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Abstract: A new modification of the LPC cepstrum of speech signals called Clipped LPC 
(CLPC) cepstrum is proposed. In the CLPC cepstrum is reduced the influence of the low-level 
LPC spectrum's regions. Three LPC cepstrums as features in a text-independent speaker 
identification task were evaluated using reading text in Bulgarian language collected over 
noisy telephone lines. These cepstrums are standard LPC cepstrum, CLPC cepstrum and 
OSALPC cepstrum. As experimental results shown, the proposed cepstrum achieves better 
results than both LPC and OSALPC cepstrums in this task.  
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1. Introduction 
The performance of the existing speaker recognition systems degrades rapidly when training 
and testing cannot be done in the same ambient conditions. Ones of the most common 
representations in these systems are Linear Predictive Coding (LPC) cepstral-based 
parameters. It is well known that LPC cepstral parameters might lead to a poor recognition 
rate in the noisy environment. One of the solutions to cope the noise problem is to find cepstral 
representations, which are resistant to the noise corruption [8].  

In [10] it is shown that the influence of the noise on the logarithmic power spectrum of 
the speech signal is essential in the low-level domains. This influence leads, during the 
recognition process, to instability of the values of the used spectral distance and this is 
detrimental for speech recognition. Therefore, it is reasonable to propose that if the influence 
of these domains were suppressed in the LPC cepstrum, it would bring to lower variance of 
cepstral coefficients of noisy speech. This could be made by using the properties of Group 
Delay Spectrum (GDS) [1, 2, 3, 4]. 

It is known that the positive regions of the smoothed GDS approximate the formants 
and the negative regions - the spectral valleys. To reduce the influence of spectral valleys in 
LPC cepstrum it is need to remove (or to decrease) the GDS in selected negative regions [2, 3, 
4].  

In this paper, we are proposing a new modification of the LPC cepstrum analytically 
obtained by use of a polynomial approximation of the GDS’s negative values reduction 
function. We named the obtained cepstrum a Clipped LPC (CLPC) cepstrum and suggested 
simplified formula for its calculation. Some preliminary experimental results for the clipped real 
cepstrum are presented in an earlier work of the author [9]. 
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We evaluate three LPC cepstrums as features in a text-independent speaker 
identification task with phrases in Bulgarian language collected over noisy telephone channels. 
These cepstrums are standard LPC cepstrum, CLPC cepstrum and the One-Sided 
Autocorrelation Linear Predictive Coding (OSALPC) cepstrum [7]. As a classification scheme, 
we use an algebraic approach with arithmetic-geometric sphericity measure [5, 6].  

 
2. Group delay spectrum 
If X ( )  is the Fourier transform (FT) of the minimum phase signal x i( ) , c n( )  are the cepstral 
coefficients of x i( )  and ))(exp()()(  xjXX  , then ln ( )X   can be represented as [3] 
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where v ( ) is wrapped phase function and ( )  is an integer such that  ( )  is a continuous 
function of  [3]. 

The group delay spectrum  ( )  is defined as negative derivative of the unwrapped 
phase function with respect to  [3]. For minimum phase signal,  ( )  is 
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For mixed phase signal we will define two GDSs - m( )  and  p ( ) : 
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where c nm( )  and c np ( )  are the cepstral coefficients of the minimum phase equivalent signals 
derived from spectral magnitude and phase of X ( )  respectively [3]. 

 
3. Noisy speech processing using group delay spectrum properties 
The additive and high-resolution properties of the GDS allow its domains to be separately 
processed. In this work, the negative domains of the GDS are of interest, because they 
correspond to low level logarithmic power spectrum [2, 10]. 

It was shown in [2] that the substitution of m( ) in the negative domains by their 
mean values leads to a reduction of the noise influence in the LPC spectrum. This approach 
requires calculation of two GDSs m( )  - m

u ( ) andm
s ( ) . m

u ( )  is an unsmoothed GDS 
and for its calculation are used all cepstral coefficients (typically their number is equal to the 
size of cos transform). m

s ( )  is a smoothed GDS and for its calculation are used only part of 
coefficients (typically the first 10 or 20). The negative values' regions are determined in 
smoothed GDS. In the unsmoothed GDS, the levels in these frequency regions are substituted 
with their mean values. The inverse cos transform is then used to obtain the modified cepstrum 
cm

r ( )  in which the influence of low-level spectral regions is reduced. The reconstruction of 
the autocorrelation function is done by processing of the cepstrum cm

r ( )  via an inverse 
homomorphic system. The values of the autocorrelation function are used by Levinson-Durbin 
algorithm to produce the linear prediction coefficients. From them the LPC cepstrum is 
calculated.  
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This approach is effective but it is very complicated and it does not allow analytical 
solution. Our aim is to reduce (not as effective as in [2]) the variance of the LPC cepstral 
coefficients for noisy speech using a similar idea and in a more simple way.  

