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Summary 

• Why State-Space Fuzzy-Neural approach? 

• Improved Takagi-Sugeno FN State-Space 
Neural Network. 

• Training method for the proposed FN SS 
Neural Network. 

• Simulation Experiments. 

• Conclusions. 
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• State-Space approach involves less parameters 
identification compared to time domain system 
representation. 

• Combining the State-Space description with simple 
TS fuzzy-neural approach, enables the possibility for 
nonlinear system modeling by using multiple model 
weighting. 

• Using Fuzzy-Neural State-Space representation 
facilitate the further development of constrained 
optimization polices in purpose of Model Predictive 
Control. 

Why State-Space Fuzzy-Neural approach? 
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• Defining a proper structure of the SS FFN is a crucial issue, not 
only for the model prediction capabilities but it affects the 
computational feasibility of the optimization task in MPC 
control. 

• Our previous works show that the use of the standard TS 
approach in State-Space is inappropriate, due  difficulties to 
coordinate the learning procedures in notion to different 
error terms, which may require a multiparametric 
optimization. 

•  Solution: We propose a simple hierarchical model structure 
which enables the possibility to avoid many optimization 
obstacles preserving the general State-Space notation in a 
multiple model manner.  

 

Improved TS State-Space  Fuzzy-Neural Network. 
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Structure of the proposed SS FNN 

AComIn: Advanced Computing for Innovation 

  Each parallel structure 
models one system state as a 
set of local linear models. 

 
 The model output depends 
on those predicted system 
states - X and the direct 
system input - U. 

 
 Thus the parameters of each 
parallel structure in notion to 
the respective state are 
adjusted using its error state 
term. 
 
 The parameters associated 
with the output – Y are 
adjusted using the output error 
term. 
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Description of the SS FNN model 

where xi  is a predicted i-th system state, 
by fuzzyfication of its previous discter 
instance value and the actual system 
input 

Mathematical description of the model 
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where R is the ith rule of the local rule 
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states and the output of the system), Mi 
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Description of the SS FNN model 

Mathematical description of model 
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From a given input vector, the output 
of the each fuzzy model is inferred by 
computing the following equation: 
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A common practical case is to define a 
system by second order model in the 
form:  
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Learning algorithm for the SS FNN  
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.  

• The task of model identification is to determine both groups of parameters of the 
Gaussian membership functions in the rule premise part and the linear parameters 
(coefficients) in the rule consequent part of the local models. 

• The learning algorithm for each state associated fuzzy-neural model is based on 
minimization of an instant error measurement function: E=ε2/2, between the real 
x(k) and the estimated by the fuzzy-neural model system state .  
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The general parameter learning rule for the 
consequent parameters is: 

The final recurrent predictions for each adjustable 
coefficient βij (a (i) or b (i) are obtained by the 
following equation:   
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rule: 

( 1) ( )si si
si

Ek kα α η
α
∂ + = +  ∂ 

ˆ
 ˆ

pi

pi pi pi

E E x
x

µ
α µ α

∂∂ ∂ ∂
=

∂ ∂ ∂ ∂

( )
2

[ ( ) ]
ˆ( 1) ( ) ( ) ( )[ ( ) ( )]

( )l

p pii
pi pi ui x

pi

r k c
c k c k k g k f k x k

k
ηε

σ
−

+ = + −

2
( )

3

[ ( ) ]
ˆ( 1) ( ) ( ) ( )[ ( ) ( )]

( )
p pii

pi pj ui x
pi

r k c
k k k g k f k x k

k
σ σ ηε

σ
−

+ = + −

The rule premise parameter scheduling is 
achieved by:  

where the gradient is being obtained by the 
following chain rule: 
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.  

• In order to overcome the deficiencies of the Gradient Descent approach, a 
simple adaptive solution to define at each iteration step the learning rate η, 
has been employed. The idea lies on the estimation of the Root Squared 
Error: 

 

 

• Afterwards, the following condition is applied: 
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Validation of the proposed SS FNN 
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.  

  

  

Computer simulated pendulum system 
  

An oscillation pendulum system model is used to test 
the modeling capabilities of the proposed State-
Space Fuzzy-Neural Network.  
A rigid zero-mass pole with length L connects a 
pendulum ball and a frictionless pivot at the ceiling. 
The mass of the pendulum ball is M, and its size can 
be omitted with respect to L.  
The pole (together with the ball) can rotate around 
the pivot, against the friction f from the air to the 
ball, which can be simply quantified as 
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Using two state variables x1, x2 to represent the 
position and the velocity, a State-Space 
representation is being obtained: 

  

Applying Runge-Kutta method to (19), we can get the 
‘continuous’ states of the testing system. The input 
(U) and states (X) are sampled every 0.25 second and 
for total 50 seconds, using the following conditions 
(F=0, x1(0)=5π/12, x2(0)=0). 
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Validation of the proposed SS FNN 
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.  

  

  

Computer simulated pendulum system 
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Validation of the proposed SS FNN 
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.  

  

  

Computer simulated nonlinear Lyophilization plant 
  

  

Estimation of the states and the output 
of the Lyophilization plant 

 

Estimation of  Output and the Root Mean 
Squared Errors (in logaritmic scale) 
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Conclusions 

• It was shown the development of a novel structure of  State-
Space Fuzzy-Neural Network model with parallel units for 
states estimation. 

