

© Springer International Publishing Switzerland 2015
P. Angelov et al. (eds.), Intelligent Systems'2014,

427

Advances in Intelligent Systems and Computing 322, DOI: 10.1007/978-3-319-11313-5_38

AjTempura – First Software Prototype of C3A Model

Vladimir Valkanov1, Asya Stoyanova-Doycheva1, Emil Doychev1,
Stanimir Stoyanov1, Ivan Popchev2, and Irina Radeva2

1 University of Plovdiv, Bulgaria
{stani,astoyanova}@uni-plovdiv.bg,

{vvalkanov,e.doychev}@uni-plovdiv.net
2 Bulgarian Academy of Science, Bulgaria
{ipopchev,iradeva}@iit.bas.bg

Abstract. The paper provides a general description of a model for context-
aware agent architecture (C3A) and first steps in AjTempura creation vie C3A
model. The approach adopts the definition of context and context-awareness
given by Dey. The C3A model aims at creating of smart virtual spaces. The
applicability of the model is demonstrated by development of an agent-oriented
application.

Keywords: Context-aware architecture, Formal models, Intelligent agents,
Agent-Oriented architectures, Tempura.

2010 Mathematics Subject Classification: 68T42 Agent technology

1 Introduction

One of the main characteristics of the modern systems today (i.e. eLearning) is the
‘anytime-anywhere-anyhow’ delivery of electronic content, personalized and
customized for each individual user. To satisfy this requirements new types of
context-aware and adaptive software architectures are needed, which are enabled to
sense aspects of the environment and use the information to adapt their behaviour in
response to changing situation. From a network of computer networks the Internet has
transformed into the Internet of Things [1], where people and everyday objects can be
assigned identifiers. These identifiers can be created and managed by computers.
Within the infrastructure of the current Web, the new Symantec Web [18] is rising
making all sorts of informational resources addressable by the existing identification
protocol URI. A model for development of context-aware software architectures,
known as Context-Aware Agent Architecture (C3A), is presented in the publication.
There are a lot of definition of context-awareness, first attempts to give satisfactory
definition are related to application of mobile devices and reading users’ position. In
the specialized literature it is presented as the term context-aware computing is used
to describe software possible to render an account of users’ location [10] or as the
ability of a program or device to sense various states of its environment and itself [4].
We adopt Dey’s context definition for developing C3A model. Dey [3] criticizes the

428 V. Valkanov et al.

above definitions in two ways: context if defined by examples, i.e. by enumeration of
various cases, and context is defined by synonyms, mainly as environments or
situations. In his opinion, there definitions should bother development of context-
aware applications. In this sense he proposes a more common definition whereby
context is any information that can be used to characterize the situation of an entry.
An entry can be assumed with a person, a place, or an object that is considered
relevant to the interaction between a user and an application, including themselves
[10]. In this point of view if a system which provides relevant information and/or
services to the user, where relevancy depends on the user’s task, is called context-
aware system. An implementation of the C3A in real software demonstrating the
features of the model is also presented in this paper.

2 C3A Model

The model aims to propose a framework which can be used for implementation of
context-aware applications for various domains. A context-aware architecture
includes autonomous intelligent components which can: operate in a changing
environment; detect, identify and localize changes (events) in the environment;
initiate corresponding compensatory actions depending on the types of changes
(events). A compensatory action is defined as an activity (functionality) fired as a
reaction to the occurrence of some event (change in the environment). Two basic
compensatory actions are: Adaptation – before the information resources (electronic
services, electronic content) are provided, they can be modified so that they reflect as
completely as possible the specifics of the change or event; Personalization – before
the information resources (electronic services, electronic content) are provided, they
can be modified so that they reflect as completely as possible the users’ desires,
intentions, background, etc.

Using C3A a formal presentation is proposed which reflects the spatial and
temporal aspects of: virtual space structure and building components; relations
between the components; operations allowed in the space; control of the processes
taking place in the space.

In the model, the fundamental notion is this of smart space, defined as

SmartSpace = p , where there exists a set SubSpaces = {SPi | i = 1, …, n}
of subspaces and p ≤ n.

