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Invariant Spaces and Cosine Transforms

Bozhan Zhechev
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Abstract:  The discrete cosine (and sine) transforms (DCT/DST) are analyzed in
this paper on the basis of the linear representations of finite groups and geo-
metrical approach. These transforms are extremely useful for multirate systems,
adaptive filtering and compression of speech signals and images. It is shown that
if the Discrete Fourier Transform (DFT) operator is referred to an appropriate
basis it takes a block-diagonal form. These blocks coincide with DCT-1/DST-1
for even dimensions of  signals space and with DCT-5/DST-5 for odd ones. The
results enable the investigation of the full structure of DCT/DST.

Keywords: cosine transforms, orthogonality, signal processing, fast transforms,
filter banks, characters of groups, theory of groups.

1. Introduction

Each Discrete Cosine Transform (DCT) uses n real basis vectors {ccm} with cosine
coordinates. These basis vectors are orthogonal. For example, in the DCT-4, the k-

component of ccm is 
n

mk
n

)
2
1()

2
1cos(2  . There are eight different types of

DCT and this raises the question for their classification as a uniform structure. What
connects these transforms, do they cover all the transforms of this structure?

Ahmed, Natarajan and Rao  have found the first cosine transform in 1974. This is
the so-called DCT-2 [1, 4]. There are four basic types  from DCT-1 to
DCT-4. Two of them, DCT-2 and DCT-4, are applied actively in image processing,
filter bancs and multirate systems [4]. It is important that they have got fast realizations.

This basic set was expanded in 1985 with four new transforms – from DCT-IO
to DCT-IVO by  W a n g and H u n t [2, 4].
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All DCTs are orthogonal transforms and the usual proof is the direct calculation
of the inner products of their basis vectors, applying trigonometric identities [4]. An
useful source of such identities is this of H. D w i g h t [3].

The proof of orthogonality is obtained in Strang’s paper [4] by a second indirect
but neat way. The basis vectors are actually eigenvectors of symmetric second-differ-
ence matrices at different boundary conditions of Neumann or Dirichlet.  Orthogo-
nality is proved automatically (matrices are symmetric) and all DCTs are connected in
a fixed structure. Their multitude becomes largely comprehensible and explicable.

Does a more direct way exist to obtain these transforms, connecting them in a
joint structure, proving orthogonality and giving fast realizations?

The objective of this paper is to give answers to these questions.

2. Invariant spaces and projectors on them

2.1. Convolution and the Dihedral group

The input and output signals of a linear time-invariant system are connected by the
convolution operation [5, 6]:
(1)                  y = xh.

Here h is the impulse response of the system. The sets of real numbers R, inte-
ger numbers Z and the integer numbers – multiple of some integer number n (i.e. nZ),
with addition as a binary operation, are groups [7, 8]. Of course we have  R Z nZ.
Periodical functions – continuous and discrete, could be defined on the factor-groups
R/Z and Z/nZ. The signals are functions usually defined on the R, Z, the torus group
T = R/Z, the residue system (mod n) Z/nZ, or their Cartesian products. As such they
are elements of some functional space, most often a Hilbert space H, which is supplied
with the form (x y) that takes values in the field of the complex numbers C. This form,
called an inner or scalar product, is Hermitian and positive definite [8, 9].

 If L2(a, b) denotes the space of square summable functions on the interval
(a, b), and L2(Z/nZ) denotes n-dimensional complex  vector space of functions
(vectors), we have Hilbert spaces with inner products [6, 8, 9, 10]:

(2)                        ,)()()|( 
b

a
tdtytxyx *     .)( 

Z/nZk
kk*yxy|x  .

The convolution (1) could be written  as an inner product if the right shift operator
 and the sign operator  are used: .)()(: ),()(: txtxtxtxρ  σ1  If

x,h L2( ), then .ττ)()()σρ|(  



hxdth txhx t

In the canonical basis of L2(Z/nZ), formed by vectors, 






 δ , klee kk

 },{ , l, k =
0, 1, ..., (n1) (mod n), (l,k is the Kroneker symbol), the two endomorphisms have the
following (orthogonal) matrices:
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(3)    

   
 

.σ,ρ

nn,...,,lk,
,δσ,δρ

lnk,nl,kn














































0010
0100
1000
0001

0100
0010
0001
1000

,mod)1(10

44

1

In this case the k-th coordinate of the output vector y  in (1) has the form

(4)                ),|( hxy


 k
k

and the convolution is cyclic. In (4)  and  define a linear representation of the
dihedral group Dn [7, 8, 9]  (see the definitions at the end of the paper):

(5a)                      .ρ(σ ρσ | ρσ   22  1 ===  
n

nD

One verifies from (3) that the matrices of two endomorphisms satisfy the defin-
ing relations of Dn. The group Dn has a second presentation, which is isomorphic to

(5a) ( σρσ?σ,σ  ):

(5b)            .   )(  |   22   1??? n nD

In this case σ? n=n n  and if n=4,

       
.

