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Abstract. In the present paper we propose a family of patterns for
hotspot load traffic simulating. The results from computer simulations
of the throughput of a crossbar packet switch with these patterns are
presented. The necessary computations have been performed on the grid-
cluster of IICT-BAS. Our simulations utilize the MiMa-algorithms for
non-conflict schedule, specified by the apparatus of Generalized Nets. A
numerical procedure for computation of the upper bound of the throughput
is utilized. It is shown that the throughput of the MiMa-algorithm with
the suggested family of patterns tend to 100%.
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1 Introduction

Crossbar switch node is a device which maximizes the speed of data transfer
using parallel existing flows between the nodes of a communication network. In
the ideal case the switch sends packets with a speed corresponding to the speed
with which nodes produce these packets, without delay and without losses [1].
This is obtained by means of a non-conflict commutation schedule calculated by
the control block of the switch node.

From a mathematical point of view the calculation of such a schedule is
NP-complete [2]. The existing solutions partly solve the problem, using different
formalisms [3]. Constantly increasing volumes of the information traffic requires
new more effective algorithms, which have to be checked for efficiency. The
efficiency of the switch performance is firstly evaluated by the throughput (THR)
provided by the node. The next important characteristic is the average time for
waiting (average cell delay), before the packet is send for commutation.

At the stages of design of switches, it is firstly assessed the THR of algorithms
for non-conflict schedule. For a given algorithm, its THR will depend on the type
of incoming traffic. The incoming traffic in real conditions is greatly variable. In
order to evaluate the properties of the suggested algorithms, they should be
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compared by using strictly defined properties of the incoming traffic [3]. For a
chosen traffic model, THR of a switch depends on the load intensity ρ of its
input lines.

For a chosen algorithm, traffic model and load intensity ρ of the input lines,
THR depends on the dimension of its commutation field n× n (n input lines, n
output lines) and the dimension of the input buffer i. In our computer simulations
of THR, we shall denote this dependence by a function f i.e.:

0 ≤ THR(n, i) = f(n, i) ≤ 1, where n = 2, 3, . . . i = 1, 2, . . .
Here, THR with value 1 corresponds to 100% - normalized throughput with
respect to the maximum throughput of the output lines of the switch.

During the simulations as well as in analytic investigations we shall look for
an answer of the questions:

lim i→∞,
n = const

f(n, i) =?, lim i→∞,
n→∞

f(n, i) =?

where i → ∞ means infinitely large input buffer and n → ∞ means infinitely
large commutation field.

In the present paper, a numerical procedure for computation of the upper
bound of the THR [4] is utilized, which allows calculation of the first limit
mentioned above. If it exists then the solution is unique. In this procedure
we use the results from a computer simulation of the THR performed on the
grid-structure BG01-IPP of the Institute of information and communication
technologies IICT-BAS. Our modeling of the THR utilizes our MiMa-algorithm
[5] and family of patterns for hotspot load traffic [6] with ρ = 100% load intensity
of each input (i.i.d. Bernoulli). The obtained results give an upper bound of the
THR for n ∈ [3, 100] which enables us to estimate the limit of the THR for
n→∞. This estimate is obtained to be 1 (100% THR).

2 Computation of the upper bound of throughput

We shall perform simulations for a specific algorithm for non-conflict schedule, a
model for incoming traffic and a load intensity. We choose the interval for values
of n and i, where i will define the increase in the size of the input buffer. As a
result, we will have a set of curves for selected values of n ∈ [n1, n2], and i ∈
[1, 1000]. Typical result is shown in Figure 1 (throughput [7] for PIM-algoritm
[8] with hotspot load traffic [6]).

Let us chose values for i :
i = 1,m1,m2,m3, ...,mp, where 1 = m0 < m1 < m2 < m3 < . . . < mp (1)
We shall perform p+ 1 simulations in order to obtain p+ 1 curves for THR.