For two subspaces SPi ∈ SubSpaces and SPj ∈ SubSpaces we introduce the following
definitions:

• Empty subspace, if SPi = ∅;
• Overlapping subspaces, if SPi ∩ SPj ≠ ∅;
• Identical (or completely overlapping) subspaces, if SPi = SPj;
• Disjunctive subspaces, if SPi ∩ SPj = ∅.

In the smart space, services will be provided through autonomous intelligent
components, known as agents. The agents are with ‘limited rationality’, which in this
case means:

 AjTempura – First Software Prototype of C3A Model 429

• They operate with limited capacity (resources) in order to plan, predict, make
choices and execute actions;

• They have partial (local) control and impact on the smart space.

Due to the limited rationality, we would assume that:

• The set of services, provided in the space, alters dynamically;
• There is a minimal functionality (minimal set of services), that the space

cannot operate without.

Let Agents = {ai | i = 1, …, m} be the set of all agents potentially operating in the
smart space. Due to the limited rationality we assume that each agent operates in its
own subspace (known as agent’s range) operating as agent’s environment. Agents
can operate and impact only within their own range. In this sense, the overall smart
space (noted as SmartSpaceА) is built as union of agents’ ranges R(ai). Furthermore,
let Services = {si | i = 1, …, k} be the set of services provided in the SmartSpaceА.

Various types of agents and services are distinguished in the SmartSpaceА. The set
of agents is decomposed as Agents = PA ∪ OA, so that PA ∩ OA = ∅. Respectively,
the set of services can be decomposed as Services = F ∪ AF ∪ SF, i.e. as a union of
three mutually disjunctive subsets (F ∩ AF = ∅, F ∩ SF = ∅ and AF ∩ SF = ∅).
This decomposition characterizes the following types of services:

• F is the minimal functionality of SmartSpace;
• AF includes the compensatory actions;
• SF = {generate, remove, selfremove} includes three special operations which

are used to create and remove operational agents. For instance, the generate
operation is defined as generate : PA × E → OA.

Here, the two types of agents are presented shortly. PA includes agents, known as
persistent agents, which are always available in the space. These agents are used to:

• Provide the minimal functionality of the space;
• Identify and localize the events which take place in the space;
• Generate operative agents;
• Remove operative agents.

The persistent agents’ behavior is defined as the next genetic function

Behpa : PA → 2F ∪ {generate, remove},

where {generate, remove} ⊂ SF.
OA includes agents, called operative agents, generated dynamically by the

persistent agents. An operative agent provides some kind of compensatory actions as
reaction to the events identified in the range of the generating persistent agent. After
compensatory actions completing, the operative agent will be removed (or self-
removed).

The operative agents’ behavior is defined as the below genetic function

Behoa : OA → 2AF ∪ {selfremove},

where {selfremove} ⊂ SF

430 V. Valkanov et al.

The events which take place in the space are introduced as Events =
 {ei | i = 1, …, e}. Location and time of occurrence are the two basic features of the
events. C3A examines the locations of the events’ occurrence as unique subspaces,
denoted as R(ei), so that SmartSpaceE presents the overall SmartSpace in terms of the
locations of expected events’ occurrences. The events are always viewed as atomic
primitives, and they can be combined to make more complex structures such as
situations, scenarios, intervals. An interval is the sequence EInt = [e1, …, epr–1, epr,
epr+1, …, el] of events ordered in time where an event epr can be identified at any time.
Event epr is interpreted as the present; the subinterval [e1, …, epr–1] is the past;
respectively, [epr+1, …, el] is the future.

As already pointed out, the persistent agents perform two different functions. First,
they provide the minimal functionality in the SmartSpace. Second, they can identify
the occurrence of certain events in its ranges and dynamically generate appropriate
operative agents, respectively, which in turn execute the necessary compensatory
actions. In the model, this is formally presented, as follows:

∀ai ∈ PA (∃ aj∈ OA, ∃ e* ∈ E : generate(ai, e
*) = aj),

under the condition that R(ai) ≡ R(e*).
The general lifecycle of a context-aware agent-based software architecture

compatible with C3A is shown (in pseudocode) in Fig. 1. Presented in time, the
operation of the architecture looks like a pulsating core (implementing the minimal
functionality of the SmartSpace) which periodically ‘inflates’ in different directions
(depending on the changes in the environment) and again ‘deflates’ to its usual size
(minimal functionality).

repeat
 running(a1), running(a2), …, running(ap);
 anytime ∀ ai {

 if ((∃ek ∈ R(ek)) ∧ (R(ek) = R(ai)))
then {
 aj ← GENERATE (aj , ek);
 send(ai, aj, REQUEST (ek));
 when INFORM (aj , ai , ‘done’)
 then (REMOVE(ai , aj) ∨ SELFREMOVE(aj)) }

 endif
 endanytime
forever
ai ∈ PA, i = 1, …, p; aj ∈ OA; ek ∈ E.