0001
0010
0100
1000

?4























The defining relations for D have the form ( could have arbitrary power
ttRor ):

(5c)            .(  |    22 


1 =ρσ=σρσ=D

It follows from  (5) that not only the obvious symmetry  (which reflects functions
in ordinate axis) is involution, i.e. 2 = 1. Involutions are the elements of dihedral group
k(the “inner” polygon of the Cayley’s colored graph of Dn [7]) in (4), that reflects
in the vertical lines t = k/2. These “parallel lines” coincide in the discrete case with
diameters of the unit circle. If we apply the Strang’s terminology [4], for even k this
symmetry realizes “meshpoint (or whole-sample) symmetry”, and for odd k  “midpoint
(or half-sample) symmetry”. The most simple representatives of these two classes are
 (reflects in the ordinate) and  ~ σ?  (reflects in the vertical line t = 1/2),  i.e. the
two generators of the dihedral group into the second presentation of this group (5b).
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2.2. Properties of the Fourier operator

2.2.1. Some definitions
The continuous Fourier operator F is defined by the relation






  )()()( 2  Xdttxetx tjF and the discrete   Fourier operator Fn   by the square

matrix (Fn = (1/n)[wkl]=Cn  jSn, 110,;/2π   n,...,,lkew nj  ). These two op-
erators are unitary [6, 8, 11, 12, 13], i.e. the inverse one coincides with the Hermitian
conjugate: F1 = F*. In the abstract harmonic analysis continuous and discrete trans-
forms are considered to be an expansion by characters of group of the real numbers R
and the cyclic group Z/nZ respectively [14]. A fundamental property of the Fourier
operator is that it transforms convolution into algebraic multiplication [6], i.e. F (x*h) =
Fx.Fh.

2.2.2. Eigenvalues and eigenspaces of the Fourier operator
The question about the eigenstructure of the Fourier operator has a long history. In the
early 70’s it was stated as the “multiplicity problem” for F [10]. The involution 
introduced in (3) connects F = C j S and F1 = F*:

(6)    .==;;   FFFFFSSSCCC  1

It follows from (6) that F 4 =  2F 4 = (F .F)(F .F) = 1. This well-known
result (hereby quite evident) shows that {1, F, F 2, F 3} is a linear representation of the
cyclic group C4. If, then F x  =  x  then  4= 1 and the eigenvalues of the Fourier
operator are {1, j, 1, j}. Determining the multiplicity of the eigenvalues for
L2(Z/nZ) is completed by determining the trace tr(Fn ) [15 ].

If E is n-dimensional vector space over the field of the complex numbers C then
general linear group GL(E) is the group of automorphisms of E [9]. It is identified with
the group of the invertible matrices. The linear representation of G in E is an arbitrary
morphism of G in GL(E), i.e. (st) =(s)(t), (1)=1, (s1) =((s))1, s, t G.
The vector space FE is invariant relative to the group G in the representation  if for
each  xF all s( x ), sG, belong to F  too. A representation  is irreducible if E is
not zero and has no G-invariant spaces except 0 and E. Each representation is a direct
sum of irreducible representations [9]. This means that a basis exists in which the
matrices of the representation have a block-diagonal form. The function on G,

)(tr)(χ ss   for sG  is a character of the representation. We are interested in

the canonical decomposition of the linear representation [9]. Let  ,χ,...,χ,χ 110 h be
the characters of all irreducible representations F0, ..., Fh1 of the group G and n0,...,
nh1 are their orders. Let  10 ...  mUUE  be a decomposition of the representa-
tion  into a direct sum [9] of irreducible representations. Let us denote by Ei (for i =
0, 1,..., h1) the direct sum of those U0,...,Um1, which are isomorphic of Fi. Thus we

shall get the canonical decomposition 10 ...  hEEE . The projector pi on Ei is
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given by the following important formula [9]:

(7) Ggt
g
np t

Gt

*
i

i
i card; )(χ 


 .