The obtained curves will be denoted as follows:
f1(n, i) = f(n,m0), f2(n, i) = f(n,m1), . . . , fp+1(n, i) = f(n,mp) (2)
Denote the difference between two successive curves fj and fj+1 by resj :

res1(n, i) = f2(n, i)− f1(n, i) = f(n,m1)− f(n,m0)
res2(n, i) = f3(n, i)− f2(n, i) = f(n,m2)− f(n,m1)

. . .
resp(n, i) = fp+1(n, i)− fp(n, i) = f(n,mp)− f(n,mp−1) (3)
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Fig. 1. Throughput for Chao1, . . . , Chao100 hotspot traffic with PIM-algorithm

Denote the ratio of the values of two curves resj and resj+1 through δj :

δ1(n, i) = res2(n,i)
res1(n,i)

= f(n,m2)−f(n,m1)
f(n,m1)−f(n,m0)

δ2(n, i) = res3(n,i)
res2(n,i)

= f(n,m3)−f(n,m2)
f(n,m2)−f(n,m1)

. . .
δp−1(n, i) =

resp(n,i)
resp−1(n,i)

=
f(n,mp)−f(n,mp−1)

f(n,mp−1)−f(n,mp−2)
(4)

Simulation data allow us to calculate δ1, δ2, . . . , δp−1. If we can find a dependency
δj+1 = φ(δj) for δ1, δ2, . . . , δp−1 in the case j → ∞, then we can determine the
expected upper bound.

From the last formula we obtain:
f(n,mp) = f(n,mp−1) + δp−1(n, i).(f(n,mp−1)− f(n,mp−2))

or
fp+1(n, i) = f(n,mp−1) + δp−1(n, i).(f(n,mp−1)− f(n,mp−2))

and for a known dependency δj+1 = φ(δj), we can write
fp+2(n, i) = f(n,mp−1) + [1 + φ(δp−1(n, i))].δp−1(n, i).(f(n,mp−1)− f(n,mp−2))

. . .
fp+q(n, i) = f(n,mp−1) + [1 + φ(δp−1(n, i)) + φ(δp−1(n, i)).φ(δp(n, i)) + . . .

. . .+ φ(δp−1(n, i)).φ(δp(n, i)). . . . φ(δp+q−3(n, i))].
.δp−1(n, i).(f(n,mp−1)− f(n,mp−2)) (5)

When q →∞ then f(p+q→∞)(n, i) is the necessary bound lim i→∞,
n = const

f(n, i).

If there is an upper bound of the throughput of a switch node, it is clear that
the dependency δj+1 = φ(δj) exists. Then the sum

[1 + φ(δp−1(n, i)) + . . .+ φ(δp−1(n, i)).φ(δp(n, i)). . . . φ(δp+q−3(n, i))]
for q →∞ is convergent and has a boundary.

3 Existence of the dependence δj+1 = φ(δj).

We have found one such relation: for our model [7] of PIM-algorithm [8] (specified
by means of Generalized nets [9]) with Chao-model for hotspot load traffic, for
which we defined the family of patterns Chaoi for traffic matrices [10]. For a
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simulation with this family of patterns (shown in Figure 2 - left Chao1, right
Chaoi) we have chosen the sequences for i : i = 1,m1,m2,m3, ...,mp, . . . .

In this case the dependence δj+1 = φ(δj) is a constant, i.e. δj+1 = δj =
m−1/2 with an accuracy depending on the error of simulations. Thus, δj(n, i) =
const when i ∈ [1,∞), n ∈ [n1, n2], m = const, m ∈ [2, 3, 4, . . .) (i =
1,m1, . . . ,mp, . . .), with an accuracy within the error of simulations [4].

Here, we will test the validity of this assertion by simulations with m = 2.
The utilized algorithm will be our MiMa-algorithm [5], working with the same
model of load traffic (Chao-model).