•  The numerical validation in modeling of two nonlinear 
processes (Oscillating pendulum and Lyophilization plant) have 
shown a good ability of the model to adapt accurately on 
different system dynamics (faster or slower). 

• The obtained predictions of the system states and outputs are 
achieved with minimal error as demonstrated. 

• An extension of the approach is the inclusion of the model in a 
Constrained Model Predictive Control scheme using the QP 
optimization strategy. 
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		State-Space approach involves less parameters identification compared to time domain system representation.

		Combining the State-Space description with simple TS fuzzy-neural approach, enables the possibility for nonlinear system modeling by using multiple model weighting.

		Using Fuzzy-Neural State-Space representation facilitate the further development of constrained optimization polices in purpose of Model Predictive Control.
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		Defining a proper structure of the SS FFN is a crucial issue, not only for the model prediction capabilities but it affects the computational feasibility of the optimization task in MPC control.

		Our previous works show that the use of the standard TS approach in State-Space is inappropriate, due  difficulties to coordinate the learning procedures in notion to different error terms, which may require a multiparametric optimization.

		 Solution: We propose a simple hierarchical model structure which enables the possibility to avoid many optimization obstacles preserving the general State-Space notation in a multiple model manner. 



Improved TS State-Space  Fuzzy-Neural Network.
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Structure of the proposed SS FNN
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		  Each parallel structure models one system state as a set of local linear models.



		 The model output depends on those predicted system states - X and the direct system input - U.



		 Thus the parameters of each parallel structure in notion to the respective state are adjusted using its error state term.





		 The parameters associated with the output – Y are adjusted using the output error term.
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Description of the SS FNN model

where xi  is a predicted i-th system state, by fuzzyfication of its previous discter instance value and the actual system input

Mathematical description of the model
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where R is the ith rule of the local rule base, rp are the state regressors (the states and the output of the system), Mi is a membership function of a fuzzy set and A(i), B(i), are matrices in notion to i-th fuzzy rule
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Mathematical description of model
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From a given input vector, the output of the each fuzzy model is inferred by computing the following equation:

 

where μui are the degrees of fulfillment in notion to i-th activated fuzzy Gaussian membership function, defined as:

  

A common practical case is to define a system by second order model in the form:	
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Learning algorithm for the SS FNN 
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. 

		The task of model identification is to determine both groups of parameters of the Gaussian membership functions in the rule premise part and the linear parameters (coefficients) in the rule consequent part of the local models.

		The learning algorithm for each state associated fuzzy-neural model is based on minimization of an instant error measurement function: E=ε2/2, between the real x(k) and the estimated by the fuzzy-neural model system state . 



 

The general parameter learning rule for the consequent parameters is:

The final recurrent predictions for each adjustable coefficient βij (a (i) or b (i) are obtained by the following equation: 	

 

where the gradient is calculated by a defined chain rule:

The rule premise parameter scheduling is achieved by:	

where the gradient is being obtained by the following chain rule:
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Adaptive learning rate scheduling
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. 

		In order to overcome the deficiencies of the Gradient Descent approach, a simple adaptive solution to define at each iteration step the learning rate η, has been employed. The idea lies on the estimation of the Root Squared Error:





		Afterwards, the following condition is applied:













where τd =0.7 and τi=1.05 are scaling factors and kw=1.41 is the coefficient of admissible error accumulation 
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Validation of the proposed SS FNN
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Computer simulated pendulum system

 

An oscillation pendulum system model is used to test the modeling capabilities of the proposed State-Space Fuzzy-Neural Network. 

A rigid zero-mass pole with length L connects a pendulum ball and a frictionless pivot at the ceiling. The mass of the pendulum ball is M, and its size can be omitted with respect to L. 

The pole (together with the ball) can rotate around the pivot, against the friction f from the air to the ball, which can be simply quantified as





Using two state variables x1, x2 to represent the position and the velocity, a State-Space representation is being obtained:

 

Applying Runge-Kutta method to (19), we can get the ‘continuous’ states of the testing system. The input (U) and states (X) are sampled every 0.25 second and for total 50 seconds, using the following conditions (F=0, x1(0)=5π/12, x2(0)=0).
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Validation of the proposed SS FNN
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Computer simulated pendulum system

 





 

Estimation of the states and the output of the Pendulum Oscillating 

Estimation of Root Mean Squared Errors of the estimations.(In logaritmic scale)
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Validation of the proposed SS FNN
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Computer simulated nonlinear Lyophilization plant

 





 

Estimation of the states and the output of the Lyophilization plant

Estimation of  Output and the Root Mean Squared Errors (in logaritmic scale)
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Conclusions

		It was shown the development of a novel structure of  State-Space Fuzzy-Neural Network model with parallel units for states estimation.

		 The numerical validation in modeling of two nonlinear processes (Oscillating pendulum and Lyophilization plant) have shown a good ability of the model to adapt accurately on different system dynamics (faster or slower).

		The obtained predictions of the system states and outputs are achieved with minimal error as demonstrated.

		An extension of the approach is the inclusion of the model in a Constrained Model Predictive Control scheme using the QP optimization strategy.
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