpoint (or whole-sample) symmetry”, and for odd k — “midpoint
(or half-sample) symmetry”. The most simple representatives of these two classes are
o (reflects in the ordinate) and op ~ @ (reflects in the vertical line t = — 1/2), i.e. the
two generators of the dihedral group into the second presentation of this group (5b).
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2.2. Properties of the Fourier operator

2.2.1. Some definitions
The continuous Fourier operator F is defined by the relation

Fx(t) = j e 2ix(t)dt= X (v)and the discrete Fourier operator F, — by the square

matrix (F, = (U/vh)wA]=C_ - jS., w=e 1%M: k 1=0,1,..,.n—1 ). These two op-
erators are unitary [6, 8, 11, 12, 13], i.e. the inverse one coincides with the Hermitian
conjugate: F* = F*. In the abstract harmonic analysis continuous and discrete trans-
forms are considered to be an expansion by characters of group of the real numbers R
and the cyclic group Z/nZ respectively [14]. A fundamental property of the Fourier
operator is that it transforms convolution into algebraic multiplication [6], i.e. F (xxh) =
Fx.Fh.

2.2.2. Eigenvalues and eigenspaces of the Fourier operator

The question about the eigenstructure of the Fourier operator has a long history. In the
early 70’s it was stated as the “multiplicity problem” for F [10]. The involution o
introduced in (3) connects F = C —j Sand F*! = F*:

6) ocC=Co=C; 6S=S0c=-S; F'=cF=Foc => F=cFo.

It follows from (6) that F * = ¢ 2F * = (c F .F)(c F .F) = 1. This well-known
result (hereby quite evident) shows that {1, F, F 2, F %} is a linear representation of the
cyclic group C,. If, then FX = A X then L= 1 and the eigenvalues of the Fourier
operator are {1, j, -1, —j}. Determining the multiplicity of the eigenvalues for
L%(Z/nZ) is completed by determining the trace tr(F ) [15].

If E is n-dimensional vector space over the field of the complex numbers C then
general linear group GL(E) is the group of automorphisms of E [9]. It is identified with
the group of the invertible matrices. The linear representation of G in E is an arbitrary
morphism ¢ of G in GL(E), i.e. ¢ (st) = ¢(s)e (1), (1)=1, (s =(¢(s)) %, s, t €G.
The vector space Fc E is invariant relative to the group G in the representation ¢ if for
each X eF all ,(X), seG, belong to F too. A representation ¢ is irreducible if E is
not zero and has no G-invariant spaces except 0 and E. Each representation is a direct
sum of irreducible representations [9]. This means that a basis exists in which the
matrices of the representation have a block-diagonal form. The function on G,

X (p(s) =1tr(e,) for VseG is a character of the representation. We are interested in
the canonical decomposition of the linear representation [9]. Let %o Xys---1 X p_1r D€
the characters of all irreducible representations F, ..., F, , of the group G and nj,...,

n, , are their orders. Let E=U,®..®U __ be a decomposition of the representa-

tion ¢ into a direct sum [9] of irreducible representations. Let us denote by E; (for i =
0, 1,..., h-1) the direct sum of those U,,,...,U__,, which are isomorphic of F.. Thus we

shall get the canonical decomposition E=E,®...®@E, ;. The projector p, on E, is

52



given by the following important formula [9]:

n; .
(7 pi=—% xi(t)o,; g=card G,
g teG

The projectors for the operator F, which is a linear representation of the cyclic
group C, have — according to (7), the form:

Oeo =%(1+F +F24+F3), q =%(1—jF—F2+jF3),

® Gy =3 A-F +F?=F2), g, =5 L+ JF-F - FY)

We could obtain these projectors from the resolvent [11] of the operators F,
R(£ F) (£ € C too). One verifies that [15]:
) R(F.Q)=(F-0*={C+& F+{F>+F3}/(1-C").

If we introduce the Hartley operator [16, 17] (which is an involution: t> = C2 + S?
=1, F=C -] S), we could obtain the following projectors:

10 1l+o, l-o = l+7 = 1-7
( ) Qe_ 2 ’QO_ 2 1Qp_ 2 1Qn_ 2 .

The projectors in (10) make it possible for the mutually orthogonal projectors on

the eigenspaces {R,,, R.,, R,,, R, }of F from (8) to be composed:

ep ! en ! op !

(11) qep :qeqp’qen :qeqn’qop :qoqp’qon :qun.