The projectors for the operator F, which is a linear representation of the cyclic
group C4 have according to (7), the form:

(8)
).1(

4
1),1(

4
1

),1(
4
1),1(

4
1

32
on

32
op

32
en

32
ep

FFFFFF

FFFFFF

jjqq

jjqq





We could obtain these projectors from the resolvent [11] of the operators F,
R(F) (C too). One verifies that [15]:
(9)               ).ζ1}ζ+ζζ{)ζ(ζ,( 4231   /()R 32 FFFFF

If we introduce the Hartley operator [16, 17] (which is an involution: 2 = C2 + S2

= 1, F = C  j S), we could obtain the following projectors:

(10) .
2

1;
2

1;
2

1;
2

1
npoe

 









 qqqq

The projectors in (10) make it possible for the mutually orthogonal projectors on
the eigenspaces { ep , en , op , on }of F from (8) to be composed:

(11)       .,,,
noonpoopneenpeep

qqqqqqqqqqqq 

The solution of the problem for the multiplicity of the eigenvalues and dimensions
of the eigenspaces of F now turns out to be trivial it coincides with the trace of the
corresponding projector [15].

Table 1. Dimensions of the invariant spaces

    

n ep  en  op  on  

4 k k+1 k k k1 

 4k+1 k+1 k k k 

 4k+2 k+1 k+1 k k 

4k+3 k+1 k+1 k+1 k 

 
These dimensions are shown in a table for a different n (mod 4) in [10] (see for

alternative approaches).

2.2.3. Invariant spaces of the cyclic and Dihedral groups

The dihedral group Dn in (5) has a cyclic subgroup Cn= }ρ,...,ρρ,,1{ 12 n , or

 1n
n

ρρ |C . The canonical decomposition of this representation allows the
convolution (4) to be simplified. The cyclic group has n irreducible representations,
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which coincide with its characters and have the form:

(12)                        kh
n

jk
h eρ

2π

)(χ  .

 According to (7) the projectors on the one-dimensional invariant spaces are in
the form

(13) ρH.ρρχ
n

p
h

*
hh

kk
n

k hh
()(1 1

0

* 



ff


),

where *
h

f


 is the h-th column of Fn , and * denotes Hermitian conjugation. The set
{Hh()} is called uniform-DFT analysis filter bank [18, 19]. In this basis is repre-
sented by the diagonal “modulation” matrix n:

(14)     ,),...,,...,diag(1,?
1)(2π2π2π




n
n

jk
n

j
n

j

n eee ., FFFF kkkk ?ρ?ρ 
and define a linear representation of the Heisenberg-Weyl nilpotent group

Nn:

(15)      
.

N nnn
n

11.ρμ.ρ.μρ],[?
,ρ].μ,[?ρ]?.[?,ρ].ρ,,[?ρ]ρ.[μ,;1ρ],[?ρ?ρ?,





Obviously

     1);ρ...ρ(11111) (ρ,ρ),(?)(ρ?) (ρ 1T
000

2


   nkkk
k nn

HewwHHH nj 

is the vector of all 1’s. The bandpass filters Hk(),k 0are realised through modula-
tion and demo-dulation of the prototype lowpass filter H0(). Each filter Hk() offers
about 13 dB of the minimum stopband attenuation with respect of the zero-frequency
gain [18, p.116]. The filters are not very good because H0() executes simple averag-
ing.

In the new basis the convolution will be in the form (if X  = Fx , H  = Fh ):

(16)              .eHX)?|*()σρ|(y
kl

n
jn

l ll
kk

k

2π
1

0




hFxFhx


It must be pointed out that the involutions k  and not k participate in the
convolution. Because of this we are interested in the canonical decomposition of Dn. If
n is even, Dn has four representations of first order, which map  and  into {1} in
all possible ways. The rest of irreducible representations are of a second order [9]:

(17)  .,, 2/02cos2sin

2sin2cos
)ρ(2cos2sin

2sin2cos
)ρ( nm

mk
n
πmk

n
π

mk
n
πmk

n
π

σkmr
mk

n
πmk

n
π

mk
n
πmk

n
π

kmr 























From (7) the following projectors on Em can be obtained [15]:
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(18)














 