Fig. 2. Family of patterns for Chao-model of hotspot traffic

The algorithm MiMa can be described formally by the means of Generalized
Nets (GN). The model is developed for switch node with n inputs and n outputs.
Its graphic form is shown on Figure 3 [5]. The model has possibilities to provide
information about the number of switching in crossbar matrix, as well as about
the average number of packets transmitted by one switch. Analysis of the model
proves receiving a non-conflict schedule. Calculation complexity of the solution
depends on the power of three of the dimension n of the matrix T (O(n3)).
Numerical modeling should provide us with the answer to the question: do we
have a better solution with this algorithm or not in comparison with existing
ones (for example PIM)?

Fig. 3. GN-model for MiMa-algorithm
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The transition from a GN-model to executive program is performed as in
[11] using the program package VFort provided free of charge [12] by prof.
Vabishchevich, Institute of Applied Mathematics, RAS. The source code has
been compiled by means of the grid-structure BG01-IPP of the Institute of
information and communication technologies - Bulgarian Academy of Sciences
(http:// www.grid.bas.bg) and the resulting code is executed in the grid-structure.

4 Numerical procedure for calculation of the upper
bound of throughput

The numerical procedure for computation of the upper bound of the THR whitch
allows calculation of the first limit mentioned above is description in [4]. If the
limit exists then the solution is unique.

We choose value m = 2. This is the minimal value of m in its definition
area m ∈ [2, 3, 4, . . .). When m = 2, then i = 1, 2, 4, 8, 16, 32, 64, . . . , 2p, . . . .
The initial evaluation of the required number of curves for THR is at least
4 (from Pattern Chao1). In our example, we have nine curves (patterns). In
the figures below, Chaoi is denoted as Ci for i = 1, 2, . . . We get results for
C1, C2, C4, C8, C16, C32, C64, C128, C256 which are shown in Figure 4.

The dimension n varies from 3 × 3 to 100 × 100 and n simulations for each
size (n × n) of pattern Chaoi are executed. To achieve this goal we propose a
modification of family of pastterns Chaoi, as it is shown an Figure 5.

Then we calculate the difference between throughput for neighboring patterns
according to (3). The obtained curves for the differences are shown in Figure 6.

Fig. 4. Throughput for Chao1, . . . , Chao256

Then we calculate the convergence parameter δj which is the ratio of the
differences according to (4) and the obtained curves are shown in Figure 7. The
values of δj tend to (1, 5)−1.

From our simulations in the case m = 2, we have drawn the following
conclusion:
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Fig. 5. Modification of Family of patterns for Chao-model

Fig. 6. Differences between throughput

Confirmed: The dependence δj+1 = φ(δj) is a constant, i.e. δj+1 = δj = 2−1/2

with an accuracy depending on the error of simulations.

As a consequence, the upper boundary in case m = const can be calculated
according to (5) as:

fp+1(n, i) = f(n,mp−1) + δ(m).(f(n,mp−1)− f(n,mp−2))
fp+2(n, i) = f(n,mp−1) + (δ(m) + δ2(m)).(f(n,mp−1)− f(n,mp−2))

. . .
fp→∞(n, i) = f(n,mp−1) + [δ(m) + δ2(m) + . . . + δp(m) + . . .](f(n,mp−1) −
f(n,mp−2)) =
= f(n,mp−1)+[m−1/2+(m−1/2)2+. . .+(m−1/2)p+. . .].(f(n,mp−1)−f(n,mp−2)) =
= f(n,mp−1) + [(m1/2 − 1)−1].(f(n,mp−1)− f(n,mp−2))

Fig. 7. Ratio 1/δ1, 1/δ5 between differences
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In this simulation m = 2 and we calculate the boundary by
fp→∞(n, i) = f(n, 64) + [(21/2 − 1)−1].(f(n, 64)− f(n, 32))

This choise is for δ5 - it has the least deviation from m−1/2. The result is shown
in Figure 8 (right). For comparison in Figure 8 (left) is shown a boundary which
is calculated about δ1 :

fp→∞(n, i) = f(n, 4) + [(21/2 − 1)−1].(f(n, 4)− f(n, 2))
Thus we conclude that lim i→∞,

n→∞
f(n, i) = 1.