The solution of the problem for the multiplicity of the eigenvalues and dimensions
of the eigenspaces of F now turns out to be trivial — it coincides with the trace of the
corresponding projector [15].

Table 1. Dimensions of the invariant spaces

n g‘Rep g‘Ren g‘Rop g‘Ron

4k k+1 k k k-1
4k+1 k+1 k k k
4k+2 k+1 k+1 k k
4k+3 k+1 k+1 k+1 k

These dimensions are shown in a table for a different n (mod 4) in [10] (see for
alternative approaches).

2.2.3. Invariant spaces of the cyclic and Dihedral groups
The dihedral group D, in (5) has a cyclic subgroup C ={1,p, p?,...,p" '}, Or

C =(plp"=1). The canonical decomposition of this representation allows the
convolution (4) to be simplified. The cyclic group has n irreducible representations,
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which coincide with its characters and have the form:
2n

(12) X (p)=e "

According to (7) the projectors on the one-dimensional invariant spaces are in
the form

1 n-t . = =,
(13) P.==2 x (p)p =11 =H (p)
Nk=0

where fh" is the h-th column of F_, and * denotes Hermitian conjugation. The set

{H, (0)} is called uniform-DFT analysis filter bank [18, 19]. In this basis p is repre-
sented by the diagonal “modulation” matrix p, :

. 2n . 2m

(1) ?,=diag(l, e ",..e " ,.e ), PFF=F2¢, Fpk=2"*F.

u and p define a linear representation of the Heisenberg-Weyl nilpotent group

i (n-1)
n

No =(2,p|?" =p" =[2,p]" =1; p.[ip] =[?,p].p. 2.[2 p]=[2.p].0),

15
(3 [?.pl=pp.ptp™

Obviously

H, (p)=?"*H (p)?* =H (wp)w=e 127", Ho(p):%iiT 2%(1+p+...+p”‘1);1
is the vector of all 1’s. The bandpass filters H,(p), k >0, are realised through modula-
tion and demo-dulation of the prototype lowpass filter H (o). Each filter H, () offers
about 13 dB of the minimum stopband attenuation with respect of the zero-frequency
gain [18, p.116]. The filters are not very good because H(o) executes simple averag-
ing.

In the new basis the convolution will be in the form (if X = Fx , H = FR):
i ik

n

(16) y, =(%Iptah)=(F%I?FR)= % X H,e

It must be pointed out that the involutions pfc and not o participate in the
convolution. Because of this we are interested in the canonical decomposition of D, If
nis even, D, has four representations of first order, which map o and p into {£1} in
all possible ways. The rest of irreducible representations are of a second order [9]:

2t N 4 2 N 4
m. K cos —mk —sin —mk m. K cos —mk sin —mk
a7 MeH= 2'71[ 22 (P o)= 2';[ gﬂ , 0<m<n/2
sin ka cos ka sin —mk —cos —mk
n n

From (7) the following projectors on E_ can be obtained [15]:
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& n-1
p :—chos(z—nmk).pk:e Re(H (p))=? H (p)?2 +?2 H (p)? ,
m n n m m cm 0 cm s,m 0 s,m

k=0

18

18) ] 1if m=0, =,
0<m<—, 2n

2 2,0 Vim0, .

Here vén 2" = 2.0+ 1 2ndHu(p) = fm. f,;}is the uniform-DFT analysis fil-
ter bank, so that the two vectors

& &
(19) C =4/ [cos 2—”Im} and § :,/—m {sin 2—ﬂlm}
m n n m n n

form an orthogonal basis of E_ and p, =C,CT+S,S1. This is a sine-cosine modu-
lated filter bank with the same prototype H(p). In order to refer E to the basis so
constructed the matrix of conversion P, should be used [15],
(20) Pn - |-60 | 61 | §1 | | 6n/2—1 | §n/2—1 | 6nlzJ'

P".p“c.P, =diag(1, r(p*o),.... 1" (p*0),....,r"**(p“c),(-1)*),
r"(p* o) is from (17).

If Hmz(F ﬁ)mzHr,m—i_jH sz(F )_z)mzxr,m—i_jxi,m'

im?

n/2 2n

_ —mk
(21) Yo =(X|p'oh)=Re{> e, X H.e " }.
m=0

Referring E to the orthogonal bases of {E,_} rationalises the convolution.

3. Discrete cosine/sine transform
3.1. Invariant spaces of the DFT and DCT/DST

R, R

ep?~Fen? ™ "op!?