.
2

0,if2,

,
2

0,if1,
,

2
0

,?)(ρ??)ρ()ρ)((Re.ρ)π2cos(
1

0
00

nm

nm
εnm

HH?Hεkm
nn

ε
p

m

n

k
s,ms,mc,mc,mmm

km
m

Here  }. *
mmms,mc,m

m
m H?j??ε ff


 )({,  is the uniform-DFT analysis fil-

ter bank, so that the two vectors

(19)         







 lm

n
π

n
ε

lm
n
π

n
ε

m
m

m
m

2sinand2cos sc 

form an orthogonal basis of Em and .TT
mmmmmp sscc 

   This is a sine-cosine modu-
lated filter bank with the same prototype H0(). In order to refer E to the basis so
constructed the matrix of conversion Pn should be used [15],

(20)                      
2/12/12/110

...
nnnn

P cscscc 


 ,

               )1)(σ),(ρσ),...,(ρσ),...,(ρdiag(1,σ..ρ 1/2T kknkmk
n

k
n rrrPP   ,

rm(k ) is from (17).

If i,mr,mmmi,mr,mmm XjXXHjHH  )(,)( xFhF 
,

(21)                  }ε{Re)σρ|(
π2/2

0

km
n

j

mm

n

m
m

k
k eHXhxy 






.

Referring E to the orthogonal bases of {Em} rationalises the convolution.

3. Discrete cosine/sine transform

3.1. Invariant spaces of the DFT and DCT/DST

The four invariant subspaces of the Fourier operator { ep , en , op , on } could be

joined in more rough decomposition of the space: ep + en   = e , ep + en  = о  
the subspaces of the even and odd vectors (functions on Z/nZ).  Projectors into these

subspaces are 
2

σ1,
2

σ1
oe





 qq   from (10).

It is easy to be shown that  and the identity 1 have two presentations:

(22)                                
.ρδδρρδδρ1

,ρδδρρδδρσ

0

T

0

T
0

T

0

T





















nk

kk

nk

kk
nk

kk

nk

kk




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Here T]0,...,0,0,1[δ 


 is the n-dimensional vector of Dirac. It is important that
the two projectors qe, q0 have obviously orthogonal columns:

(23)     






 
nk

kkk

nk

kkk
e qq

0

T
o

0

T ρδδ)ρ(ρ
2
1,ρδδ)ρ(ρ

2
1 

.

If linear-independent columns of these projectors are chosen as the basis of the
space, the Fourier operator will take a block-diagonal form. The dimensions of these
invariant spaces coincide with the trace of the projectors i.e.

(24)        
















oddif,2/)1(

evenif,12/
dim;

oddif,2/)1(
evenif,12/

dim
oe nn

nn
nn

nn
.

These dimensions could be defined from Tabl. 1 too. Of course they coincide
with the number of the projectors’ linearly independent columns. Two cases could be
considered– even and odd dimension of the space.

3.2. Even n  –  DCT-1/DST-1

We take the first n/2 + 1  (orthonormal) columns of the first projector and the first
n/2 – 1 (orthonormal) columns of the second projector to construct the endomorphism
. This will be orthogonal operator, i.e. the inverse one coincides with the transpose:

(25)  )ρδδ)ρ(ρρδδ)ρ((ρ
2

1ρδδρδδα /2ТТ

/20

2Т2Т nkkkk

nk

kk
nn








 


.

If n = 8,  takes this “stealth aircraft” configuration :






































002/10002/10
02/10002/100

2/10002/1000
00010000

2/10002/1000
02/10002/100
002/10002/10
00000001

.

Fourier operator F will be presented in this new basis from the block-diagonal
matrix F:
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










































2/2/2/00000
2/02/00000
2/2/2/00000

00022/12/12/12/122/1
0002/12/102/12/1
0002/102/102/1
0002/12/102/12/1
00022/12/12/12/122/1

iii
ii

iii 

From (25) and the properties of the Fourier operator (14):

(26)               T1 1,...,1,1,1;1;   11


n
δ?ρ FFF ,

it follows:
(27a)    ]|...||||...|||[ 12/212/210  nn jjjα sssccccF 

.

Here },{ kk sc 
 are the basis orthonormal vectors of the invariant spaces Ek of the

dihedral group (19). Finally

(27b)        










2/0

/2T

2/0

/2Т

..)/2sin(/2

,)/2cos()/2)).cos((/

nl

nl
k

nl

l
k

n
kk

δρnπklnα

δρnπklnεδρπkδnεα




s

c
.

This is obviously the block-diagonal matrix:

(27c)                                    











10

01
Т

Sj
C

Fαα .

Here C1 and S1 are respectively Discrete Cosine Transform-1 (DCT-1) and
Discrete Sine Transform-1 (DST-1):

(28)          
.)