 
4. Clipped LPC cepstrum 
In the paper we will use the GDS  ( ) in (3) obtained by LPC cepstrum. In the case we will 
process a minimum phase part of speech signal consists of information only for poles of speech 
spectrum ( c nm( )  in (4) consists of information for zeros and poles). It is well known that in all-
pole model of linear prediction analysis only the spectral peaks are well represented. In this 
model, the low-level spectral regions are approximated with insufficient accuracy and their 
variability (caused by a bad approximation or a noise influence) is one of the sources of the 
LPC cepstrum variability. We suppose that if we smooth and reduce the spectrum values in 
these regions then we can decrease the LPC cepstral coefficients' variance. 

Let c n( )  is the LPC cepstrum of the analyzed speech signal, the GDS  ( )  is defined 
as in (3) and the smoothed GDS obtained by using the first M  LPC cepstral coefficients in (3) 
is noted as s( ) . The GDS formed by positive terms of  s( )  is noted as  s

( )  and  
)]([)]([)()]([)( 

sssss GYYW  ,                                  (5) 
where W[.]  is a negative values’ clipping function, G  is a constant and Y[.]  is the Heaviside 
step function. The LPC cepstrum corresponding to  s

( )  is noted as c k ( )  and according to 
(3) and (5), for k  0 , it is 
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The direct solution of (6) by using of an analytical form of W[.]  is a very difficult task. 
Therefore, we are proposing to use in (6) a polynomial approximation of the clipping 
functionW[.] . This kind of approximation (performed by Least Squares Method (LSM)) 
allowed us to evaluate analytically the integral. We note the approximation of W[.]  as Wp[.] , 
and the GDS obtained by Wp[.]  as s

p ( ) . We call the LPC cepstrum corresponding to 
 s

p ( )  Clipped LPC (CLPC) cepstrum and note it as c kc ( ) . According to (3) and (6), we 
have  
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where R  is the order and br  - coefficients of the polynomial. 
The approximation of W[.]  is performed for  s( )  between  s( )min  and s( )max . 

The values of  s( )min  and  s( )max  depend on the amplitude range of s( ) . This range is 
determined by few factors: speech signal properties, an all-pole model order and a number of 
cepstral coefficients. The experiments revealed, that when we used autocorrelation method 
with model order P Fs 10 , where Fs  is sampling frequency in kHz and number of LPC 
cepstral coefficients M P 3 , then the inequality  s( )min    s( )    s( )max , where 
 s( )min = -30 and  s( )max = 30, is always fulfilled.  

It was found that c kc ( )  in (7) could be efficiently evaluated when R  3. For R =3 the 
used polynomial coefficients are b0 0 , 0.72734=1b , .020520=2b , b3 00013= -0. . They are 
obtained after correction ad hoc on LSM derived coefficients. Through this correction the 
positive values in s

p ( )  are additionally enhanced. 
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We obtain CLPC cepstrum c kc ( )  in (7) as a sum of three terms: c kc1( ) , c kc2( )  
and c kc3( ) . The (real) LPC cepstrum is c n( )  0  for n  0  [1]. In this case the terms of the 
CLPC cepstrumc kc ( ) , k Mc 1, , , M Mc  , where Mc  is the number of the CLPC cepstral 
coefficients, are 

c k b c kc1 1( ) ( ) ;  (8) 
c k b k R k R kc2 2 05( ) ( / )[ ( ) . ( )]   ; (9) 
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where v n k n k n k n k      , , ,  and R(.) , R (.)  are correlation functions of the index-
weighted LPC cepstrum of the form  
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We ignore c kc3( )  in (10) (b b3 2 ) and according to (8) and (9), we have the 
following simplified formula for c kc ( ) ,1 k Mc  
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5. OSALPC cepstrum 
It is known that the autocorrelation sequence preserves the all-pole properties of original time 
sequence. The OSALPC cepstrum is obtained by Autoregressive (AR) modeling of the causal 
part of the autocorrelation sequence. In some speaker identification research works has shown 
that in additive white noise experiments and in noisy car environment this cepstrum produces 
lower recognition error than the standard LPC cepstrum [7]. The description of the algorithm 
for OSALPC cepstrum calculation is given bellow [7]: 