Fig. 8. Upper boundary of throughput

The differences between the values of δj obtained in the simulations and the
value δ(m) = m−1/2 are a measure of the simulation accuracy. Therefore for
calculation of the upper bound we chose these two successive curves fj and fj+1

for which δj has the least deviation from m−1/2

5 Conclusion.

Our computer simulation confirms applicability of the suggested procedure with
modified pattern for load traffic. The obtained results give an upper bound of
the THR for n ∈ [3, 70] which enables us to estimate the limit of the THR of
MiMa-algorithm for n→∞. This estimate is obtained to be 100%.

In a future study, the suggested modification will be tested using other models
of the incoming traffic, for example unbalanced traffic models.

Acknowledgments. The research work reported in the paper is partly
supported by the project AComIn ”Advanced Computing for Innovation”, grant
316087, funded by the FP7 Capacity Programme (Research Potential of Convergence
Regions).

References

1. Kang K., Park K., Sha L., Wang Q. Design of a crossbar VOQ real-time switch
with clock-driven scheduling for a guaranteed delay bound. Real-Time Systems,
January 2013, V. 49, Issue 1, pp. 117-135.



8 A Numerical Study of the Upper Bound of the Throughpu

2. Chen T., Mavor J., Denyer Ph., Renshaw D. Traffic routing algorithm for serial
superchip system customisation. IEE Proc., Jan 1990, Vol. 137, No.1. pp.65-73.

3. Chao H.J., Lui B. High performance switches and routers. John Wiley & Sons,
2007.

4. Tashev T., Bakanov A., Tasheva, R. Determination of the value of convergence
parameter in a procedure of calculating the upper boundary of throughput
for packet switch. Proc. of Int. Conf. ROBOTICS, AUTOMATION AND
MECHATRONICS13 RAM 2013, 8-10 October 2013. Bankya, Bulgaria. Prof.
M.Drinov Academic Publishing House, Sofia, 2013. pp.34-37.

5. Tashev T., Atanasova T. Computer Simulation of MIMA Algorithm for Input
Buffered Crossbar Switch. International Journal ”Information Technologies &
Knowledge”, Vol.5 Number 2, 2011, pp.183-189.

6. Chao-Lin Yu; Cheng-Shang Chang; Duan-Shin Lee; CR Switch: A Load-
Balanced Switch With Contention and Reservation. IEEE/ACM Transactions on
Networking, vol. 17 no.5, P. 16591671, October 2007.

7. Tashev, T., Monov V. Modeling of the Hotspot Load Traffic for Crossbar Switch
Node by Means of Generalized Nets. Proceedings of 6th IEEE International
Conference Intelligent Systems (IS)” 6-8 September 2012, Sofia, Bulgaria. pp.187-
191

8. Anderson T., Owicki S., Saxe J., and C.Thacker. High speed switch scheduling for
local area networks. ACM Trans. Comput. Syst., 1993, vol. 11, no.4, pp.319-352.

9. Atanassov K. Generalized Nets and System Theory. Akad. Press Prof.M. Drinov,
Sofia, Bulgaria, 1997.

10. Tashev T. Modelling throughput crossbar switch node with nonuniform load traffic.
Proc. of the International Conference ” DCCN ’ 2011 , Oct. 26-28, 2011, Moscow,
Russia. Moscow, R&D Company INT, 2011. pp.96-102 (in Russian).

11. Tashev T. MiMa algorithm throughput modelling for crossbar switch with hotspot
load traffic. Proc. of the International Conference ” DCCN ’ 2013 ”, Oct. 7-10,
2013, Moscow, Russia. JSC ”TECHNOSPHERA”, Moscow, 2013. pp.257-264 (in
Russian).

12. Vabishchevich P. VFort. http://www.imamod.ru/ vab/vfort/download.html