2
1,1,1,...1,1,

2
1(diag

.2/,0;)2sin(2

.2/,0;)]2[cos(2







1

1

111

D

S

DDC

nlkkl
n
π

n

nlkkl
nn


3.3. Odd n – DCT-5/DST-5
In this case  is constructed from the first (n+1)/2 normalized columns of the first
projector and the first (n1)/2 normalized columns of the second projector:
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(29)      )ρδδ)ρ(ρρδδ)ρ((ρ
2

1δδα /2ТТ

1)/2(0

Т nkkkk

nk

kk 



  


.

If n = 5,   will be


























02/102/10
2/102/100

2/102/100
02/102/10
00001



In the new basis the Fourier-operator F will take this block-diagonal form F:





























ii
ii

850651.0525731.0000
525731.0850651.0000

00276393.0723607.0632456.0
00723607.0276393.0632456.0
00632456.0632456.0447214.0



It can be obtained as in previous part that this matrix has the form

(30)          .α 










50

05
Т

Sj
C

Fα

In this formula

(31)                  
).1,1,1,...,1,1,

2
1(diag

;2/)1(,0)];2[sin(2

;2/)1(,0;)]2[cos(2







5

5

555

D

S

DDC

nlkkl
n
π

n

nlkkl
nn


Here C5 and S5 are the well known DCT-5 and DST-5.
In (27c)(30) one of the blocks is real and the other – imaginary. It is easy to be

proved, that (F = C j S):

(32)                                   
2

1;
2

1 22 σσ 



 SC .

For every linear mapping, presented by the mn matrix H in a fixed basis for the

space of columns (i.e. the range of the values) we have  )()( THHH  [13, 20].
Hence for this case
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(33)      о
2

e
2 )

2
1()()(;)

2
1()()( 







σσ SSCC .

Referring the space to the orthogonal basis of  e and o  transforms the matrices
C and S to a block-diagonal form in which upper-left/down-right corners are respectively
DCT/DST and all the other components are zeros. Wickerhauser proposed presentation
like (27c) and (30) for DCT-4 and DST-4 (“the easiest case”) and it is obtained by
factorization of 2n2n matrix [4,19]. Nearly analogical factorization is proposed for
DCT-2 and DST-2 in [19].

Geometrical approach was proposed in this paper that allows not only all DCT/
DST transforms to be received, but it could be generalized for unitary matrix with
definite properties. This generalization will be realized in another paper. Results re-
ceived in this paper solve the task for the fast realizations of these transforms; all they
are derivatives of the DFT, and sparse matrices implement the connections.

4. Conclusions

The block-diagonal form of the Discrete Fourier Transform (DFT) was obtained on
the basis of groups theory representations and geometrical approach. Diagonal blocks
of this form consist of DCT-1/DST-1 for even dimensions of the signals space and of
DCT-5/DST-5 for odd ones. These results allow the full structure of DCT/DST to be
constructed. This is important for multirate systems, adaptive filtering,  compression of
speech signals and images. Along with this it solves the problem of fast realizations of
the transforms, which are generically connected with DFT.

5. Some definitions
Some definitions have been used in the paper. The group G is a set G with binary
operation GGG, noted as (a,b)  ab and such, that: 1) It is associative; 2) Identity
element uG exists, ua = a = au , for every aG; 3) For u and every element  aG
an inverse element a'G exists, and a a' = u = a' a.

If G and H are groups, the morphism : GH of  these groups is a function from
G to H, which is morphism of their binary operations, i.e. (ab) = (a) (b) for all
a,b G [7, 8].
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Инвариантни пространства и косинусови трансформации

Божан Жечев

Институт  по комуникационни и компютърни системи, 1113 София, E-mail: jechev@agatha.iac.bg

(Р е з ю м е)

В статията се анализират дискретни косинусови и синусови трансформации
(DCT/DST) на базата на линейни представяния на крайни групи и на геометричен
подход. Тези трансформации са изключително полезни за многоскоростните
системи, адаптивното филтриране и компресия на говорни сигнали и образи.
Показано е, че ако операторът за дискретна трансформация на Фурие (DFT) се
отнесе към подходящ базис, той приема блочно-диагонална форма. Тези блокове
съвпадат с DCT-1/DST-1 за четни размерности на пространството на сигналите
и с DCT-5/DST-5 за нечетни. Резултатите позволяват да се изследва пълната
структура на DCT/DST.