-from speech segment of length N samples the AutoCorrelation Function (ACF) with 
lags M=N/2 is computed; 

-the 0th lag is set to zero R(0) = 0; 
-the Hamming window from m=0 to M is applied to one-sided ACF obtained in the 
previous two steps; 

-the first p+1 autocorrelation lags of this sequence are computed using classical biased 
estimator; 

-these values are used by Levinson-Durbin algorithm to produce the AR parameters; 
-the cepstral coefficients are recurrently obtained from those AR parameters.  

 

6. Experiments 
6.1. Normalized variance estimation 
In this experiment we are evaluated the normalized variances of the LPC, CLPC and OSALPC 
cepstral coefficients for telephone speech corrupted by an additive white noise. The speech 
signal is sampled at 8 kHz. A 14th order autocorrelation analysis without preemphasis is used. 
The variance of the each cepstral coefficient is measured over 3997 frames (frames of 32 ms at 
8 ms rate). The speech is corrupted by additive white Gaussian noise with segmental signal-to-
noise ratio (SNR) 20, 10 and 0 dB. The normalised variance is V c n V c n V cN ( ( )) ( ( )) ( ( )) 1 , 
where V c nN ( ( ))  is the variance of nth cepstral coefficient and V cN ( ( ))1  is the variance of the 
first coefficient. In Figures 1, 2 and 3 are shown the values for VN (.)  respectively for standard 
LPC, CLPC and OSALPC cepstrums and different SNRs. 
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Fig.1. LPC cepstrum, SNR 20, 10 and 0 dB        Fig.2. Clipped LPC cepstrum, SNR 20, 10 

    and 0 dB 
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Fig.3. OSALPC cepstrum, SNR 20, 10 and 0 dB 
 
On the base results gained from the experiment, we can make the following conclusions: 

-at the same SNR the CLPC and the OSALPC cepstrums produce lower than the 
standard LPC cepstrum normalized variance for all coefficients;  

-the normalized variance for the CLPC cepstrum is less than this one for OSALPC 
cepstrum especially for SNR 0 dB and cepstral index from 2 to 12; 

The CLPC cepstrum is obtained by non-linear transformation of the GDS that acts on 
spectrum level. We suppose that CLPC cepstrum will be more effective for voiced frames 
because for them the non-linear spectrum level reducing is more significant. Probably for 
unvoiced frames, the similar approach would be lead to negligible effect. 

 
6.2. Speaker identification experiments  
6.2.1. Speech database 
The analysed speech (reading text in Bulgarian language) is recorded over dialed-up analogues 
telephone lines in the city of Sofia. The reading text lasts about 40 seconds and was read at 
least 2 times from each of 12 speakers (male). Every repetition is recorded from different 
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telephone call. The speech database for each speaker is divided in two parts - for training and 
for recognition. These two parts are of different linguistic contents and are obtained from 
different telephone calls. We did not accomplish preliminary selection of the speech data for 
training and testing based on its noisy characteristics.  
6.2.2. Speaker identification technique 
Many techniques have demonstrated good text-independent speaker identification 
performance. For the current task we have selected one that is easy to implement and has in 
the same time high computational efficiently. That is an algebraic approach with arithmetic-
geometric sphericity measure [5, 6].  

Algebraic approaches are well-known techniques in text-independent speaker 
recognition tasks. They are based on an estimation of the covariance matrix of the sequence of 
the parametric vectors of speech data. The description of the selected technique is a given 
bellow [5]. 

From the sampled speech signal, we compute parametric presentation - sequence of N 
vectors in p-dimensional space. Let Xn  is the vector sequence and n=1,...,N. The covariance 

matrix X  of  Xn  is obtained as [5]: 

X
N

X X m mn
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x x
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Xx n
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where - mx  is the mean vector of  Xn  and T is matrix transposition. The covariance matrix of 

a test sequence  Y l Ll , ,..., 1  is denoted asY . 
There are measures that can be considered as different estimations of the similarity of 

two covariance matrices [5]. They belong to the distances that could be defined using only the 
eigenvalues of the productYX 1 . Let the p-ordered eigenvalues of the matrix YX 1  are denoted 
as  i  and three particular functions of  i  are defined [5] 
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Functions A, G and H are respectively arithmetic, geometric and harmonic means of the 
eigenvalues i . The swapping of the matrices X and Y leads to transformation of A into H 1 , 
G into G1  and H into A1 .  