Fig. 1. C3A Architecture Lifecycle

 AjTempura – First Software Prototype of C3A Model 431

3 AjTempura as a C3A Application

Application of C3A model for development of real software will be demonstrated in
this section. E-Learning environments providing electronic educational services are
becoming an integral part of modern education. In the Faculty of Mathematics and
Informatics at the University of Plovdiv, an infrastructure is being developed, known
as Distributed e-Learning Center (DeLC), as a response to the need for supporting
learning using modern information and communication technologies [14,11,13]. The
center aims to provide adaptive and personalized e-learning services and teaching
content located on physically separated servers. DeLC is a dynamic network structure
consisting of [12]:

• Nodes – these operate as repositories of services and content;
• Relations – these specify various kinds of dependencies arising during an

education experience.

The nodes can operate independently or dynamically link to each other, making
complex virtual structures, called educational clusters. In the current DeLC versions,
two educational clusters are built. The first cluster called MyDeLC is used to organize
and perform e-learning by allowing fixed access to the services and electronic content
via a specialized educational portal [15,16]. The second cluster, called InfoStation
cluster offers a three-layer architecture which allows mobile access to services and
informational resources via intelligent wireless access points (called Information
Stations - ISs), situated around the university building [17,7,6].

In 2013 year we have started a new project that aims at the transformation of DeLC
in a new infrastructure called Virtual eLearning Space (VeLSpace). In this space, the
context-aware provision education services and teaching content will be supported by
autonomous intelligent agents with ‘limited rationality’, i.e. changes can be identified
only locally within the ranges of the agents positioned there. Each event causes a
change in the local state of the range. In this way the state of the overall VeLSpace
(global state) depends on the local states ordered in time. In order to manage the
global state a suitable formalism, known as Interval Temporal Logic (ITL), was
chosen as a theoretical model. Interval Temporal Logic [9] is a kind of temporal logic
for describing time-dependent processes. Tempura interpreter [8] is an executable
subset of ITL which uses the ITL syntax to identify time as a finite consequence of
states. The existing version of Tempura was created in the C language [5] and
repeatedly amended and expanded with new functionalities. Since the VeLSpace is
built by separate intelligent autonomous components where the electronic services are
equipped with their own operational agents, we created a new agent-oriented version
of Tempura, called AjTempura, which can be easily integrated in VeLSpace while
maintaining the space’s homogeneity.

The transformation of the original Tempura interpreter was an iterative hand-made
process which consist three basic steps. The software result of each step was tested
and his run-time was compared with the original Tempura interpreter. Firstly we
made a direct translation from C to Java code without changing the imperative
structure of the interpreter. Second step was a refactoring process which aims at

432 V. Valkanov et al.

creating an object-oriented version of Tempura called jTempura [19]. The final step
was creating an agent-oriented version AjTempura. The AjTempura architecture is an
implementation of the C3A model which is shortly described below.

The minimal functionality of AjTempura is implemented through two persistent
agents - IOAgent and TempuraAgent. Both agents listen to the occurrence of events
in VeLSpace. According to the kind of the identified event, an operative agent will be
generated. This new agent has to analyze the event in more details and to initiate a
corresponding compensatory action. AjTempura is implemented in development
environment JADE [2]. The operating of the architecture is presented in the next
diagrams.

Besides the two persistent agents, another one, known as Sniffer, is of key
importance for tracking communication in agents. Its role is to provide a simple visual
means for presenting the consecutive exchange of messages between the agents in a
system. In its nature, the Sniffer agent draws diagrams similar to the Sequence
diagrams in the UML language. The starting condition of this diagram, at the
AjTempura start-up, can be seen in Fig. 2. In the left part of the figure, there is a list
of the existing agents, among which there is a representative of the persistent IOAgent
and a service DF agent. In accordance with AjTempura’s lifecycle, the IOAgent starts
sending periodic queries to DF for the presence of agents from the TempuraAgent
type. The messages are sent every second until the reception of a response which
contains a list of the present agents from the wanted type.