The four invariant subspaces of the Fourier operator { R R, } could be

joined in more rough decomposition of the space: R, +R, =R, R, +R, =R, -
the subspaces of the even and odd vectors (functions on Z/nZ). Projectors into these

1 1-
subspaces are (, = %, q, = TG from (10).

It is easy to be shown that o and the identity 1 have two presentations:

= z P38 Tpk = z 0 85Tp K,

(22) 0<k<n 0<k<n
l: zkaSTpfk — zpfkaank.
0<k<n 0<k<n
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Here § = [1,0,0.,...,0]" is the n-dimensional vector of Dirac. It is important that
the two projectors q,, g, have obviously orthogonal columns:

1 A 1 VST -
(23) G, == (P +p )33Tp ", g, == (p -p N)s3Tp .
0<k<n 2 0<k<n
If linear-independent columns of these projectors are chosen as the basis of the
space, the Fourier operator will take a block-diagonal form. The dimensions of these
invariant spaces coincide with the trace of the projectors i.e.

n/2+1if n even .
;o dimR =

(24) dimR = n/2-1,if neven
e |(n+1)/2,if nodd’ 0

(n—=1)/2,if nodd
These dimensions could be defined from Tabl. 1 too. Of course they coincide

with the number of the projectors’ linearly independent columns. Two cases could be
considered— even and odd dimension of the space.

3.2. Evenn - DCT-1/DST-1

We take the first n/2 + 1 (orthonormal) columns of the first projector and the first
n/2 — 1 (orthonormal) columns of the second projector to construct the endomorphism
o.. This will be orthogonal operator, i.e. the inverse one coincides with the transpose:

(25) G=SST+pESSTp_E+i T (p p )3T+ (p = p )8 Tp 2y

ﬁ 0<k<n/2

If n =8, o takes this “stealth aircraft” configuration :

1 0 0 0 0 0 0 0
0 1/42 0 0 0 142 0 0

0 0 142 0o o0 o0 1/+2 0

0 0 0 142 0 0 0 U2
0 0 0 0o 1 o0 0 0

0 0 0 1J2 0 o0 0 U2
0 0 1V2 0o 0 0 -1/42 o

0 1/4J2 0 0 0 -1/4/2 0 0

Fourier operator F will be presented in this new basis from the block-diagonal
matrix o'F o
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1242 12 12 12 122 0 0 0
172  1/2 0 -1/2 -1/2 0 0 0
1/2 0 -1/J2 0 1/2 0 0 0
1/2 -1/2 0 1/2  -1/2 0 0 0
1242 —1/2 12 -1/2 12J2 0 0 0
0 0 0 0 0 —il2 —il2 —il2|
0 0 0 0 0 —ild2 0 il2
0 0 0 0 0 —i/2  ilN2  —il2
From (25) and the properties of the Fourier operator (14):
-1 - -
(26) Fp=21F; Fo=—121, 1=p11..,1],
Jn
it follows:
(27a) Fa:[ Eol 61' ezl |6n/2| _j§1| _j §2| |_J §n/2—1]'

Here {C,, S, } are the basis orthonormal vectors of the invariant spaces E, of the
dihedral group (19). Finally

TR _ S n2 S s
27h) a'C = /ek/n(é + cos(zk). p™2d) + /%ek/n)kgn%os(hkl/n)p5,
o™ =2/n_Tsin(2zkl/n).p' 5.

0<l<n/2

This is obviously the block-diagonal matrix:

(27¢) e €Y 0.
0 -jsi1

Here C1 and S1 are respectively Discrete Cosine Transform-1 (DCT-1) and
Discrete Sine Transform-1 (DST-1):

C1=-2 D1fcos(2ZKI)D1; 0<k,I<n/2.
Jn n

Sl:isin(z—nkl); O0<k,I<n/2.
(28) Jno .

D1 = diag (%,1, 1,..11, f) .

3.3. Odd n — DCT-5/DST-5

In this case a is constructed from the first (n+1)/2 normalized columns of the first
projector and the first (n —1)/2 normalized columns of the second projector:
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o 1 e =T ke
(29) a=66T+$o k; ., ((p*+p )88 p F +(p* —p *)88Tp*""?).