The arithmetic-geometric sphericity measureAG X Y( , )  [5] is 

AG X Y
A
G

( , ) log




      (18) 

The measure equals zero if A=G, that is when all eigenvalues are equal - i.e. X and Y 
are proportional. The arithmetic-geometric sphericity measure is non-symmetric. If we take 
into account the length of data for X and Y estimation then the general symmetric measure 
 sym X Y( , ) is [5] 
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where  LN NL  1. 
The weighting functions  LN and NL  are: 
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In the training mode, one reference is used per speaker, which is the covariance matrix 
of cepstral vectors of training data. In testing mode we calculate the arithmetic-geometric 
measures s

sym X Y( , ) in (19) between covariance matrix Y obtained from input speech sequence 
from speaker with unknown identity and reference matrices Xs of all speakers, s S 1, , . 
Then we make decision based on minimum distance rule. No additional threshold is used. 
6.2.3. Experiments and results 
The speech signal is digitized at 8 kHz on 16 bits, after low-pass filtering at 4 kHz. 
Preemphasis is not applied. Hamming windowing frames with 32 ms length are used, with 
frame rate of 8 ms. A 14 th order autocorrelation analysis is carried out. Each frame has been 
converted into 14th order cepstral vector - standard LPC, CLPC and OSALPC. In our study 
the pauses has been removed by energy threshold and their lengths are not included further in 
processing data length. 

We examined the recognition rate as a function of training data. The data pool has been 
clustered into three different lengths of data for training - 4, 8 and 12 seconds. In testing mode, 
we processed supra frames with length of 4 seconds and frame rate of 0.5 seconds. The 
number of tests is 265 and the identification error is averaged over 12 speakers. For this case, 
the experimental results are shown in Table I. If we exclude only from testing data the speakers 
with the worst recognition rate then the number of tests is 216 and the results are shown in 
Table II. 
 

Table I. Identification error in percentage averaged over 12 speakers 
 Test - 4 seconds 

Training 
data in 
seconds 

 
LPC 

 
CLPC 

 
OSALPC 

4 54.33 51.69 56.22 
8 45.66 40.00 48.30 

12 36.98 32.83 45.66 
 

 
Table II. Identification error in percentage averaged over 10 speakers  

(without the worst 2 speakers) 
 Test - 4 seconds 

Training 
data in 
seconds 

 
LPC 

 
CLPC 

 
OSALPC 

4 43.98 40.74 46.29 
8 33.33 26.38 36.57 

12 22.68 17.59 33.33 
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7. Discussion and conclusions 
To obtain the results shown in Table I, two additional experiments have been done. In the first 
one, we calculated the CLPC cepstrum for all segments in speech data (without pauses). The 
recognition rate in few of the tests was close to the LPC one, but for the rest was worse. In the 
second experiment, we set an additional energy threshold to produce voiced segments 
selection. Then we used CLPC cepstrum only for voiced segments and the LPC one for the 
rest. In that case, we obtained the results already shown in Table I. The detailed analysis of 
CLPC cepstrum properties shows that the recognition rate depends on the order M of the LPC 
cepstrum used in (12). We observed that the best results were produced when M Mc 3  in 
(12). In our case Mc  14  and M  50 . 

We expected from the OSALPC cepstrum to demonstrate a better recognition rate. We 
analyzed the OSALPC cepstrum behaviour for each speaker and noticed that for some cases 
this method gives the best results and vice versa for others. The excellent results were obtained 
in the cases when the training speech was clean and the test one contained only background 
noise (similar to the white noise). In the rest cases - when the noise is pulse or there is a 
crosstalk and harmonic noise or the training data is noisy but the testing – clean speech, the 
OSALPC cepstrum produced unsatisfactory results. 

The analysis of experimental results revealed that there are two speakers, which cannot 
be identified correctly in all tests and for all cepstrums. For these cases, it appears that the 
combination of the selected cepstrums and identification technique has not enough 
discrimination capability to achieve the correct recognition. We excluded these two speakers 
from the test data and we obtained a significant reduction of the identification error, as it is 
shown in Table II. 

The results from our study demonstrate that this cepstrum modification is effective in 
real telephone speech identification tasks. This motivates us in our forthcoming work to 
examine the CLPC cepstrum as feature in others speaker identification techniques.  
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