Fig. 2. Starting situation of the Sniffer agent

At the appearance of an agent from the TempuraAgent type in the DF list, an
exchange of messages between this agent and IOAgent immediately takes place,
which leads to the generation of an operative interpreting agent. The appearance of
the necessary interpreting agent marks the start of the exchange of ITL sequences

 AjTempura – First Software Prototype of C3A Model 433

between this agent and IOAgent until the IOAgent goals are met. The communication
between the entire set of agents can be seen in the following state of the diagram,
generated by the Sniffer agent (Fig. 3).

As a result from the appearance of the TempuraAgent and its communication with
IOAgent, a new operative agent IA_1 has been generated. Its name is unique, and
each following similar agent will be generated with a consecutive number. The
operative agents exist until the IOAgent sends a ‘done’ message, i.e. confirmation for
completion of the compensation action. In this case, this means that there are no more
ITL sequences for processing and the IA_1 is redundant. After that the operative
agents can be removed or self-removed (Fig. 4).

Fig. 3. Second view from the Sniffer agent

Fig. 4. Third view from the Sniffer agent

434 V. Valkanov et al.

4 Conclusion

The current state of C3A model is presented in this paper. The research continues to
expand and refine the existing version of the model. There are various issues being
tackled. To name a few, for example, conflict resolving in overlapping or identical
subspaces, saving traces of the removed operative agents as subintervals (the past),
formalizing the interfaces between agents and education services, formalizing the
notion of adaptation and personalization. The model extensions will be prototyped
and examined in the VeLSpace.

Acknowledgment. This work is partially supported by FP7-REGPOT-2012-2013-1,
grant agreement 316087 and Plovdiv University grant NI13-FMI-02.

References

1. Ashton, K.: That ‘Internet of Things’ Thing, in the real world, things matter more than
ideas. RFID Journal (June 22, 2009)

2. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley (2007)

3. Dey, A.K.: Understanding and Using Context. Personal and Ubiquitous Journal 5(1), 4–7
(2001)

4. Abowd, G.D., Dey, A.K.: Towards a better understanding of context and context-
awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307.
Springer, Heidelberg (1999)

5. Hale, R.W.S.: Programming in Temporal Logic. PhD Thesis. Crambridge, England.
Cambridge University (1988)

6. Ganchev, I., Stoyanov, S., O’Droma, M., Popchev, I.: Enhancement of International IEEE
Conference on Intelligent Systems. In: 2nd International IEEE Conference on Intelligent
Systems, Varna, pp. 359–364 (2004) ISBN: 0-7803-8278-1

7. Ganchev, I., Stoyanov, S., O’Droma, M., Popchev, I.: An InfoStation-Based University
Campus System Supporting Intelligent Mobile Services. Journal of Computers 2(3),
21–33 (2007)

8. Moszkowski, B.: Executing Temporal Logic Programs. De Montford University,
Cambridge (1985)

9. Moszkowski, B., Manna, Z.: Reasoning in interval temporal logic. In: Proceedings of the
ACM/NSF/ONR Workshop on Logic of Programs, pp. 371–383 (1984)

10. Pascoe, J.: Adding generic contextual capabilities to wearable computers. In: 2nd
International Symposium on Wearable Computers, pp. 92–99 (1998)

11. Stoyanov, S., Ganchev, I., Popchev, I., O’Droma, M.: An Approach for the Development
of InfoStation-Based eLearning Architecture. Compt. Rend. Acad. Bulg. Sci., 62(9),
1189–1198 (2008)

12. Stoyanov, S., Ganchev, I., Popchev, I., O’Droma, M., Venkov, R.: DeLC -Distributed
eLearning Center. In: 1st Balkan Conference in Informatics, Thessaloniki, Greece,
pp. 327–336 (2003) ISBN: 960-287-045-1

13. Stoyanov, S., Popchev, I., Doychev, E., Mitev, D., Valkanov, V., Stoyanova-Doycheva,
A., Valkanov, V., Mitev, I.: Educational portal. Cybernetics and Information
Technologies (CIT) 10(3), 49–69 (2010)