Ifn=5, owill be

0 0 0 0
V2 0 142 0
0 142 0 142
0 U2 0 -2
1/V2 0 -1uv2 o0

In the new basis the Fourier-operator F will take this block-diagonal form o"F o

o O O O Bk

0.447214 0.632456  0.632456 0 0
0.632456 0.276393 —0.723607 0 0
0.632456 —0.723607 0.276393 0 0
0 0 0 —0.850651i —0.525731i |-
0 0 0 —0.525731i  0.850651i
It can be obtained as in previous part that this matrix has the form
C5 0
(30) a"Fa = . :
0 —-jS5
In this formula
2 2
C5=—D5[cos(—kI)]D5; 0<k,I<(n+1)/2;
Jn n
85=i[sin(2—nkl)]; O<k,I<(n+1)/2;
(31) nTom
D5=diag(—,11,...1,1,1).
g( 7 )

Here C5 and S5 are the well known DCT-5 and DST-5.
In (27¢)—(30) one of the blocks is real and the other — imaginary. It is easy to be
proved, that (F=C - S):
1+,

l-0
Ci="—; S2=__—
(32) > >

For every linear mapping, presented by the mxn matrix H in a fixed basis for the

space of columns (i.e. the range of the values) we have R(H)=R(HHT)[13, 20].
Hence for this case
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(33) m(C)=m(CZ)=m(“T")=me; m(s>=m(52)=m(1‘7")=mo.

Referring the space to the orthogonal basis of R.and R, transforms the matrices
C and S to a block-diagonal form in which upper-left/down-right corners are respectively
DCT/DST and all the other components are zeros. Wickerhauser proposed presentation
like (27c) and (30) for DCT-4 and DST-4 (*“the easiest case”) and it is obtained by
factorization of 2nx2n matrix [4,19]. Nearly analogical factorization is proposed for
DCT-2 and DST-2 in [19].

Geometrical approach was proposed in this paper that allows not only all DCT/
DST transforms to be received, but it could be generalized for unitary matrix with
definite properties. This generalization will be realized in another paper. Results re-
ceived in this paper solve the task for the fast realizations of these transforms; all they
are derivatives of the DFT, and sparse matrices implement the connections.

4. Conclusions

The block-diagonal form of the Discrete Fourier Transform (DFT) was obtained on
the basis of groups theory representations and geometrical approach. Diagonal blocks
of this form consist of DCT-1/DST-1 for even dimensions of the signals space and of
DCT-5/DST-5 for odd ones. These results allow the full structure of DCT/DST to be
constructed. This is important for multirate systems, adaptive filtering, compression of
speech signals and images. Along with this it solves the problem of fast realizations of
the transforms, which are generically connected with DFT.

5. Some definitions

Some definitions have been used in the paper. The group G is a set G with binary
operation GxG—G, noted as (a,b) — ab and such, that: 1) It is associative; 2) ldentity
element ueG exists, ua=a = au, for every acG; 3) For u and every element aeG
an inverse element a'eG exists, andaa'=u=a' a.

If G and H are groups, the morphism ¢: G—H of these groups is a function from
G to H, which is morphism of their binary operations, i.e. p(ab) = ¢(a) ¢(b) for all
ab eG[7, 8]
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WNuBapuanTHU IPOCTPAHCTBA M KOCHHYCOBH TpaHC(hopmariuu

Boowcan Keuees

Huemumym no komynuxayuonnu u komniomwphu cucmemu, 1113 Cogus, E-mail: jechev@agatha.iac.bg

(PezwmMme)

B cratusara ce aHanu3upar OUCKPETHHW KOCHHYCOBU M CHHYCOBU TpaHc(opMmanuu
(DCT/DST) na 6a3ata Ha TMHEWHU NPEACTABSIHUS Ha KpaliHU TPYITU ¥ Ha TeOMETPHYCH
noaxon. Te3u TpancopManuu ca WU3KIIOYUTEIHO TOME3HH 32 MHOTOCKOPOCTHHUTE
CHCTEMH, aJIallTUBHOTO (pUATpUpPaHE U KOMIIPECHS] Ha TOBOPHU CHUTHAIM U 00pasu.
[TokazaHo e, ue ako oreparopbT 3a quckperHa Tpancopmanus va GOypue (DFT) ce
OTHECE KbM ITOIXO/ISIN 0a3uc, TOM npremMa O1ouHo-Auaronaita ¢opma. Te3u OyiokoBe
ceBragar ¢ DCT-1/DST-1 3a ueTHu pa3MepHOCTH Ha IPOCTPAHCTBOTO HA CUTHAJINTE
u ¢ DCT-5/DST-5 — 3a HeuerHU. Pesynrarure mo3BoNisIBaT Jla C€ U3CIEABA IThIHATA
crpykrypa Ha DCT/DST.
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